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Parallel computing:
Theory



Parallel computers

•	
Multiprocessor/multicore:
	
 	
 several processors work on data stored in shared memory
•	
Cluster: 
	
 	
 several processor/memory units work together by exchanging
	
 	
 data over a network
•	
Co-processor:
	
 	
 a general-purpose processor delegates specific tasks to a
	
 	
 special-purpose processor (GPU, FPGA, ...)
•	
Other:
	
 - Cluster of multicore nodes with GPUs
	
 - NUMA (non-uniform memory access) architectures
	
 - ...

Almost all computers made today are parallel!



Parallelism vs. concurrency

Parallelism:

	
 use multiple processors to make a computation faster.

Concurrency:

	
 permit multiple tasks to proceed without waiting
	
 for each other.

Different goals that share implementation aspects.

Scientific computing cares more about parallelism.
Concurrency is rarely needed.



Parallel Programming

Decomposition of the complete task into independent 
subtasks and the data flow between them.

Distribution of the subtasks over the processors 
minimizing the total execution time.

For clusters: distribution of the data over the nodes 
minimizing the communication time.

For multiprocessors: optimization of the memory access 
patterns minimizing waiting times.

Synchronization of the individual processes.



Difficulties

Verifying that subtasks are indeed independent.

Making synchronization patterns deadlock-free.

Clusters: verifying communication patterns.

Attributing equal workloads to all processors.

Taking into account computation and communication.

Optimizing for a specific parallel computer.

Efficiency:

Correctness:



Synchronization issues

Deadlock:

- Two processes are waiting for each other to finish.

- Usually caused by locks or by blocking communication.

Race condition:

- Two or more processes modify a shared resource (variable, file, ...)

- Result depends on which process comes first.

- Can be avoided using locks, but...

- ... handling locks is very difficult and mistakes often cause deadlocks.



Task farming

One master process supervises the execution of the program. It defines 
independent tasks and puts them on a to-do list. It also collects the results of 
these tasks.
Any number of slave processes each take a task from the to-do list, execute it, 
and put the result into the master’s mailbox.
Advantages:
- Very simple model
- No deadlocks, since only the master process ever waits for another process to 
finish
Limitations:
- Tasks cannot delegate work to sub-tasks. Adding this possibility would 
introduce the possibility of deadlocks.
- Rigid communication pattern, no optimization possible.
- Distributed data storage impossible.



Parallel computing:
Python practice



Processes vs. threads

A process consists of

• a block of memory

• some executable code

• one or more threads that execute code independently but work on 
the same memory

Multithreading:	
 using multiple threads in the same process
module threading	
 	
 for concurrency or parallelism

Multiprocessing:	
 using multiple processes with separate memory
module multiprocessing	
 spaces for concurrency or parallelism

But... why use multiple processes rather than multiple threads?



The Global Interpreter Lock 
(GIL)

The Python interpreter is not thread-safe.
A few critical internal data structures may only be accessed by one 
thread at a time. Access to them is protected by the GIL. Parallel 
execution of Python code in different threads is thus impossible.

This is not a requirement of the Python language, but an implementation detail of the 
CPython interpreter. Jython and IronPython don’t have a GIL and are fully thread-
safe.
Attempts at removing the GIL from CPython have failed until now. The main difficulty is 
maintaining the C API for extension modules and the efficiency for single-thread 
execution.

Multiprocessing avoids the GIL by having separate processes which 
each have an independent copy of the interpreter data structures.
The price to pay: serialization of tasks, arguments, and results.

This adds overhead that can be important.
Moreover, not all Python objects can be serialized.



A first parallel program

from multiprocessing import Pool
import numpy

if __name__ == '__main__':

    pool = Pool()
    roots = pool.map(numpy.sqrt, range(100))
    print roots

for Windows compatibility



What happens...

1.	
 pool = Pool() launches one slave process per physical processor
	
 on the computer. On Unix systems, the slaves are forked from the
	
 master process. Under Windows, a new process is started that
	
 imports the script.
2.	
 pool.map(numpy.sqrt, range(100)) divides the input list into chunks
	
 of roughly equal size and puts the tasks (function + chunk) on a
	
 todo list.
3.	
 Each slave process takes a task (function + a chunk of data)
	
 from the todo list, runs map(function, chunk), and puts the result
	
 on a result list.
3.	
 pool.map on the master process waits until all tasks are handled
	
 and returns the concatenation of the result lists.



The todo list

The todo list is actually a queue, i.e. a data structure to which items are 
added at one end and taken off at the other end.

The todo list must be accessible by all processes (master and slaves).

Access to the todo list must be synchronized to prevent data corruption.

The todo list is stored on the master process. A special thread of the 
master process waits for task requests from slave processes and returns 
the task function and arguments. This requires serialization.



Explicit task definition

from multiprocessing import Pool
import numpy

if __name__ == '__main__':

    pool = Pool()
    results = [pool.apply_async(numpy.sqrt, (x,))
               for x in range(100)]
    roots = [r.get() for r in results]
    print roots

1.	
 pool.apply_async returns 
	
 a proxy object immediately
2.	
 proxy.get() waits for task
	
 completion and returns the
	
 resultUse for:

• launching different tasks in parallel
• launching tasks with more than one argument
• better control of task distribution



Shared memory
It is possible to share blocks of memory between processes. This eliminates 
the serialization overhead.

Multiprocessing can create shared memory blocks containing C variables 
and C arrays. A NumPy extension adds shared NumPy arrays. It it not 
possible to share arbitrary Python objects.

NumPy extension:  http://bitbucket.org/cleemesser/numpy-sharedmem

Caveat:
	
 If you care about your mental sanity, don’t modify shared memory
	
 contents in the slave processes. You will end up debugging race
	
 conditions.

Use shared memory only to transfer data from the master to the slaves!

https://bitbucket.org/cleemesser/numpy-sharedmem
https://bitbucket.org/cleemesser/numpy-sharedmem


Shared memory

from multiprocessing import Pool
from parutils import distribute
import numpy
import sharedmem

def apply_sqrt(a, imin, imax):
    return numpy.sqrt(a[imin:imax])

if __name__ == '__main__':

    pool = Pool()
    data = sharedmem.empty((100,), numpy.float)
    data[:] = numpy.arange(len(data))
    slices = distribute(len(data))
    results = [pool.apply_async(apply_sqrt, (data, imin, imax))
               for (imin, imax) in slices]
    for r, (imin, imax) in zip(results, slices):
        data[imin:imax] = r.get()
    print data



parutils.distribute

from multiprocessing import cpu_count

default_nprocs = cpu_count()

def distribute(nitems, nprocs=None):
    if nprocs is None:
        nprocs = default_nprocs
    nitems_per_proc = (nitems+nprocs-1)/nprocs
    return [(i, min(nitems, i+nitems_per_proc))
            for i in range(0, nitems, nitems_per_proc)]

Distributes a sequence equally (as much as possible) over the
available processors. Returns a list of index pairs (imin, imax)
that delimit the slice to give to one task.



Shared memory with in-place 
modification

from multiprocessing import Pool
from parutils import distribute
import numpy
import sharedmem

def apply_sqrt(a, imin, imax):
    a[imin:imax] = numpy.sqrt(a[imin:imax])

if __name__ == '__main__':

    pool = Pool()
    data = sharedmem.empty((100,), numpy.float)
    data[:] = numpy.arange(len(data))
    tasks = [pool.apply_async(apply_sqrt, (data, imin, imax))
             for (imin, imax) in distribute(len(data))]
    for t in tasks:
        t.wait()
    print data



Debugging: monoprocessing

Parallel debugging is a mess. You don’t want to do it.

The module monoprocessing contains a class Pool with the same methods
as multiprocessing.Pool, but all tasks are executed immediately and in the
same process. This permits debugging with standard tools.

If your programs works with monoprocessing but not with multiprocessing,
explore the following possibilities:

•  Serialization: some object cannot be serialized

•  The code of a task refers to a global variable in the master process

•  The code of a tasks modifies data in shared memory

Get monoprocessing from:  http://pypi.python.org/pypi/monoprocessing/0.1

http://pypi.python.org/pypi/monoprocessing/0.1
http://pypi.python.org/pypi/monoprocessing/0.1


Exercises



Volume des cellules d’un maillage

Parallélisez le script suivant:

import pyShift.cartTh as CTH
import pyShift.volume as PSV
import numpy as np
import time

n = 10
m = CTH.cartThNumpy(n, n, n)

t0 = time.time()
v = PSV.volume(m)
t1 = time.time()

print t1-t0 1) Commencez simple (deux processeurs, ...)
2) Mesurez le temps utilisé pour plusieurs n


