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Introduction

L Motivations
‘M ! Examp

Introduction

Predictions of compressible flows / multiple time and length scales.

@ Increase of computer power: D.N.S. a powerful tool for fine analysis of
flow dynamics.
@ Quality of results:

o ability of approximations: Capture small scale structures / discontinuities;
o ability of computational grid to capture length scales.

SK. Lele en/kox, b
Flame front; dlphaSIC interface; shock/Turbulence interaction; vort|C|ty
production by baroclinic effect: need High-order schemes + mesh refinement.

C. Tenaud, Y. Fraigneau & V. Daru Shock capturing scheme and adaptive MR approach



Introduction

l""{s"

Vorticity production by baroclinic effect: Shock / hot bubble interaction.

Initial solution: T /T =3.33
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Introduction

L ons
‘M
and overview

Vorticity production by baroclinic effect: video of the solution

oz

az -

Shock / hot bubble interaction: density countours.
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Introduction

Obj and overview

Vorticity production by baroclinic effect: video of the adapted grid

Shock / hot bubble interaction: adapted grid using 9 grid levels.
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Introduction

o0 :
Objectives and overview

Objectives of the presentation

System of equations;
Numerical approximation OSMPx [V. Daru & C. Tenaud, 2001, 2004];

o Lax-Wendroff approach;
@ Shock capturing features (TVD, MP);
Adaptive MultiResolution technique [A. Harten, 1994 ; A. Cohen, 2003];
o Multiscale decomposition;
o Adaptive MR formalism: wavelet basis;
Couple OSMPx / adaptive MR. Influence on accuracy, CPU time
consumption, memory usage, evaluated on well known test-cases:

e Hyperbolic conservation laws: linear and nonlinear scalar transport equation,
e Euler and Navier-Stokes solutions in 1-, 2- and 3-D.

@ Conclusion and prospect.
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Equations and computational domain

s '- Numerical approximation proach: One Step scheme
est-Ce apability of the OSM scheme

Conservation Law: equations

%—V;’+V~f(w,Vw):S(w) inQ,teRY
w(x,0) = wo(X), (1)
w(x, t) =g(x,t) on o9Q.
p
wx,t)=| pu (2)
p E
- °
— FPrl_#t | r=Vvu+Viu-2v-u
f(w, Vw) pu®u+’yM2]I Re 1 3 (3)
pUETUP R e v
P=P(p,e)=pT (4)
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Equations and computational domain

: Numerical approximation 3
= '- pp Finite volume approach: One Step scheme

Conservation Law: computational domain

Domain: dense partition of Q into Ny intervals of size hy;

Q= |J vV with ]\/,-Oﬂvﬁ}:o forj # k; j,k € [0, No).

JE[0,No]

Sy
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Equations and computational domain

5 Numerical approximation
‘M

Conservation Law: computational domain

Domain: dense partition of Q into Ny intervals of size ho;

Q= J Vv : with ]vﬁﬂvE.:o forj # k; j, k € [0, No].

J€l0,No]

Looking for successive approximations (w;)" of
the average value of w(x, t) in control volumes,
attime n ot:

n 1 /
w)' = — w(Xx, nét) dx . °

where |V/| :/ dx
v

gﬁ
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Equations and computational domain

2 . Numerical approximation Finite volume approach: One Step scheme
! TVD chemes
est- ability of the OSMP7 sche

Conservation Law: Finite-Volume approach

1
(w,-)”—|v;)/v/ow(x,n5t)dx; j|—/vj0dx ) )
(n+1)st "
/ / (——i—V f(w,Vw)) dx dt = 0. S
Naim
1 ot (=n —=n
wi" ) = wi = 5Xm (F'"7/'+1/2 - Fm,j—1/2)

Numerical flux: 2p grid points

— n+1)st
Frnjit/2(W ity W, W) = / / f(w, VW) -n do dt
n oV:
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Equations and computational domain

! ! Numerical approximation Finite volume approach: One Step scheme

Overview

System of equations;
Numerical approximation OSMPx [V. Daru & C. Tenaud, 2001, 2004];
o Lax-Wendroff approach;
e Shock capturing features (TVD, MP);
Adaptive MultiResolution technique [A. Harten, 1994 ; A. Cohen, 2003];
o Multiscale decomposition;
o Adaptive MR formalism: wavelet basis;
Couple OSMPx / adaptive MR. Influence on accuracy, CPU time
consumption, memory usage, evaluated on well known test-cases:

e Hyperbolic conservation laws: linear and nonlinear scalar transport equation,
e Euler and Navier-Stokes solutions in 1-, 2- and 3-D.

@ Conclusion and prospect.
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Equations and computational domain

= '- Numerical approximation Finite volume approach One Step scheme
est- ability of the OSMP7 scheme

Approximation: OS basis scheme

ow  Of(w) . _
of T o =0 with f(w)=aw(a>0)

Lax-Wendroff scheme

ot
Wt =w - X —(F1/2 — F¥12) (5)

with the Lax-Wendroff numerical flux:

O (- )(f 1+ — f7) CFLnumber v = as .

Modified equation:

6 2
U+ f(U)x = a%(uz 1) U (6)
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Equations and computational domain

= L Numerical approximation Finite volume approach: One Step scheme
' emes
est- pability of the OSMP

Approximation: OS basis scheme

3rd order One Step scheme: OS3
n 1+v

(F11 — 267 + 1)) (7)

Numerical flux recasts in a 3-point like scheme:

1—v
Fioe =1+ ¢?+1/2(27)( g — 1) (8)
with 14
14
Py =1- T“ — I111/2) (9)
r _ UJ(7 — /’,771
)2 = =
u;7+1 B Uf
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Equations and computational domain

= '- Numerical approximation Finite volume approach One Step scheme
est- ability of the OSMP7 scheme

Approximation: o-th order OSo scheme

o-th order One Step scheme: OSo

ot
W't = w — a( sz — Fla)2) (10)
1—v
Fiap =1+ q’/+1/2(27)(f/11 —f) (11)
Function ¢/, , drives the o-th order of accuracy of the scheme.
1+v v-2

Oie = Pliajp+ 3 g (0 =20hmp+ e (12)

7 6 1+v v—-2 v—-3 v+2 v+3

M R S S A

1 5 (13)
- +10-10n +57 -
<fj+3/2 livsy2  livsye /2 /25172

—li1/2 li-1/2 fj-3/2)
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Equations and computational domain

= L Numerical approximation Finite volume approach: One Step scheme
' emes
est- pability of the OSMP

Approximation: o-th order OSo scheme

High-order One step scheme (L-W):
@ Developed up to 11-th accuracy order (non-linear scalar)

@ Control of the dissipation in time and space

@ Stencil of OSp = p + 2 grid-points: rather compact, more than
method-of-line approaches (RK-WENO, for instance)

@ CFL =1 = exact solution is recovered
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Equations and computational domain
Finite volume approach: One Step scheme

Numerical approximation

Spectral property: OS7 scheme

Von Neumann Analysis:

CFL=0.5

IGI RK3 = Centré O4
f— OS7
A
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Equations and computational domain

= 3 Numerical approximation Finite volume approach: One Step scheme
! TVD/MP schemes

Test- apability of the OSMP7 scheme

Spurious oscillations in the vicinity of discontinuities

1—v
Fiap=1"+ 4’7+1/2%( e — 1)

TVD Harten’s criteria for one-step schemes:

2
- < g — D2/ lr12 <

1—v

A\

Upper bound of the TVD constraint: (¢ = 0 for r < 0)

_ . 2 2r
¢7+1%D = max(0, mm(m, i1/2 5 %1/2)) (14)

Resulting scheme: o — th order accurate almost everywhere, except around
extrema and discontinuities (— 1% order)
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Equations and computational domain

= L Numerical approximation Finite volume approach: One Step scheme
! TVI mes
Test-Ce apability of the OSMP7 scheme

Geometrical interpretation of the TVD conditions

Recast Flux for the lower and the upper TVD limits

Frorjo = 147" (= ) with 7 = 0p0 U2

Firie =+~ (f — )

1—v v

with 4 ="+ -
! ! 2 lit1/2

TVD constraints

2
o§¢j+1/2§1—y n ¢n n cul
21412 © Fipae € [, 4] O [, £7]. (15)

(" — 1) and 7~ =4

0<dj42 <

Clipping near extrema = enlarge TVD constraints — Monotonicity
Preserving constraints [A. Suresh & H.T. Huynh, JCP 136(1997)]

Shock capturing scheme and adaptive MR approach
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Equations and computational domain

= '- Numerical approximation Finite volume approach: One Step scheme
est-Cases: capability of the OSMP7 scheme

Monotonicity Preserving constraints

Defining [f', 2, ..., fX] = [min(f', f2, ..., f*), max(f', 2, ..., *)]

TVD enlargement

1 1
(17,1741 enlarged to [, ., §7] 7 = (" + fi1) = 50172
[/, f“] enlargedto [f", ", f° e 11-vy
i 1j gedto [f, £, f"] ; /—/+§(1_171)+§ lji—1/2
div1/2 = Ao = minmod(d}, dj++)
with or
dis1/2 = A 2 = minmod(4d, — dj.1, 401 — 0, d}, 0f1)
Measure of local curvature d; = £/}, — 2" +
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Equations and computational domain

= L Numerical approximation Finite volume approach: One Step scheme
! TVD/MP schemes
Test-C: pability of the OSMP

Monotonicity Preserving schemes (OSMP)

Geometrical interpretation of MP constraints:

Fj+1/2 c [f}n7 j'11, )?md] N [fjn’ r}ul’ fj/C]

MP criteria, in the TVD framework:

¢0—MP _ max(q)min’ ml-n((bo’ ¢max))

™" = max(min(0, ™), min(0, 2, &)

where
O™ = min(max(+2;, ™), max(0, &, "))

C. Tenaud, Y. Fraigneau & V. Daru Shock capturing scheme and adaptive MR approach



Numerical approximation Equations and computational domain
= 3 pp Finite volume approach: One Step scheme
. TVD/MP schemes

Test-C: pability of the OSMP

Extension to system of equations

k-wave characteristics

Fiv12 = Ff5 + 3 ; (PR = [wk])dlfclre)j1,2

with y
FE = g0+ fr) = 5 Do (0lfln)rs2
k

and
O|f| = | Ak |du
day is the k-th Riemann invariant
Ak and r, eigenvalues and right eigenvectors of the Roe-average of 57';
local CFL : vk = 2L\
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Equations and computational domain

: Numerical approximation 3
= '- pp Finite volume approach: One Step scheme

Extension to multi-D

Strang directional splitting:

W = Lsx(51/2)Lsy (5t)Lox(51/2).0]

v

Splitting implementation: symmetry recovers

an+2 _ L5X(5I)L6y(5t)LJ,V(M)LM((SO-an

an+6 — (LéxLéyLéz)(LéxL(SzL&y)(LéyLézLéx)
(L6yLéxI—éz)(LézLéyLéx)(LézLéxI—éy)~an

@ Easily preserve Monotonicity in Multi-D
@ Generally the splitting is 2nd order, only !

@ However, OSMP gives a very low error level.
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Equations and computational domain

Finite ch: One Step scheme
TVD; hem

Test-Cases: capability of the OSMP7 scheme

Numerical approximation

Scalar 1D test-case

0 < 0 11 Method Number of gnd points L, emor L, order
U+ux=0.t<0;xe[-11] oS 7 20 5.16494 10-3
vt
Up(x) = Sin*(2.7.x) oS MP 7 0 566080 10-5  [6e1
djqnr = M, B 4744071077 | 6.90
160 3.76700 10~ [ 6.98
320 295501 107 | 6.99
OS MP 7 20 5.08530 1073
0.8
=, 40 567752 107° 648
80 6.84954 1077 6.37
X
o 160 2.19588 108 496
= 320 1.33241107° | 404
@04 -
20 213730 10-2
40 3.85456 10~% 247
0.2
80 778303 10~ [ 231
160 1.47891 10~ 2.40
° 08 Q os 320 273871107 | 243

ock capturing scheme and adaptive MR approach 23/73




Numerical approximation Equations and computational domain
= 3 pp Finite volume approach: One Step scheme
! TVD chemes

Test-Cases: capability of the OSMP7 scheme

Euler 2D test-case: Vortex advection

Strong vortex propagated at 45° by a supersonic flow:

_ 2
(0u,6v) = 5" (—y,x) oT =~ =D s . 55—,
Yis

e=5 (p,u,v,P)=(1,1,1,1) and (xxy)=[-5,5]x[-5,5]

107 F
4t T =10. 1ok
1t N A
2k -‘Im*. *
P i = -
L) B0k ~ e
! ; -
> 0F i @10.7' l.
J S L
g Ewo‘*. .
2r = -
s
- [ ——
o P @ urweworms)min &
4 - -~ ®  Fy-osmer
o < il 1 1 1
: L L - L 01 0z 03 04
] 2 0 2 4 h
X
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Equations and computational domain

Finite volume approact

TVD/MP scheme:

Test-Cases: capability of the OSMP7 scheme

Numerical approximation

Navier-Stokes 2D test-case: viscous shock tube

paroi
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Equations and computational domain

s - Numerical approximation Finite volume approach: One Step scheme
! TVD/MP schemes
Test-Cases: capability of the OSMP7 scheme

Navier-Stokes 2D test-case: viscous shock tube

Isocontours of |Vp| at t=1

Re = 200 (1000 x 500) Re = 500 (1500 x 750)
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Equations and computational domain
roach: One Step scheme
schemes
Test-Cases: capability of the OSMP7 scheme

Numerical approximation

Navier-Stokes 2D test-case: viscous shock tube

120 1 1 1

OSMP7 (3000 x 1500)
OSMP7 (4000 x 2000)
— — — RK3-WENO5 (3000 x 1500)

ock capturing scheme and adaptive MR approach



! ! C ssion and graded tree
= '- MR approach g ion and graded tree

Overview

System of equations;
Numerical approximation OSMPx [V. Daru & C. Tenaud, 2001, 2004];

o Lax-Wendroff approach;
@ Shock capturing features (TVD, MP);
Adaptive MultiResolution technique [A. Harten, 1994 ; A. Cohen, 2003];
e Multiscale decomposition;
o Adaptive MR formalism: wavelet basis;
Couple OSMPx / adaptive MR. Influence on accuracy, CPU time
consumption, memory usage, evaluated on well known test-cases:

e Hyperbolic conservation laws: linear and nonlinear scalar transport equation,
e Euler and Navier-Stokes solutions in 1-, 2- and 3-D.

@ Conclusion and prospect.
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F-V Multiresolution

ding, con and graded tree
= '- MR approach d on and graded tree
Summing up

Nested grids

Dyadic grids: Grid level : | € [0, L]

Cell referenced by position and
grid-level:(j, /)

0.0

C. Tenaud, Y. Fraigneau & V. Daru Shock capturing scheme and adaptive MR approach 29/73



F-V Multiresolution
ding, con and graded tree
= ', MR approach E:w’ olding, comg on and graded tree
Su mming up

Nested grids
Dyadic grids: Grid level : / € [0, L]

Cell referenced by position and

grid-level:(j, /)
L] L]
Vor Vir =1
L] L]
1
Voo Vio
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F-V Multiresolution

= " MR approach EC; 3, compression and graded tree
Summing up

Nested grids

Dyadic grids: Grid level : | € [0, L]

Cell referenced by position and

grid-level:(j, /)
[ ] [ ] [ ] [ ]
(/7 /) - (2./’ I+ 1) ) (2/ + 17l+ 1) Viz;z,'u V§i+1,lj+1
L ] L ] L ] L ]
V;I;Zj §i+1,2j
[ ] [ ] [ ] [ ]
Vo |V
L ] [ ] L ] [ ]
Voo |Vio
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k’éi

Nested grids
Dyadic grids: Grid level : | € [0, L]
Q:Ume(WﬂwFQ

ISl

for j # k; j.k € 1.

Refinement process:

V/: U V;’7+1a

/
pecj

C/ set of chidren indexes of V.

C. Tenaud, Y. Fraigneau & V. Daru

F-V Multiresolution
ding, compression a aded tree
MR approach olding, compression and graded tree

Summing up

L] [ ] L] [ ]
. . e i
Vi WV 2
22001 211241
L] [ ]
. . ) e
Vg Varia
. . . .
L] [ ]
. . . .
L] [ ] L] [ ]
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F-V Multiresolution

%" MR approach \Th

Tree data Structure

L] L] L] L]
2 2
Vg |Vasago
[ ] L] L ] L]
2 2
Vzgy VZHI,Z] 1=2
[ ] L] L] L ]
2 2
Vi Via
[ ] [ ] [ ] [ ]
2 2
Voo Vip

Terminology: father (j/2,1—1); children (2j,14+1), (2j+1,/+1); cousin

(/+17/)! (j_ 17I)
leaves are upper elements (with no child)
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F-V Multiresolution

= " MR approach ! 3, compression and graded tree
Summing up

Projection operator:

P11 : compute v} knowing children-cells vy!", vyl ...

Nested grid: operator is exact and un/que [A. Cohen et al.(2000)]:
Assuming cell average as: (V)" = |V’\ fv, X, n ot) dx

Projection operator:

1
P V/I‘ = = Z \VI+1| V

C/ index set of the 2Mam children-cells at grid-level / + 1, for current cell V/.
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F-V Multiresolution

ession and graded tree
= '- MR approach E:w’rt om| ion and graded tree
Summing up

Prediction operator:

P,_..1 : maps V' to an approximate value ¥'*' of v/*'.
P, 11 is not unique and prediction needs to be:

@ Jocal; interpolation stencil must contain the parent-cell and its nearest
neighbors in each direction [A. Cohen et al.(2000), M. Postel (2001)].

@ consistent with the projection operator, i.e. Pj 10 Pj_ 11 = Id.
Conservativity:
1ol I+1) ol+1
Vil =22 1V %
pec;

@ linear (not mandatory...) — simplicity of the numerical analysis.
Information on non-linear operator found in [F. Anrandiga et al.(1999)]
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F-V Multiresolution

= '- MR approach m o :wg compression and graded tree
Summing up

Prediction operator: interpolation

Prediction interpolation: centered linear polynomial

)

NI | |

= v+ 6 (v — via):
=1

Py : 7

L P

B =v =) & (V/+q - vj,q),
o=

Coefficients of centered linear

polynomial: Vi Vi
order(o) | s | & | & R s
0 0 0 0 : : > e -
2 1] 5 [ o Ve " : :
4 2| & | s for s =1
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F-V Multiresolution
compression and graded tree
= ', MR approach E:w’yt compression and graded tree
SUHVWIHQ up

Prediction operator: multi-D interpolations

Extension to multidimensional Cartesian grids:
Tensorial product of 1-D operator [B.L. Bihari & A. Harten (1997), O. Roussel et
al.(2003)].

2D-interpolation

U kg = Vik+ (1P @GV ) + (1) @5(k; V) ) — (=)D QS(j, k; V'),

with p, g € [0, 1] and:

S
o / /
@ (/? V) = Z&q (V/‘+q - Vj—q) )
q=1
S S
@ (j’ ki V,) =D &) & (Vf/+a,k+b —Vakib — Vi-akib T Vf’—a,k—b) '

a=1 b=1
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F-V Multiresolution

ding, con and graded tree
= '- MR approach d on and graded tree
Summing up

Prediction operator: details

prediction error: details (d)

I _
djfv/fvj.

Consistency assumption [A. Harten (1995)]: » V| dh = 0.
pec}f
Knowing 2"ém cell-averages v'*' < knowing v} and (2" — 1) d’:

F gl g,
Vop = Vo + Oy
I
o Y / 141
ok+1 = Tt 7 Vi T Vek -
\V2k+1\
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F-V Multiresolution

! ! MR approach Th,’ comg n and graded tree

Prediction operator: details

Polynomial accuracy

‘d” <c2”! \v’|Lm(Vj,).

Main property for MR process:

@ Solution with locally bounded o-th order derivatives [A. Cohen et al.(1992)];
|d'| =o0.

@ Decay with 2~/ for solutions smooth enough;

@ Significantly high detail values within singularities.
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F-V Multiresolution

ding, con and graded tree
= '- MR approach d on and graded tree
Summing up

Multiresolution transform:

={d, 0<j <N}, with N = (2" — 1) 2Man(=D
(1+1) ( / /+1)
' — (v, D .

One to one transformation: from /eaves down to the root

C. Tenaud, Y. Fraigneau & V. Daru Shock capturing scheme and adaptive MR approach



F-V Multiresolution

= '- MR approach Thresholding, compression and graded tree
Virtual cells
Summing up

Thresholding:

Solution known by (v°,D',...,D") = M*;

Algorithm 1: Predictive Harten’s thresholding

For /= L — 1 down to 1, with &, = 2Nndim-(=1) o Do

forj € I, do
9]
. L
@ If () ——"— < ¢/, then
max; ‘dj’ ’
Assuming solution slowly propagates at a finite speed:
o dl'/ =0;
FH1 _ T _ ; .
Q tzjr = false and 4,y = false — discarded;

@ Else o/ ¢ D' and?éjjq = true with —K < g < K +1;
“K" = maximal speed of propagation: i.e. K chosen as flux stencil width.
K = 1 in most cases, coherent with CFL-condition.
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F-V Multiresolution

= '- MR approach Thresholdlng, compression and graded tree
Virtual cells
Summing up

Thresholding:
Algorithm 3 (next): Predictive Harten’s thresholding

® Else o/ € D'and 3}/,!, = true with —K < q < K+ 1;

e Foresight discontinuity formation: assume accuracy loss predicted by details
on coarse grid-levels.
4.,
o If (i) ——— > 2(@P) ¢/ then
max; ’d’ ’
@ if/#L—1,then
New grid-level locally created: t A'Jrz = true and’\z':fH = true, with
2f—K<g<2/+1+K;
o end if
p parameter related to regularity analysis,
1<p<o—1foriD, p=o0+1, 0+ 2 for multi-D
o EndIf
@ EndlIf

End for
End For

. Fraigneau & V. Daru Shock capturing scheme and adaptive MR approach



F-V Multiresolution

- Thresholding, compression and graded tree
L ] MR approach Virtual c bg ° ’
Summing up

Thresholding: control

Approximation MR operator: Ax.,

HVL _ A/\EIVLH - C Z ‘dll 2*Ndim/

ld/|<e

Control of the thresholding effect:

g = DNngim-(I=L)

Knowing e : |[v" — A/\EIVLH < Ce
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lltiresolution

- ompression and graded tree
= » g
] MR approach Virtual cells
Summing up

Conservativity: Virtual cells

Numerical flux evaluation at cell interfaces: conservative property.

@ virtual-cells are added to the tree.
Solution is not integrated on
virtual-cells

@ Evaluate solution on virtual-cells
by decoding.

@ Flux evaluation at the highest grid
level

2j+1
| I 1-+1 1+1
Fijmivnj Tijmiv) = Z Faivt goaive,q T2iv1,go2it2,q
q9=2j
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! ! MR approach I hold ng n and graded tree

Summing up the MR procedure

@ Cell-average values of solution (v,L) known on leaves;
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= '- MR approach y on and graded tree
Summing up

Summing up the MR procedure

@ Cell-average values of solution (v,L) known on leaves;

R B 141 41
@ Projection: v} = VI SV v
J pec!

/I=L—-1downto0
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! ! MR approach n on and graded tree

Summing up the MR procedure

Summing up

@ Encoding details: ¥/ = v/ + 35 _ &g (Vg — V)
I+1 1+ o+
dzj =V =y

/I=0QuptoL—1
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lltiresolution
Tt
Virtu
Summing up

MR approach

Summing up the MR procedure (next)

@ Thresholding: < e

Ly
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! ! ession and graded tree
= '- MR approach I om ion and graded tree

Summing up the MR procedure (next)

@ Thresholding: ‘d’

<eé€n
Ly

@ Enlarge the tree for foreseeing discontinuity: ‘d’

|

> g and
Ly

>2P ¢

Ly
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! ! g mpression and graded tree
= '- MR approach I g mpression and graded tree

Summing up the MR procedure (next)

@ Thresholding: ‘d’

<eé€n
Ly

@ Enlarge the tree for foreseeing discontinuity: ‘d’

> g and
Ly

>2P ¢
Ly

|

@ Building graded tree:
if (j,/) € A, then (j/2+ q,/ —1) € A, ; q € [-5,+8]
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lution

mpression and graded tree
MR approach mpression and graded tree

Summing up the MR procedure (next)

@ Thresholding: ‘d’

<eé€n
Ly

@ Enlarge the tree for foreseeing discontinuity: ‘d’

@ Building graded tree:

> g and
Ly

>2P ¢
Ly

|

if (j,1) € A, then (j/2+ g,/ —1) €A, ; g € [-5,+5]

@ Add virtual /eaves for flux conservation

[
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Shock capturing scheme and adaptive MR approach
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% Results

Test-Cases

@ Codes based on Fortran95;

@ Objective: illustrate influence of MR parameters (e, s, L, ...) on
performances (accuracy, CPU time, Memory compression);
@ Several examples:

@ Solving nonlinear scalar transport equation: 1D Burger equation;
@ Solving a 2D linear scalar transport equation;
e Solving Euler and Navier-Stokes problems:

@ 2D Vortex advection;

@ 2D Shock / hot spot interaction;

@ 2D viscous shock tube problem;

@ 3D Euler shock tube.
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@ The 1D burger equation:

% +V.-f(u)=0, inQ, with f(u) =

@ Initial solution:
u(x,0) = =Vier sin(2. 7 x); x € [-1,1],
where Ve is an input value.
@ Periodic boundary conditions:
u(—=1,t)=u(1,t)

@ Solved by using the One-Step Monotonicity-Preserving scheme
(OSMP7) [Daru & Tenaud (2004, 2009)].
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1D Nonlinear hyperbolic problem
on
.
. ' e e
% Results blems

1D Burger equation with MR procedure: Solution

Solutions obtained with 10 grid levels (N = 1024 grid points on the
finest grid), with s =1 and ¢ = 1072

10 1
05
8k
°
>
2 3 0
3z
=
)
6 |
05
1 1 1 - 1
4-1 -0.5 0 05 1-1 -0.5 0 05
X X
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1D Nonlinear hyperbolic problem
on
.
. ' e e
% Results blems

1D Burger equation with MR procedure: Solution

Solutions obtained with 10 grid levels (N = 1024 grid points on the
finest grid), with s =1 and ¢ = 1072

10 1
05
8k
°
>
2 3 0
3z
=
)
6 |
05
1 1 1 - 1 1
4-1 -0.5 0 05 1-1 -0.5 05
X X
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1D Nonlinear hyperbolic problem

2D Line n
problems

Results

1D Burger equation with MR procedure: Perturbation error

s=1
107
[ ] MR: 7 grid-levels
[ ] MR: 10 grid-levels ( ]
10° | linear ®
=10}
Z
=
o
=
S 107
10°
107" 1 1 1 ]
107 10°% 10°% 10* 10% 10°
c
48/73
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Memory usage (%)

1k

I e o o ' L] ®

08
[ L]

06

04f °
I [ ]

02| .
| @ MR: 7 grid-levels
I @ MR: 10 grid-levels [ ]
L | 1 1 1

?U'm 10° 10° 10 10*

10°

1D Nonlinear hyperbolic problem
2D Line n

2.5E-06

g [

% I H

n | o @ ° °

@ 2E-06F ¢ o 0 0 0 © °

£ i ° o

- l

= °

£1.5E-06|

s [

8 [

-] [

5 1E-06[

~ I °

@ |

E —

S SEO0TE . MR 7 grid levels o

o I e MR 10 grid levels °

© °
0 1 1 1 1 1 ,
10" 10" 10° 10{6 10° 10° 10"
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% Results

Solving 2D scalar advection with MR procedure

ou
E +a-Vu=0,
Domain: (x x y) € [-1,1] x [—1, 1] with bound-

ary conditions.

Ver it/ (x=x0)2+ (¥ —%)?<r

Up(X) =
(x) Vigne  elsewhere

with xo = 0.5, yp = 0and b, = 0.25
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1D Nonlinear hyperbolic problem
: L 2D Linear scalar advection
* ] 2D Euler problem
Results \ oblems

Solving 2D scalar advection with MR procedure

ou
— +a-Vu=0
ot ’
Domain: (x x y) € [-1,1] x [—1, 1] with bound- 1 =
o 1 5serrwmmmiNNNNNNN\N
e
ary conditions. /2/////,,,___::::&3233
. sl 7700022777 NN
()= 4 Ver TV X0E (Y -y <n 7 wi
Vigne  elsewhere " '
~of| \
with xo = 0.5, yo = 0 and 1 = 0.25 | !
. . \
Here a is a vector with two components that are A N 2
. -05
independent u(x, f) : N Y
§§§§ - ///;
—y Q\ilit:::::}:::::%?///
a— . 25 0 05
+X

X
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1D Nonlinear hyperbolic problem
2D Linear scalar advection
2D Euler problems
-Stokes 2D problems
Eu 3D problems

2D scalar advection: MR - 10 levels (1024 x 1024), s =1,

Results

== g

k capturing scheme and adaptive MR approach




Scalar2D_niv10_solution.avi
Media File (video/avi)


1D Nonlinear hyperbolic problem
2D Linear scalar advection
2D Euler problems
-Stokes 2D problems
Eu 3D problems

2D scalar advection: MR - 10 levels (1024 x 1024), s =1,

Results

== g
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Scalar2D_niv10_mesh.avi
Media File (video/avi)
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1D Nonlinear hyperbolic problem

2D Linear scalar advection

Results

MR on 7 grid-levels (finest grid is (128 x 128))

10*

o - o
=] =] =]
3 B el
LEREEEL B RENL) R ERLL BRI |

s=1
s=2
epsilon

-10
10307
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10°
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Memory Usage (%)

1D Nonlinear hyperbolic problem

MR on 7 grid-levels (finest grid is (128 x 128)).

[ s=1
I L s=2
04
I L] ()
® ®
02 °
° [}
I ® e o
FENERTHTT EEREIRTITY REETRETTT B RTTIT BENSAETITT BTSN
R T T R TR T L T &
e
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1D Nonlir

2D Lin
.
‘M
Results -S

Euler 2D Vortex advection: solution

_ 2
(6u,6v) = "Iy, x) ; 6T = =1 s L 55,
vis

e=5; (p,u,v,P)=(1,1,1,1) and (x xy)=][-5,5] % [-5,5]

X x
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1D Nonline:

= 2D Line: a
h% ] 2D Euler problems
ES] kes 2D problems
problems

Euler 2D Vortex advection: Error analysis

Error / Exact solution Perturbation Error t = 10
107 10°F
10°L
i 107
=107 = |
3 g 10"k
g 10l 10 A
a F '
' o[ % 11
g 0 107 F
ok =
) 10’“; ° MR (niv = 09; s=1)
10" F — =
425 L 10713 -6 I—s I—A |—3 I—z I—w 0
1010,2 10 0 10° 10° 10* 10° 107 10" 10

h S
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% Results

Euler 2D Vortex advection: Effciency

1E-05

6E-06

L L e
+

o
o L
o
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Results Navier-Stokes 2D problems

Eu 3D problems

=1073,s=1

My =1.1588 ; Re=2000 ; Pr=0.7 ; y=14; (xxy)€[0,2] x[0,1]
1f
> - Periodic B.C. !
08 kb
O'Sf‘- E B el
0.4:—E § 3 ” Q)
i 2 s /
02F
. Periodic B.C. . e
- I
X o T 75
ool b
aaf (J




Shock Hot-spot interaction :

Memory compression =79 % ’ x
CPU time ratio: "/t = 36 %
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Results

Shock Hot-spot interaction : Analysis MR e = 1073, s = 1

[VP x Vp|
/ Jw] dx / X VAL
Q Q P

I y AVRNWY, =1, eps=1.e03
r Hemvitt : 601361 01 (ONE Rit) |
nozs | 2k
ooz f [
T [ 015k
nmsf [
[ 0if
oot f [
s nos -
noosf [

0 L L i} L L
02 04 06 0.8 1 02 04 08 08 1
T T
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Results

MR FV
o™ — o "l

10?

I L] AMR OSMP7

linear regression

=
S

Err_rho_L1

10°

ol A v vl vl i
10° 10° 10 10° 10° 10" 10°
epsilon
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Results
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ShockSpot_Rho_niv09_eps1e-03.avi
Media File (video/avi)


Results Navier-Stokes 2D problems

Eu 3D problems

1
08
08 [
= F
04 -
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o [ L 1 1
0 05 [ 15 2
%
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ShockSpot_Vorticite_niv09_eps1e-03.avi
Media File (video/avi)


Results Navier-Stokes 2D problems

Eu 3D problems
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ShockSpot_Maillage_niv09_eps1e-03.avi
Media File (video/avi)


- “ L
o I er proble
% Results Navier-Stokes 2D problems
Eul problems

2D Viscous shock tube: MR 9 grid levels, e = 1072, s = 1

paroi

e = 1072 = Memory compression = 70 %; CPU ratio: "7 /t7 =20 %
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1D Nonlinear hyperbolic problem
2D Lir

* '- 2D Euler prc
Results Navier-Stokes 2D problems
Euler 3D problems

2D Viscous shock tube: video MR 9 grid levels, e = 1072, s = 1
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tac_Re0200_Rho_AMR1024x512_e2.avi
Media File (video/avi)


1D Nonlinear hyperbolic problem
2D Linear scalar advection

* '. 2D Euler problems
Results Navier-Stokes 2D problems
Euler 3D problems

2D Viscous shock tube: video MR 9 grid levels, e = 1072, s = 1
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tac_Re0200_Maille_AMR1024x512_e2.avi
Media File (video/avi)


1D Nonlir
Li
2D Euler problems
Results Navier-Stokes 2D problems
D problems

2D Viscous shock tube: MR 9 grid levels, s = 1

— —  OSMP7 . AMR esp=1.e-02
— ) SMP7
=—— —— OSMP7 - AMR eps=1.e-03
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ES] rier-Stokes 2D problems

Euler 3D problems

3D Euler shock tube: MR 6 levels (190 x 190 x 128), ¢ = 1072, s = 1

t=0 t=07
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1D Nonlinear hyperbolic problem
2D Linear scalar advection

* '. 2D Euler problems
ES] Navier-Stokes 2D problems
Euler 3D problems

3D Euler shock tube: MR 6 levels (190 x 190 x 128), ¢ = 1072, s = 1

t=07

Memory compression = 99 % ~ 50 %
CPU ratio: t"7/t"Y =70 %
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Euler 3D problems

3D Euler shock tube: MR 5 grid levels, e = 1072, s =1, t=0.7

FV OSMP7 (150 x 150 x 100) MR OSMP7 ¢ = 10~2 (160 x 160 x 92)

Shock capturing scheme and adaptive MR approach
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% Results

3D Euler shock tube: MR s=1,t=0.7

oo b b b b b
1 ———— MR (eps=1.e-03) : 192x192x128 (6 levels) |
g — =— = MR (eps=1.e-03): 160x160x92 (5 levels) |
E — FV:150x150x100 5
0.015+4 -
x | |
-] 4 |
- | |
- 0.01; ,_
R !
— ] |
0.005 B

o d—r—rr——rrrr T T T
0 0.1 0.2 0.3 04 05 08 0.7

Time
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Conclusion and Prospect

@ High-resolution Scheme:

@ High accurate and powerfull: competitive / RK-WENO (method-of-lines);
e Splitting allows TVD-MP constraints in Multi-D;
@ Limited to structured meshes;

@ Multiresolution technique:

o Attractive formalism and concept because of a priori error control;
e Powerful but hard to handle: competitive if Mem. < 50 %;

@ future work or work in progress:

o Immersed Boundary conditions;
@ Combustion: Operator splitting and time step adaption (Lab. JAD, EM2C)
o parallel algorithm (?)
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