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Introduction

Predictions of compressible flows / multiple time and length scales.

Increase of computer power: D.N.S. a powerful tool for fine analysis of
flow dynamics.
Quality of results:

ability of approximations: Capture small scale structures / discontinuities;
ability of computational grid to capture length scales.

Flame front; diphasic interface; shock/Turbulence interaction; vorticity
production by baroclinic effect: need High-order schemes + mesh refinement.
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Vorticity production by baroclinic effect: Shock / hot bubble interaction.
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Vorticity production by baroclinic effect: video of the solution

Shock / hot bubble interaction: density countours.
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Vorticity production by baroclinic effect: video of the adapted grid

Shock / hot bubble interaction: adapted grid using 9 grid levels.
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Objectives of the presentation

System of equations;
Numerical approximation OSMPx [V. Daru & C. Tenaud, 2001, 2004];

Lax-Wendroff approach;
Shock capturing features (TVD, MP);

Adaptive MultiResolution technique [A. Harten, 1994 ; A. Cohen, 2003];
Multiscale decomposition;
Adaptive MR formalism: wavelet basis;

Couple OSMPx / adaptive MR. Influence on accuracy, CPU time
consumption, memory usage, evaluated on well known test-cases:

Hyperbolic conservation laws: linear and nonlinear scalar transport equation,
Euler and Navier-Stokes solutions in 1-, 2- and 3-D.

Conclusion and prospect.
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Equations and computational domain
Finite volume approach: One Step scheme
TVD/MP schemes
Test-Cases: capability of the OSMP7 scheme

Conservation Law: equations


∂w
∂t

+∇ · f(w,∇w) = S(w) in Ω, t ∈ R+

w(x, 0) = w0(x),

w(x, t) = g(x, t) on ∂Ω.

(1)

w(x, t) =

 ρ

ρ u
ρ E

 (2)

f(w,∇w) =


ρ u

ρ u⊗ u +
P
γM2 I

ρ u E + u P

− µ

Re


0

τ = ∇u +∇tu− 2
3
∇ · u

u · τ − 1
(γ − 1)Pr M2∇T

 (3)

P = P(ρ, e) = ρ T (4)
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Finite volume approach: One Step scheme
TVD/MP schemes
Test-Cases: capability of the OSMP7 scheme

Conservation Law: computational domain

Domain: dense partition of Ω into N0 intervals of size h0;

Ω =
⋃

j∈[0,N0]

V 0
j ; with

∣∣∣V 0
j

⋂
V 0

k

∣∣∣ = 0 for j 6= k ; j, k ∈ [0,N0].
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Equations and computational domain
Finite volume approach: One Step scheme
TVD/MP schemes
Test-Cases: capability of the OSMP7 scheme

Conservation Law: computational domain

Domain: dense partition of Ω into N0 intervals of size h0;

Ω =
⋃

j∈[0,N0]

V 0
j ; with

∣∣∣V 0
j

⋂
V 0

k

∣∣∣ = 0 for j 6= k ; j, k ∈ [0,N0].

Looking for successive approximations (wj )
n of

the average value of w(x, t) in control volumes,
at time n δt :

(wj )
n =

1
|V 0

j |

∫
V 0

j

w(x, n δt) dx

where |V 0
j | =

∫
V 0

j

dx
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Equations and computational domain
Finite volume approach: One Step scheme
TVD/MP schemes
Test-Cases: capability of the OSMP7 scheme

Conservation Law: Finite-Volume approach

(wj )
n =

1
|V 0

j |

∫
V 0

j

w(x, n δt) dx ; |V 0
j | =

∫
V 0

j

dx

∫ (n+1)δt

nδt

∫
V 0

j

(
∂w
∂t

+∇ · f(w,∇w)

)
dx dt = 0.

w(n+1)
j = w(n)

j −
Ndim∑
m=1

δt
δxm

(
F

n
m,j+1/2 − F

n
m,j−1/2

)

Numerical flux: 2p grid points

F
n
m,j+1/2(wn

j−p+1, ...w
n
j , ....w

n
j+p) =

∫ (n+1)δt

nδt

∫
∂V 0

j

f(w,∇w) · n dσ dt
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Overview

System of equations;
Numerical approximation OSMPx [V. Daru & C. Tenaud, 2001, 2004];

Lax-Wendroff approach;
Shock capturing features (TVD, MP);

Adaptive MultiResolution technique [A. Harten, 1994 ; A. Cohen, 2003];
Multiscale decomposition;
Adaptive MR formalism: wavelet basis;

Couple OSMPx / adaptive MR. Influence on accuracy, CPU time
consumption, memory usage, evaluated on well known test-cases:

Hyperbolic conservation laws: linear and nonlinear scalar transport equation,
Euler and Navier-Stokes solutions in 1-, 2- and 3-D.

Conclusion and prospect.
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Approximation: OS basis scheme

∂w
∂t

+
∂f (w)

∂x
= 0 with f (w) = a w (a > 0)

Lax-Wendroff scheme

wn+1
j = wn

j −
δt
δx

(F lw
j+1/2 − F lw

j−1/2) (5)

with the Lax-Wendroff numerical flux:

F lw
j+1/2 = f n

j +
(1− ν)

2
(f n

j+1 − f n
j ) CFL number ν = a

δt
δx
.

Modified equation:

ut + f (u)x = a
δx2

6
(ν2 − 1)uxxx (6)
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Approximation: OS basis scheme

3rd order One Step scheme: OS3

F 3
j+1/2 = f n

j +
(1− ν)

2
(f n

j+1 − f n
j −

1 + ν

3
(f n

j+1 − 2f n
j + f n

j−1)) (7)

Numerical flux recasts in a 3-point like scheme:

F 3
j+1/2 = f n

j + Φ3
j+1/2

(1− ν)

2
(f n

j+1 − f n
j ) (8)

with
Φ3

j+1/2 = 1− 1 + ν

3
(1− rj+1/2) (9)

rj+1/2 =
un

j − un
j−1

un
j+1 − un

j
.
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Finite volume approach: One Step scheme
TVD/MP schemes
Test-Cases: capability of the OSMP7 scheme

Approximation: o-th order OSo scheme

o-th order One Step scheme: OSo

wn+1
j = wn

j −
δt
δx

(F o
j+1/2 − F o

j−1/2) (10)

F o
j+1/2 = f n

j + Φo
j+1/2

(1− ν)

2
(f n

j+1 − f n
j ) (11)

Function Φo
j+1/2 drives the o-th order of accuracy of the scheme.

Φ4
j+1/2 = Φ3

j+1/2 +
1 + ν

3
· ν − 2

4
(1− 2 rj+1/2 + rj+1/2 rj−1/2) (12)

.........

Φ7
j+1/2 = Φ6

j+1/2 −
1 + ν

3
· ν − 2

4
· ν − 3

5
· ν + 2

6
· ν + 3

7
·(

1
rj+3/2 rj+5/2

− 5
rj+3/2

+ 10− 10 rj+1/2 + 5 rj+1/2 rj−1/2

−rj+1/2 rj−1/2 rj−3/2
)

(13)
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Equations and computational domain
Finite volume approach: One Step scheme
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Approximation: o-th order OSo scheme

High-order One step scheme (L-W): [Daru & Tenaud 2001, 2004]

Developed up to 11-th accuracy order (non-linear scalar)

Control of the dissipation in time and space

Stencil of OSp = p + 2 grid-points: rather compact, more than
method-of-line approaches (RK-WENO, for instance)

CFL = 1⇒ exact solution is recovered
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Equations and computational domain
Finite volume approach: One Step scheme
TVD/MP schemes
Test-Cases: capability of the OSMP7 scheme

Spectral property: OS7 scheme

Von Neumann Analysis:
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Spurious oscillations in the vicinity of discontinuities

F o
j+1/2 = f n

j + Φo
j+1/2

(1− ν)

2
(f n

j+1 − f n
j )

TVD Harten’s criteria for one-step schemes:

−2
ν
≤ Φj−1/2 − Φj+1/2/rj+1/2 ≤

2
1− ν

Upper bound of the TVD constraint: (Φ = 0 for r < 0)

Φo−TVD
j+1/2 = max(0,min(

2
1− ν , Φo

j+1/2 ,
2 rj+1/2

ν
)). (14)

Resulting scheme: o − th order accurate almost everywhere, except around
extrema and discontinuities (↪→ 1st order)
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Geometrical interpretation of the TVD conditions

Recast Flux for the lower and the upper TVD limits

Fj+1/2 = f n
j + γ+(f n

j+1 − f n
j ) with γ+ = Φj+1/2

(1− ν)

2

Fj+1/2 = f n
j + γ−(f ul

j − f n
j )

with f ul
j = f n

j +
1− ν
ν

(f n
j − f n

j−1) and γ− = Φj+1/2
ν

2 rj+1/2

TVD constraints
0 ≤ Φj+1/2 ≤

2
1− ν

0 ≤ Φj+1/2 ≤
2 rj+1/2

ν

⇔ Fj+1/2 ∈ [f n
j , f

n
j+1] ∩ [f n

j , f
ul
j ]. (15)

Clipping near extrema⇒ enlarge TVD constraints→ Monotonicity
Preserving constraints [A. Suresh & H.T. Huynh, JCP 136(1997)]
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Monotonicity Preserving constraints

Defining [f 1, f 2, ..., f k ] = [min(f 1, f 2, ..., f k ),max(f 1, f 2, ..., f k )]

TVD enlargement

[f n
j , f

n
j+1] enlarged to [f n

j , f
n
j+1, f

md
j ] ; f md

j =
1
2

(f n
j + f n

j+1)− 1
2

dj+1/2

[f n
j , f

ul
j ] enlarged to [f n

j , f
ul
j , f

lc
j ] ; f lc

j = f n
j +

1
2

(f n
j − f n

j−1) +
1
2

1− ν
ν

dj−1/2

with


dj+1/2 = dMM

j+1/2 = minmod(dj , dj+1)

or
dj+1/2 = dM4

j+1/2 = minmod(4dj − dj+1, 4dj+1 − dj , dj , dj+1)

Measure of local curvature dj = f n
j+1 − 2f n

j + f n
j−1
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Monotonicity Preserving schemes (OSMP)

Geometrical interpretation of MP constraints:

Fj+1/2 ∈ [f n
j , f

n
j+1, f

md
j ] ∩ [f n

j , f
ul
j , f

lc
j ]

MP criteria, in the TVD framework: [Daru & Tenaud, JCP 193 (2004)]

Φo−MP = max(Φmin,min(Φo,Φmax ))

where

{
Φmin = max(min(0,Φmd ),min(0, 2r

ν
,Φlc))

Φmax = min(max( 2
1−ν ,Φ

md ),max(0, 2r
ν
,Φlc))
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Test-Cases: capability of the OSMP7 scheme

Extension to system of equations

k -wave characteristics

Fj+1/2 = F Roe
j+1/2 +

1
2

∑
k

(Φo
k (1− |νk |)δ|fk |rk )j+1/2

with
F Roe

j+1/2 =
1
2

(fj + fj+1)− 1
2

∑
k

(δ|fk |rk )j+1/2

and
δ|fk | = |λk |δαk

δαk is the k -th Riemann invariant

λk and rk eigenvalues and right eigenvectors of the Roe-average of
df
dw

,

local CFL : νk = δt
δx λk .
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Test-Cases: capability of the OSMP7 scheme

Extension to multi-D

Strang directional splitting:

wn+1
j = Lδx (δt/2)Lδy (δt)Lδx (δt/2).wn

j

Splitting implementation: symmetry recovers

wn+2
j = Lδx (δt)Lδy (δt)Lδy (δt)Lδx (δt).wn

j

wn+6
j = (Lδx Lδy Lδz)(Lδx LδzLδy )(Lδy LδzLδx )

(Lδy Lδx Lδz)(LδzLδy Lδx )(LδzLδx Lδy ).wn
j

Easily preserve Monotonicity in Multi-D

Generally the splitting is 2nd order, only !

However, OSMP gives a very low error level.
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Equations and computational domain
Finite volume approach: One Step scheme
TVD/MP schemes
Test-Cases: capability of the OSMP7 scheme

Scalar 1D test-case

{
ut + ux = 0. t ≤ 0; x ∈ [−1, 1]

u0(x) = Sin4(2.π.x)
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Equations and computational domain
Finite volume approach: One Step scheme
TVD/MP schemes
Test-Cases: capability of the OSMP7 scheme

Euler 2D test-case: Vortex advection

Strong vortex propagated at 45◦ by a supersonic flow:

(δu, δv) =
ε

2π
e0.5(1−r2)(−y , x) ; δT = − (γ − 1)ε2

8π2 e0.5(1−r2) ; δS = 0.

ε = 5; (ρ, u, v ,P) = (1, 1, 1, 1) and (x × y) = [−5, 5]× [−5, 5]
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Equations and computational domain
Finite volume approach: One Step scheme
TVD/MP schemes
Test-Cases: capability of the OSMP7 scheme

Navier-Stokes 2D test-case: viscous shock tube

X

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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Equations and computational domain
Finite volume approach: One Step scheme
TVD/MP schemes
Test-Cases: capability of the OSMP7 scheme

Navier-Stokes 2D test-case: viscous shock tube

Isocontours of |∇ρ| at t=1
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Equations and computational domain
Finite volume approach: One Step scheme
TVD/MP schemes
Test-Cases: capability of the OSMP7 scheme

Navier-Stokes 2D test-case: viscous shock tube

Distribution of ρ along the lower wall at t=1

X

D
en

si
ty

0.4 0.6 0.8 1
20

40

60

80

100

120

OSMP7 (3000 x 1500)
OSMP7 (4000 x 2000)
RK3-WENO5 (3000 x 1500)
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F-V Multiresolution
Thresholding, compression and graded tree
Virtual cells
Summing up

Overview

System of equations;
Numerical approximation OSMPx [V. Daru & C. Tenaud, 2001, 2004];

Lax-Wendroff approach;
Shock capturing features (TVD, MP);

Adaptive MultiResolution technique [A. Harten, 1994 ; A. Cohen, 2003];
Multiscale decomposition;
Adaptive MR formalism: wavelet basis;

Couple OSMPx / adaptive MR. Influence on accuracy, CPU time
consumption, memory usage, evaluated on well known test-cases:

Hyperbolic conservation laws: linear and nonlinear scalar transport equation,
Euler and Navier-Stokes solutions in 1-, 2- and 3-D.

Conclusion and prospect.
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F-V Multiresolution
Thresholding, compression and graded tree
Virtual cells
Summing up

Nested grids

Dyadic grids: Grid level : l ∈ [0, L]

Cell referenced by position and
grid-level:(j, l)
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F-V Multiresolution
Thresholding, compression and graded tree
Virtual cells
Summing up

Nested grids

Dyadic grids: Grid level : l ∈ [0, L]

Cell referenced by position and
grid-level:(j, l)

(j, l)→ (2j, l + 1) , (2j + 1, l + 1)
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F-V Multiresolution
Thresholding, compression and graded tree
Virtual cells
Summing up

Nested grids

Dyadic grids: Grid level : l ∈ [0, L]

Ω =
⋃
j∈Il

V l
j with

∣∣∣V l
j

⋂
V l

k

∣∣∣ = 0,

for j 6= k ; j, k ∈ Il .

Refinement process:

V l
j =

⋃
p∈Cl

j

V l+1
p ,

C l
j set of chidren indexes of V l

j .
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F-V Multiresolution
Thresholding, compression and graded tree
Virtual cells
Summing up

Tree data Structure

Terminology: father (j/2, l−1); children (2j, l + 1), (2j + 1, l + 1); cousin
(j + 1, l), (j − 1, l)
leaves are upper elements (with no child)
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F-V Multiresolution
Thresholding, compression and graded tree
Virtual cells
Summing up

Projection operator:

Pl+1→l : compute vl
j knowing children-cells vl+1

2j , vl+1
2j+1, ...

Nested grid: operator is exact and unique [A. Cohen et al.(2000)]:

Assuming cell average as:
(
vl

j
)n

= 1
|V l

j |

∫
V l

j
w(x, n δt) dx

Projection operator:

Pl+1→l : vl
j =

1
|V l

j |
∑
p∈Cl

j

|V l+1
p | v l+1

p ;

C l
j index set of the 2Ndim children-cells at grid-level l + 1, for current cell V l

j .
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F-V Multiresolution
Thresholding, compression and graded tree
Virtual cells
Summing up

Prediction operator:

Pl→l+1 : maps vl to an approximate value v̂l+1 of vl+1.
Pl→l+1 is not unique and prediction needs to be:

local ; interpolation stencil must contain the parent-cell and its nearest
neighbors in each direction [A. Cohen et al.(2000), M. Postel (2001)].

consistent with the projection operator, i.e. Pl+1→l ◦ Pl→l+1 = Id .
Conservativity:

|V l
j | v

l
j =

∑
p∈Cl

j

|V l+1
p | v̂ l+1

p

linear (not mandatory...) → simplicity of the numerical analysis.
Information on non-linear operator found in [F. Anràndiga et al.(1999)]
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F-V Multiresolution
Thresholding, compression and graded tree
Virtual cells
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Prediction operator: interpolation

Prediction interpolation: centered linear polynomial

Pl→l+1 :


v̂ l+1

2j = v l
j +

s∑
q=1

ξq

(
v l

j+q − v l
j−q

)
,

v̂ l+1
2j+1 = v l

j −
s∑

q=1

ξq

(
v l

j+q − v l
j−q

)
,

Coefficients of centered linear
polynomial:

order (o) s ξ1 ξ2

0 0 0 0
2 1 −1

8 0
4 2 −22

128
3

128 for s = 1
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Prediction operator: multi-D interpolations

Extension to multidimensional Cartesian grids:
Tensorial product of 1-D operator [B.L. Bihari & A. Harten (1997), O. Roussel et

al.(2003)].

2D-interpolation

v̂ l+1
2j+p,2k+q = v l

j,k + (−1)p Qs(j; vl
.,k ) + (−1)q Qs(k ; vl

j,.)− (−1)(p+q) Qs
2(j, k ; vl ),

with p, q ∈ [0, 1] and:

Qs
(

j; v l
)

=
s∑

q=1

ξq

(
v l

j+q − v l
j−q

)
,

Qs
2

(
j, k ; vl

)
=

s∑
a=1

ξa

s∑
b=1

ξb

(
v l

j+a,k+b − v l
j−a,k+b − v l

j−a,k+b + v l
j−a,k−b

)
.
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Prediction operator: details

prediction error: details (d l
j )

details

dl
j = vl

j − v̂l
j .

Consistency assumption [A. Harten (1995)]:
∑
p∈Cl

j

|V l
p| d l

p = 0.

Knowing 2Ndim cell-averages vl+1
. ⇔ knowing vl

j and (2Ndim − 1) dl
.:

v l+1
2k = v̂ l+1

2k + d l+1
2k ;

v l+1
2k+1 =

|V l
j |

|V l+1
2k+1|

v l
j − v l+1

2k .
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Prediction operator: details

Polynomial accuracy ∣∣∣dl
∣∣∣ ≤ C 2−l ∣∣v′∣∣L∞(V l

j )
.

Main property for MR process:

Solution with locally bounded o-th order derivatives [A. Cohen et al.(1992)];

|dl | = 0.

Decay with 2−l for solutions smooth enough;

Significantly high detail values within singularities.
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Multiresolution transform:

Dl =
{

d l
j , 0 ≤ j ≤ Nl

}
, with Nl = (2Ndim − 1) 2Ndim(l−1)

v(l+1) 7−→
(

vl , Dl+1
)
.

One to one transformation: from leaves down to the root

M : vL 7−→
(

v0,D1, . . . ,DL
)

= ML.
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Thresholding:

Solution known by
(
v0,D1, . . . ,DL) = ML;

Algorithm 1: Predictive Harten’s thresholding

For l = L− 1 down to 1, with εl = 2Nndim.(l−L) ε, Do
for j ∈ Il , do

If (i)

∣∣∣d l
j

∣∣∣
L1

maxj

∣∣∣d l
j

∣∣∣ < εl , then

Assuming solution slowly propagates at a finite speed:

1 d l
j = 0;

2 t̂ l+1
2j = false and t̂ l+1

2j+1 = false 7−→ discarded;

Else d l
j ∈ Dl and t̂ l+1

2j+q = true with −K ≤ q ≤ K + 1;

“K " = maximal speed of propagation: i.e. K chosen as flux stencil width.
K = 1 in most cases, coherent with CFL-condition.

. . .

C. Tenaud, Y. Fraigneau & V. Daru Shock capturing scheme and adaptive MR approach 38 / 73



Introduction
Numerical approximation

MR approach
Results

Conclusion and Prospect

F-V Multiresolution
Thresholding, compression and graded tree
Virtual cells
Summing up

Thresholding:
Algorithm 3 (next): Predictive Harten’s thresholding

Else d l
j ∈ Dl and t̂ l+1

2j+q = true with −K ≤ q ≤ K + 1;

Foresight discontinuity formation: assume accuracy loss predicted by details
on coarse grid-levels.

If (ii)

∣∣∣d l
j

∣∣∣
L1

maxj

∣∣∣d l
j

∣∣∣ ≥ 2(2.p) εl , then

if l 6= L− 1, then
New grid-level locally created: t̂ l+2

2q = true and t̂ l+2
2q+1 = true , with

2j − K ≤ q ≤ 2j + 1 + K ;
end if
p parameter related to regularity analysis,
1 ≤ p ≤ o − 1 for 1D, p = o + 1, o + 2 for multi-D

End If

End If

End for
End For
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Thresholding: control

Approximation MR operator: AΛεl

‖vL −AΛεl
vL‖ = C

∑
|dl |<εl

|dl | 2−Ndim l

Control of the thresholding effect: Harten (1994):

εl = 2Nndim.(l−L) ε

Knowing ε : ‖vL −AΛεl
vL‖ ≤ Cε
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Conservativity: Virtual cells

Numerical flux evaluation at cell interfaces: conservative property.

virtual-cells are added to the tree.
Solution is not integrated on
virtual-cells

Evaluate solution on virtual-cells
by decoding.

Flux evaluation at the highest grid
level

F l
i,j→i+1,j Γl

i,j→i+1,j =

2j+1∑
q=2j

F l+1
2i+1,q→2i+2,q Γl+1

2i+1,q→2i+2,q .
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Summing up the MR procedure

Cell-average values of solution (vL
j ) known on leaves;

Projection: vl
j =

1
|V l

j |
∑
p∈Cl

j

|V l+1
p | vl+1

p ;

Encoding details: v̂ l+1
2j = v l

j +
∑s

q=1 ξq
(
v l

j+q − v l
j−q
)

d l+1
2j = v l+1

2j − v̂ l+1
2j
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Summing up the MR procedure

Cell-average values of solution (vL
j ) known on leaves;

Projection: vl
j =

1
|V l

j |
∑
p∈Cl

j

|V l+1
p | vl+1

p ;

Encoding details: v̂ l+1
2j = v l

j +
∑s

q=1 ξq
(
v l

j+q − v l
j−q
)

d l+1
2j = v l+1

2j − v̂ l+1
2j

l = L− 1 down to 0
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Summing up the MR procedure

Cell-average values of solution (vL
j ) known on leaves;

Projection: vl
j =

1
|V l

j |
∑
p∈Cl

j

|V l+1
p | vl+1

p ;

Encoding details: v̂ l+1
2j = v l

j +
∑s

q=1 ξq
(
v l

j+q − v l
j−q
)

d l+1
2j = v l+1

2j − v̂ l+1
2j

l = 0 up to L− 1
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Summing up the MR procedure (next)

Thresholding:
∣∣∣dl
∣∣∣
L1

< εl ;

Enlarge the tree for foreseeing discontinuity:
∣∣∣dl
∣∣∣
L1

≥ εl and∣∣∣dl
∣∣∣
L1

≥ 2p εl

Building graded tree:
if (j, l) ∈ Λ̃εl then (j/2 + q, l − 1) ∈ Λ̃εl ; q ∈ [−s,+s]

Add virtual leaves for flux conservation
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Test-Cases

Codes based on Fortran95;

Objective: illustrate influence of MR parameters (ε, s, L, . . .) on
performances (accuracy, CPU time, Memory compression);
Several examples:

Solving nonlinear scalar transport equation: 1D Burger equation;
Solving a 2D linear scalar transport equation;
Solving Euler and Navier-Stokes problems:

2D Vortex advection;
2D Shock / hot spot interaction;
2D viscous shock tube problem;
3D Euler shock tube.
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Solving 1D nonlinear scalar advection with MR procedure

The 1D burger equation:

∂u
∂t

+∇ · f (u) = 0, in Ω, with f (u) =
1
2

u2.

Initial solution:

u(x , 0) = −Vleft sin (2. π x) ; x ∈ [−1, 1],

where Vleft is an input value.

Periodic boundary conditions:

u(−1, t) = u(1, t)

Solved by using the One-Step Monotonicity-Preserving scheme
(OSMP7) [Daru & Tenaud (2004, 2009)].
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1D Burger equation with MR procedure: Solution

Solutions obtained with 10 grid levels (N = 1024 grid points on the
finest grid), with s = 1 and ε = 10−2.

t = 0.
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1D Burger equation with MR procedure: Solution

Solutions obtained with 10 grid levels (N = 1024 grid points on the
finest grid), with s = 1 and ε = 10−2.

t = 0.5
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1D Burger equation with MR procedure: Perturbation error

s = 1
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1D Burger equation with MR procedure: Efficiency

s = 1
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Solving 2D scalar advection with MR procedure

∂u
∂t

+ a · ∇u = 0,

Domain: (x × y) ∈ [−1, 1]× [−1, 1] with bound-
ary conditions.

u0(x) =

{
Vleft if

√
(x − x0)2 + (y − y0)2 ≤ r0

Vright elsewhere

with x0 = 0.5, y0 = 0 and r0 = 0.25

Here a is a vector with two components that are
independent u(x, t) :

a =

(
−y
+x

)
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{
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√
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2D scalar advection: MR - 10 levels (1024 × 1024), s = 1, ε = 10−3
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2D scalar advection with MR procedure: Perturbation error

MR on 7 grid-levels (finest grid is (128× 128))
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2D scalar advection with MR procedure: Efficiency

MR on 7 grid-levels (finest grid is (128× 128)).
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Euler 2D Vortex advection: solution

Strong vortex propagated at 45◦ by a supersonic flow:

(δu, δv) =
ε

2π
e0.5(1−r2)(−y , x) ; δT = − (γ − 1)ε2

8π2 e0.5(1−r2) ; δS = 0.

ε = 5; (ρ, u, v ,P) = (1, 1, 1, 1) and (x × y) = [−5, 5]× [−5, 5]
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Euler 2D Vortex advection: Error analysis

Error / Exact solution Perturbation Error t = 10

C. Tenaud, Y. Fraigneau & V. Daru Shock capturing scheme and adaptive MR approach 56 / 73



Introduction
Numerical approximation

MR approach
Results

Conclusion and Prospect

1D Nonlinear hyperbolic problem
2D Linear scalar advection
2D Euler problems
Navier-Stokes 2D problems
Euler 3D problems

Euler 2D Vortex advection: Effciency
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Shock Hot-spot interaction : Solution t = 0.5; MR ε = 10−3, s = 1

M0 = 1.1588 ; Re = 2000 ; Pr = 0.7 ; γ = 1.4 ; (x × y) ∈ [0, 2]× [0, 1]
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Shock Hot-spot interaction : solution t = 1; MR ε = 10−3, s = 1

Memory compression = 79 %
CPU time ratio: tMR/tFV = 36 %
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Shock Hot-spot interaction : Analysis MR ε = 10−3, s = 1

∫
Ω

|ω| dx
∫

Ω

|∇P ×∇ρ|
ρ2 dx
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Shock Hot-spot interaction : MR Analysis 9 grid levels, s = 1
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Shock Hot-spot interaction : video MR 9 grid levels, ε = 10−3, s = 1
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Shock Hot-spot interaction : video MR 9 grid levels, ε = 10−3, s = 1
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2D Viscous shock tube: MR 9 grid levels, ε = 10−2, s = 1

t = 1

ε = 10−2 =⇒ Memory compression = 70 %; CPU ratio: tMR/tFV = 20 %
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2D Viscous shock tube: video MR 9 grid levels, ε = 10−2, s = 1

C. Tenaud, Y. Fraigneau & V. Daru Shock capturing scheme and adaptive MR approach 66 / 73


tac_Re0200_Rho_AMR1024x512_e2.avi
Media File (video/avi)



Introduction
Numerical approximation

MR approach
Results

Conclusion and Prospect

1D Nonlinear hyperbolic problem
2D Linear scalar advection
2D Euler problems
Navier-Stokes 2D problems
Euler 3D problems

2D Viscous shock tube: video MR 9 grid levels, ε = 10−2, s = 1
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2D Viscous shock tube: MR 9 grid levels, s = 1
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3D Euler shock tube: MR 6 levels (190 × 190 × 128), ε = 10−2, s = 1

t = 0 t = 0.7

Memory compression = 99 % ∼ 50 %
CPU ratio: tMR/tFV = 70 %
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3D Euler shock tube: MR 5 grid levels, ε = 10−3, s = 1, t = 0.7

FV OSMP7 (150× 150× 100) MR OSMP7 ε = 10−3 (160× 160× 92)
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High-resolution Scheme:
High accurate and powerfull: competitive / RK-WENO (method-of-lines);
Splitting allows TVD-MP constraints in Multi-D;
Limited to structured meshes;

Multiresolution technique:
Attractive formalism and concept because of a priori error control;
Powerful but hard to handle: competitive if Mem. < 50 %;

future work or work in progress:
Immersed Boundary conditions;
Combustion: Operator splitting and time step adaption (Lab. JAD, EM2C)
parallel algorithm (?)
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