
Modélisation de la propagation
des ondes sismiques en multi-GPUs

Dimitri Komatitsch , David Michéa and Roland Martin
(Univ Pau, CNRS and INRIA Sud-Ouest Magique3D)

Gordon Erlebacher (Department of Scientific Computing,
Florida State University, USA)

Dominik Göddeke (TU Dortmund, Germany)

GDR Calcul, Lyon
November 9, 2010

Istituto Nazionale di

Geofisica e Vulcanologia

(Italy)

Collaboration with
Emanuele Casarotti
(INGV, Roma, Italy)

Spectral-Element Method
� Developed in Computational Fluid Dynamics

(Patera 1984, Maday and Patera 1988, 1989…)

� Accuracy of a pseudospectral
method, flexibility of a finite-element
method

� Extended by Komatitsch and Tromp,
Capdeville et al.

� Large curved “spectral” finite-
elements with high-degree
polynomial interpolation

� Mesh honors the main discontinuities
(velocity, density) and topography

� Very efficient on parallel computers,
no linear system to invert (diagonal
mass matrix)

� No need for Discontinuous Galerkin

Differential or strongstrong form (e.g., finite differences):

f s +⋅∇=∂ σρ 2

t

We solve the integral or weakweak form:

∫∫ ∇−=∂⋅ r:wrsw 332
dd σρ t

() () rnwrw:Μ
2

S F
d ˆ s ⋅⋅−∇+ ∫ −

σtS

Equations of motion (solid)

+ attenuation(memory variables) and ocean load

Finite elements

� High-degree pseudospectral
finite elements

� N = 5 to 8 usually
� Exactly Diagonal mass matrix
� No linear system to invert

Global Simulations: SPECFEM3D_GLOBE
Open source: geodynamics.org

On-demand TeraGrid applications:
• Automated, near real-time simulations of all M>6

earthquakes
• Analysis of past events (more than 20,000 events)
• Seismology Web Portal (geodynamics.org)

Petascale simulations:
• Global simulations at 1-2 Hz
• Reached 1.15 s period on 149,784 cores at ORNL
• Moving towards global ‘adjoint tomography’

SPECFEM3D_GLOBE Users Map

Princeton University +
Barcelona Supercomputing
Center

© NVIDIA Corporation 2006

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

NVIDIA GeForce 8800 GTX

Why are they so powerful for scientific computing ?

Graphics cards

TGCC + PRACE

http://www.teratec.eu/technopole/tgcc.html

Le TGCC (Très Grand Centre de Calcul)sera disponible en 2010
pour accueillir la machine Européenne PRACE financée par GENCI.

- L’échelle du petaflop pour le
calculateur de la future
infrastructure Européenne

- Alimentation électrique : ligne
de 60 MW

- Salles informatiques : 2600 m2

GENCI (Grand Équipement National de Calcul Intensif)

Machine chinoise n°1 au monde

http://online.wsj.com

• Tianhe-1A supercomputer
• located at National Supercomputer Center in Tianjin, China
• GPU based 2.5 petaflop supercomputer
• Will likely be number 1 in the next Top500 list of the fastest supercomputers

Notons également que le matériel s’améliore très rapidement : NVIDIA
Fermi, Maxwell, ATI/AMD, et les logiciels de support également :
OpenCL au lieu de CUDA.

BLAS 3 (Basic Linear Algebra Subroutines)

Can we use highly optimized BLAS matrix/matrix products (90% of computations)?

For one element: matrices (5x25, 25x5, 5 x matrices of (5x5)), BLAS is not efficient:
overhead is too expensive for matrices smaller than 20 to 30 square.

If we build big matrices by appending several elements, we have to build 3 matrices, each
having a main direction (x,y,z), which causes a lot of cache misses due to the global
access because the elements are taken in different orders, thus destroying spatial locality.

Since all arrays are static, the compiler already produces a very well optimized code.

5x 5 x NDIM x Nb elem ...
5

5
5

=> No need to, and cannot easily use BLAS

=> Compiler already does an excellent job for small stat ic loops

© NVIDIA Corporation 2006

Porting SPECFEM3D on CUDA: validation

© NVIDIA Corporation 2006

Minimize CPU ↔↔↔↔ GPU data transfers
CPU ↔↔↔↔ GPU memory bandwidth much lower than GPU memory
bandwidth

Use page-locked host memory (cudaMallocHost()) for maximum CPU ↔↔↔↔
GPU bandwidth

• Minimize CPU ↔↔↔↔ GPU data transfers by moving more code from
CPU to GPU
– Even if that means running kernels with low paralle lism computations
– Intermediate data structures can be allocated, oper ated on, and deallocated

without ever copying them to CPU memory

• Group data transfers
– One large transfer much better than many small ones

Fit all the arrays on the GPU card to avoid costly CPU ↔↔↔↔ GPU data
transfers

But of course the MPI buffers must remain on the CP U, therefore
we can not avoid a small number of transfers (of 2D cut planes)

© NVIDIA Corporation 2006

Porting SPECFEM3D on CUDA

At each iteration of the serial time loop, three main types of
operations are performed:

update (with no dependency) of some global arrays
composed of the unique points of the mesh

purely local calculations of the product of
predefined derivative matrices with a local copy of
the displacement vector along cut planes in the
three directions (i, j and k) of a 3D spectral elem ent

update (with no dependency) of other global arrays
composed of the unique points of the mesh

© NVIDIA Corporation 2006

In 3D and for NGLL = 5, for a regular hexahedral me sh there are:
125 GLL integration points in each element
27 belong only to this element
98 belong to several elements

=> one thread per grid point (i.e., 125 threads per fin ite element)

Porting SPECFEM3D on CUDA:
global numbering versus local numbering

© NVIDIA Corporation 2006

Porting SPECFEM3D on CUDA: mesh coloring

Key challenge: ensure that
contributions from two local
nodes never update the
same global value from
different warps

Use of mesh coloring:
suppress dependencies
between mesh points inside
a given kernel

© NVIDIA Corporation 2006

Porting SPECFEM3D on CUDA:
Coalesced Global Memory Accesses

To ensure coalesced reads from global memory, the local
array sizes are a multiple of 128 floats (which is itself a
multiple of the half-warp size of 16) instead of 5^3 = 125
(thus purposely wasting 128/125 = 1.023 = 2.3% of memor y)

Each thread is responsible for a different point in the
element. Consequently, the threads of a half-warp load
adjacent elements of a (float) array. Access to global
memory is thus perfectly coalesced in kernels 1 and 3 , as
well as in the parts of kernel 2 that access local array s

When accessing global arrays in kernel 2, the indirect
addressing necessary to handle the unstructured mesh
topology results in non-coalescent accesses and 5-way
bank conflicts

© NVIDIA Corporation 2006

In kernel 1 & 3, all accesses are perfectly coalesced

In kernel 2, all accesses from local arrays are perfectly
coalesced.

When accessing global arrays in kernel 2, the indirect
addressing necessary to handle the unstructured mesh
topology results in non-coalescent accesses .

This has become far less critical on FERMI

Porting SPECFEM3D on CUDA:
Coalesced Global Memory Accesses

© NVIDIA Corporation 2006

Porting SPECFEM3D on CUDA: adding MPI

Old communication scheme (blocking MPI)
Update done in the whole arrays
(all elements computed before starting MPI

calls)

A B

C D

MPI communications cost on GPU version ~ 5%,

> We need to use non-blocking MPI communications.

> MPI communications are very well overlapped by computations on the GPU.

A B

C D

New communication scheme
(non blocking MPI)

Update done in buffers (for outer mesh
elements first)

80 domaines : nombre
équivalent d'éléments internes et
aux interfaces

8 domaines : nombre
d'éléments aux interfaces

< nombre d'éléments internes

Collaboration with Roland Martin and Nicolas Le Goff (Univ of Pau, France)

Use non -blocking MPI

Danielson and
Namburu (1998)

MultiGPU weak scaling (up to 192 GPUs)

•Constant problem size of 3.6 GB per GPU
•Weak scaling excellent up to 17 billion unknowns
•Blocking MPI results in 20% slowdown

It is difficult to define speedup: versus what?

For us, on the CEA/CCRT/GENCI GPU/Nehalem cluster, about 12x versus all the
CPU cores, 20x for one GPU versus one CPU core.

Effect of bus sharing

•2 GPUs share one PCIe bus in the Tesla S1070 architecture
•This is a potentially huge bottleneck!
•Bus sharing introduces fluctuations between runs and a slowdown
≤ 3%

GPU performance breakdown

•Effect of overlapping (no MPI = replace send/receive with zeroing)
•Red vs. blue curve: Difference ≤ 2.8%, i.e., very good overlap
•Green vs. magenta: Total overhead cost of running this problem
on a cluster is ≤ 12% (for building, processing and transmitting
buffers)

© NVIDIA Corporation 2006

The final speedup
for the CUDA + MPI
code is 25x

Performance
evolution depends
on parameters
that are difficult
to choose

Mesh size

GT X 280 8800 GT X

Version 1 Version 1 Version 2

T ime / element Speedup T ime / element Speedup T ime / el ement Speedup T ransfert ime

65 MB 0.94 µs 21.5 1.5 µs 13.5 4 .2 µs 4 .6 68%

405 MB 0.79 µs 24 .8 1.3 µs 15 3.7 µs 5.3 68%

633 MB 0.77 µs 25.3 1.3 µs 15 3.7 µs 5.3 67%

Porting SPECFEM3D on CUDA: results

� Ils sont actuellement élevés : réécriture du code en CUDA de
NVIDIA, OpenCLou similaire.

� Exemple : SPECFEM3D, 12 à 18 mois à temps complet pour un
ingénieur de recherche INRIA pour obtenir une première
version, un an de plus pour l’intégrer à notre code de production

Aide possible de la communauté :
� Communauté nombreuse et active : France : GENCI, CEA,

INRIA, CNRS, Académie, Groupe Calcul et GDR, ORAP,
TOTAL, CERFACS etc…

� Efforts d’automatisation ou de standardisation dans la
communauté : OpenCL, HMPP CAPS, StarSs (Barcelone),
StarPU(INRIA Bordeaux), S_GPU (INRIA Grenoble), …

Efforts pour encapsuler le code :

© NVIDIA Corporation 2006

The S_GPU library

Implemented by INRIA Grenoble
Virtualization : 1 GPU visible
per CPU core
Instructions scheduling done by
S_GPU, not by CUDA
Memory transfers /
computations overlapping
Written in C++ and CUDA,
binding Fortran
Limited intrusion in the source
code

MPI_COM_WOR
LD

M.GPU

M.GPU

t0 t4
t7 t5

t1
t2

t3
t6

S
G
P
U

HMPP directives (INRIA CAPS)

Flexible model consisting of directives that expres s
parallelism in the code and generate GPU or multico re
code automatically

Wave propagation in basins
� Need accurate numerical methods to model seismic

hazard – very densely populated areas

� Large and complex 3D models (e.g., L.A., Tokyo, Mexico)

� Wealth of high-quality data (TriNet)

San Andreas fault - Carrizo Plain

Horizontal scale approximately 200 m

9 m
America

Pacific

San Andreas – January 9, 1857

Carrizo Plain, San Andreas Fault, California, USA

America

Pacific

Vertical scale approximately 1 km Scale approximately 500 km

Ran on the JADE and TITANE supercomputers in France

L’Aquila, Italy, April 6, 2009 (Mw = 6.2)

L’Aquila, Italy, April 6, 2009 (Mw = 6.2)

Peak groud velocity maps obtained on April 7, 2009, for
two hypothetical earthquake scenarios and sent to the
local authorities in the evening.

Dec 26, 2004 Sumatra event

Vertical component of velocity at periods of 10 s and longer on
a regional scale

From Tromp et al., 2005

Dynamic geophysical technique of imaging subsurface geologic structures
by generating sound waves at a source and recording the reflected
components of this energy at receivers.

The seismic data analysis technique is the industry standard for locating
subsurface oil and gas accumulations.

Collaboration with the oil industryCollaboration with the oil industry

37

Propagation d'ondes sismiques :Eléments spectraux (SEM)

• Structures géologiques dans les Andes (Bolivie)
• Couche fine altérée en surface
→ Problème de dispersion en surface (Freq0 > 10

Hz).

� 5.3 millions de points à 10 Hz.
� Générateur GiD automatique

de maillage (UPC/ CIMNE).
98% des angles 45o < θ <
135o.
Pires angles: 9.5o and 172o

Sandrine Fauqueux
Thèse INRIA/IFP (2003)

Meshing an oil industry model

Absorbing conditions

� Used to be a big
problem
� Bérenger 1994
� INRIA (Collino,

Cohen)
� Extended to

second-order
systems by
Komatitsch and
Tromp (2003)

PML (Perfectly Matched Layer) ⇒ Hélène Barucq

Classical PML in 2D for seismic waves

Finite-difference technique in velocity and stress:
staggered grid of Madariaga (1976), Virieux (1986)

• Not optimized for
grazing incidence

• Usually split

• Produces artefacts
of significant
amplitude at grazing
incidence

Convolution-PML in 2D for seismic
waves

• Optimized for grazing
incidence

• Not split

• Use recursive
convolution based on
memory variables
(Luebbers and
Hunsberger 1992)

• « 3D at the cost of 2D»

Komatitsch and Martin, Geophysics (2007).

Adjoint Method (Waveforms)
Tromp et al. (2006, 2008, 2009)

Princeton Univ

Tape et al. (2009): 143 earthquakes used in inversion

• 3 simulations per earthquake per iteration
• 16 iterations
• 6,864 simulations
• 168 processor cores per simulation
• 45 minutes of wall-clock time per simulation
• 864,864 processor core hours

Depth 10 km

Conclusions andfuture work
Dimitri Komatitsch, David Michéa and Gordon Erlebache r, Porting a high-order finite-element earthquake
modeling application to NVIDIA graphics cards using CU DA, Journal of Parallel and Distributed Computing, vol.
69(5), p. 451-460, doi: 10.1016/j.jpdc.2009.01.006 (2009).

Dimitri Komatitsch, Gordon Erlebacher, Dominik Gödde ke and David Michéa, High-order finite-element seismic
wave propagation modeling with MPI on a large GPU clus ter, Journal of Computational Physics, vol. 229(20), p.
7692-7714, doi: 10.1016/j.jcp.2010.06.024 (2010).

■ CUDA on a single GPU leads to a speedup of 25x for our
application versus a single CPU core

■ We keep a speedup of 20x when we use a cluster of GPUs
with non-blocking MPI (12x if we compare to all the CPU
cores)

■ But code development is currently invasive and time
consuming

■ In future work, we could use OpenCL

■ Need for some kind of OpenMPfor GPUs: CAPS HMPP,
StarSs, StarPU...

