
Around GPGPU:
architecture, programming,

and arithmetic
Sylvain Collange, Arénaire, LIP, ENS Lyon

David Defour, DALI, ELIAUS, Université de Perpignan

November 10, 2010

 2

Key challenges for parallel architectures

Scalability

Moving data is more expensive than computing

How to minimize data movement in a many-core architecture?

Power efficiency

Power draw/dissipation is the current bottleneck

Power-directed design

Programming model

How to write portable, reusable parallel software with minimal
effort?

Numerical accuracy

Confidence in a result produced after billions of operations?

 3

Outline

How a GPU works

GPU programming guidelines

Arithmetic features

 4

GPU: a new architecture?

Who is right?

Difference with parallel processors from the 80's?

The Streaming Multiprocessor in reality is a highly threaded single-issue
processor with SIMD, although this is obscured by the overall complexity and
marketing of the whole architecture.

David Kanter, NVIDIA's GT200: Inside a Parallel Processor, Real Wold Tech, 2008

The Tesla SM uses a new processor architecture we call single-instruction,
multiple-thread (SIMT).

Erik Lindholm et al., NVIDIA Tesla: a unified graphics and computing architecture, IEEE Micro, 2008

 5

First step: MIMD

Multiple small, independent cores

(1) mul r1,r1

Core 1 Core 2

Core 1

Thread 1 Thread 2

(1) add r1,r2

(1) mov r3,r2(1) sub r2,r0 Decode

Fetch

(1) mul r1,r1
(1) sub r2,r0

(1) mov r3,r2(1) ... Core 1

(2) add r1,r2

(2) mov r3,r2

(2) mul r1,r1(1) add r1,r2
(2) sub r2,r0
(2) ...

Execute

(2) mul r1,r1(2) add r1,r2

(2) mov r3,r2(2) sub r2,r0

Benefit from task / data parallelism

 6

Second step: SIMT

Share front-end (I$, F, D) between cores

When both threads execute the same instruction

Fetch and decode it once, then broadcast it

(1-2) mul r1,r1

Core 1 Core 2

Core 1

PC
Thread 1

=4913

PC
Thread 2

=4913

(1-2) add r1,r2

(1-2) mov r3,r2(1-2) sub r2,r0 Decode

Fetch

(1) mul r1,r1
(1) sub r2,r0

(1) mov r3,r2(1) ...Exec
Core 1

(2) add r1,r2

(2) mov r3,r2 Exec

Benefit from instruction regularity

(2) mul r1,r1(1) add r1,r2
(2) sub r2,r0
(2) ...

 7

A GPU

More threads / core

More cores / shared front-end

Replicate instructions in time

Share load-store unit, caches

(9-10,12-16) add r1,r0

Core 1
Threads 1-2,9-10

Core 1

(1-8) mul r2,r4

Decode

Fetch

(10) add r1,r0
(9) add r1,r0

(2) mul r2,r4

Core 1
(12) add r1,r0

(4) mul r2,r4

Core 1 Core 1

Core 2
Threads 3-4,11-12

Core 3
Threads 5-6,13-14

Core 4
Threads 7-8,15-16

(1) mul r2,r4 (3) mul r2,r4

(11) Core 1
(14) add r1,r0

(6) mul r2,r4
(5) mul r2,r4

(13) add r1,r0 Core 1
(16) add r1,r0

(8) mul r2,r4
(7) mul r2,r4

(15) add r1,r0

Data parallelism

Instruction regularity

Data locality

 8

SIMD vs. SIMT

SIMT architecture : run SPMD code on SIMD units

Both authors are right...

SIMD units = only one possible implementation of SIMT

SIMD or vector SIMT

Vectorization At compile-time At runtime

Thread
divergence

Software-managed
Bit-masking,
predication

Hardware-managed
Stack, counters,
multiple PCs…

Memory
access

Vector load-store
Gather-scatter

Gather-scatter with
coalescing

And much more... [Glew09]

 9

GPU design space

This is the GPU architect's problem

Programmer's point of view: just a bunch of threads

Microarchitecture-specific optimizations

Or just focus on locality and regularity

SIMD

Pipelined vectors
(Cray-like)

MIMD
(multi-core)

Multi-threading
(Hyperthreading-like)

What can we do with SPMD threads?

NVIDIA Fermi

NVIDIA Tesla

AMD Evergreen

 10

Outline

How a GPU works

GPU programming guidelines

Bottlenecks and limitations

Some recipes

Arithmetic features

 11

Where are my transistors gone?

Conventional wisdom

CPUs have huge amounts of cache

GPUs have almost none

Reality check

GPU Register files
+ caches

NVIDIA
GF100

3.9 MB

AMD
Cypress

5.8 MB

At this rate, will catch up with CPUs by 2012…

 12

Little's law: data=throughput×latency

Intel Core i7 920

210

1300

350 ns

177

50

1,25

180

3 10 50 Latency (ns)

Throughput (GB/s)

L1

L2
DRAM

NVIDIA GeForce GTX 480

30

270

 13

What about power?

Power measurements on NVIDIA GT200 [CDT09]

Energy/op
(nJ)

Total power
(W)

Instruction control 1.8 18

32-way vector MAD 3.6 36

128-byte vector load 80 90

Instruction overhead is under control

Thanks to SIMT

FPUs are not so cheap

Once we put hundreds of them on a chip

Memory is the killer

14

Guidelines: scheduling work

On multicore / multiprocessor

Coarse-grained parallelism

Decouple tasks to reduce
conflicts and inter-thread
communication

On GPUs

Fine-grained parallelism

Interleave tasks

Exhibit locality: take advantage
of local memory

Exhibit regularity: take
advantage of SIMT units

T0 T1 T2 T3

T0 T1 T2 T3

 15

Packing data

Array of Structures (AoS)

Alignment?

Partial access (only blue)?

Access pattern on GPU?

Structure of Arrays (SoA)

More GPU-friendly

struct Pixel {
 float r, g, b;
};
Pixel image_AoS[480][640];

struct Image {
 float R[480][640];
 float G[480][640];
 float B[480][640];
};
Image image_SoA;

Prefer SoA in memory [Mici10]

Library to hide layout issues: [Strz10]

 16

How many threads?

As many as possible?

Maximal data-parallelism

Latency hiding

Locality

Store private data of each thread

Thread management overhead

Initialization, redundant operations

Instruction-Level Parallelism is not dead

Up to 5 pending loads/thread on Tesla, more on Fermi

Superscalar (supervector?) execution on GF104

VLIW on AMD architectures

 17

Example : SGEMM from CUBLAS 1.1

512 threads / CTA, 15 registers / thread

9 registers / 15 contain redundant data

Only 2 registers really needed

512 threads / CTA

15
registers
/ thread

Addresses, indices (linear increase)

Useful data

Temporary data

Duplicated data

From: Vasily Volkov. Programming inverse memory hierarchy : case of stencils on
GPUs. ParCFD, 2010.

 18

Fewer threads, more computations

Volkov SGEMM

8 elements computed / thread

Unrolled loops

Less traffic through shared memory,
more through registers

Overhead amortized

1920 registers vs. 7680 for the same
amount of work

Works for redundant computations too

Success story

+60% compared to CUBLAS 1.1

Adopted in CUBLAS 2.0

More in [Volk10]
64 threads / CTA

30
registers
/ thread

Useful
data

Duplicated
data

Temporary
data

Adresses, indices

 19

Takeaway

Distribute work and data

Favor SoA

Favor locality and regularity

Use common sense (avoid extraneous copies or indirections)

More threads ≠ higher performance

Saturate instruction-level parallelism first (almost free)

Complete with data parallelism (expensive in terms of locality)

Compiler optimization: thread fusion?

 20

Outline

How a GPU works

GPU programming guidelines

Arithmetic features

IEEE-754?

A bit of history

FP capabilities

 21

Every new generation is “now IEEE-754”

The vector unit can perform four IEEE single-precision multiply, add, or
multiply-add operations, as well as inner products, max, min, and so on.

J. Montrym, H. Moreton, The GeForce 6800, IEEE Micro, 2005

The floating-point add and multiply operations are compatible with the IEEE
754 standard for single-precision FP numbers, including not-a-number (NaN)
and infinity values.

Erik Lindholm et al., NVIDIA Tesla: a unified graphics and computing architecture, IEEE Micro, 2008

Single precision floating point instructions now support subnormal numbers by
default in hardware, as well as all four IEEE 754-2008 rounding modes
(nearest, zero, positive infinity, and negative infinity).

NVIDIA's next generation CUDA compute architecture: Fermi Whitepaper, 2009

All compute devices follow the IEEE 754-2008 standard for binary floating-
point arithmetic with the following deviations:
[…2-page long bullet list…]

NVIDIA CUDA C Programming Guide, 2010

 22

A short glimpse at recent GPU history

20092004 20072002

7.x 8.0 9.08.1 9.0ca 9.0b 10.0 10.1 11

2000 2001 2003 2005 2006 2008

Microsoft DirectX

NVIDIA

NV10 NV20 NV30 NV40 G70 G80-G90 GT200

ATI/AMD

R100 R200 R300 R400 R500 R600 R700

Programmable
shaders

FP 16 FP 32

FP 24 FP 64

“SIMT”?

CTM CAL

CUDA

GPGPU traction

Dynamic
control flow

2010

GF100

Evergreen

 23

Arithmetic features

2006 (ATI R500, NVIDIA G70): “Cray-1-like” FP

Truncated multipliers, adders with 2 guard bits and no sticky

41 / 41 ≠ 1

Same GPU, different units: different behavior

2007 (ATI R600, NVIDIA G80)

Correct IEEE-754 rounding to the nearest for +, ×

Integer arithmetic and logical ops

2008 (AMD R670, NVIDIA GT200)

Binary64

2010 (AMD Evergreen, NVIDIA GF100)

4 mandatory IEEE rounding modes

FMA for both Binary32 and Binary64

Subnormals at full-speed

 24

Hardware elementary functions

34 years later: still no complex datatypes nor correct
rounding of elementary functions

But we have hardware elementary functions on GPUs

1/x, 1/√x, log
2
, 2x, sin, cos

Accuracy: 22 to 23 bits

Applications: graphics, physics, finance…

We therefore conclude that

(1) the entire function library should be included in the hardware if and only if
COMPLEX data types and their corresponding arithmetic are formally introduced;

(2) the following error/accuracy criterion should be adopted and met by the
implementation: [Correct rounding].

If either of these conditions is not met, then none of the elementary functions
should be included in the hardware.

G. Paul, M.W. Wilson, Should the elementary function library be incorporated into
computer instruction sets?, TOMS, 1976.

 25

Graphics is bandwidth-starved too

Lower-precision format: Binary16

11-bit significand, 6-bit exponent

In IEEE-754:2008

Block Floating-Point formats

One shared exponent, multiple significands

More compact storage for correlated FP data

1,01100010 0,10011011 0,00110101 1,10010111 17

m
1

m
2

m
3

m
4

e

f
1
=m

1
x2e

f
2
=m

2
x2e

f
3
=m

3
x2e

f
4
=m

4
x2e

Lossy compression of textures in memory

Hardware-based on-the-fly decompression

Lossless compression of frame buffer, depth buffer…

 26

FMA

Higher accuracy

One less rounding error

Error-free transformations

FMA(a, b, -a×b)

Different behavior than a×b+c

Loss of symmetry (dot product…)

a × b + c × d ≠ c × d + a × b

In CUDA

fmaf(), fma() C functions

By default, compiler turns a*b+c expressions into FMAs

Use __fadd_rn(), __fmul_rn(), __dadd_rn(), __dmul_rn()
in place of +, * to prevent FMAzation

 27

Static rounding attributes

On CPUs

Rounding mode as a mode for each thread

Get/set with e.g. fegetround() and fesetround()

On NVIDIA GPUs

Rounding direction: flag in the instruction word

C intrinsics: __fadd_ru(), __fadd_rd(), __fmul_rz, __fmaf_rn…

Benefit: zero-overhead mode switch

Applications

Interval arithmetic

“Interval” CUDA SDK sample

100× speedup for the same development effort

Stochastic arithmetic [JL10]

 28

Conclusion

GPU: throughput computing monster

Feed it with lots of threads (balanced ILP/DLP diet)

It likes: parallelism, locality, regularity (coherence)

Specialized in FP arithmetic

From 8-bit fixed point to IEEE-754:2008 in 10 years

Now better FP support than on most CPUs

Specialized in graphics

Exotic arithmetic units

Can HPC learn from computer graphics?

Fixed-function units, memory compression?

Next hardware feature?

Your feature?

 29

FP OXO
Format FMA UMA Exceptions

Intel X86 80bit ✗ ✗ ✓ ✓ ✓
64bit ✓ ✗ ✓ ✓ ✓

Intel IA64 82bit ✓ ✗ ✓ ✓ ✓
32bit ✓ ✗ RZ ✗ ✗ ✓ ✗
64bit ✓ ✗ ✓ ✓ ✗
32bit ✗ ✓ ✗ ✓ ✗ ✗
64bit ✓ ✗ ✓ ✓ ✗ ✗

AMD RV770
32bit ✗ ✓ RN ✗ ✓ ✗ ✗
64bit ✗ ✓ RN ✗ ✓ ✗ ✗
32bit ✓ ✗ ✓ ✓ ✗ ✗
64bit ✓ ✗ ✓ ✓ ✗ ✗
32bit ✓ ✓ ✓ ✓ ✓ ✗
64bit ✓ ✓ ✓ ✓ ✓ ✗

32bit N/A RN ✓ ✗ ✗
64bit ✓ ✓ ✓ ✗ ✗

Direct3D 11
32bit ✗ RN ✗ ✓ ✗ ✗
64bit ✗ RN ✓ ✓ ✗ ✗

Rounding Subnormals Inf, NaN Flags

4 Dynamic Microcode

IBM PowerPC 4 Dyn. Microcode

4 Dyn. + Stat. Microcode

IBM Cell SPU
4 Dyn. Output

NVIDIA
GT200

2 Static

4 Static

NVIDIA
GF100

4 Static

4 Static

AMD
Evergreen

4 Dyn.

4 Dyn.

OpenCL 1.1
Opt Opt

4 StaticRN

 30

References
[Glew09] Andy Glew. Coherent vector lane threading. Berkeley ParLab
Seminar, 2009. http://parlab.eecs.berkeley.edu/seminars

[CDT09] Sylvain Collange, David Defour, Arnaud Tisserand. Power
consumption of GPUs from a software perspective. ICCS 2009.

[Mici10] Paulius Micikevicius. Fundamental Performance Optimizations
for GPUs. GTC 2010.
http://developer.download.nvidia.com/compute/cuda/docs/GTC_2010_Archives.htm#RANGE!A214

[Strz10] Robert Strzodka. The Best of Both Worlds: Flexible Data
Structures for Heterogeneous Computing. GTC 2010.
http://developer.download.nvidia.com/compute/cuda/docs/GTC_2010_Archives.htm#RANGE!A27

[Volk10] Vasily Volkov. Better Performance at Lower Occupancy. GTC
2010.
http://developer.download.nvidia.com/compute/cuda/docs/GTC_2010_Archives.htm#RANGE!A150

[ACD10] Mark Arnold, Sylvain Collange, David Defour. Implementing
LNS using filtering units of GPUs. ICASSP, 2010.

[JL10] Fabienne Jezequel, Jean-Luc Lamotte. Numerical validation of
Slater integrals computation on GPU. SCAN 2010.

http://parlab.eecs.berkeley.edu/seminars
http://developer.download.nvidia.com/compute/cuda/docs/GTC_2010_Archives.htm#RANGE!A214
http://developer.download.nvidia.com/compute/cuda/docs/GTC_2010_Archives.htm#RANGE!A27
http://developer.download.nvidia.com/compute/cuda/docs/GTC_2010_Archives.htm#RANGE!A150

 31

 32

Texture filtering

Fixed-function unit (ex NVIDIA GT200)

Interpolate color of Pixels from Texels

Alignment (FP->FX)

Bilinear
interpolation FX

MAC FP*FX+FP->FP

shared
exponent

T[i,j] T[i,j+1] ... β γ

i+1

j+1

j

i x

y

Pixel
Texels

α

Applications: graphics, image processing

Can be hijacked to evaluate piecewise polynomials

Evaluate functions “for free” [ACD10]

 33

Handling thread divergence

Many techniques. e.g. Fermi:

Generic SIMT branch instruction

If all threads take the same path, treat as a branch

If not, fall back to predication

Handles nested control flow with a stack

Predication (for very short branches)

Take all paths, mask out unneeded calculations

Predicate-or-skip (for innermost conditionals)

Lighter version of generic mechanism

Select (for selective assignment)

Compiler: selects which one to use

Programmer: favor nondivergent conditionals

Regularity at algorithmic level

 34

State of the art in 2006

NVIDIA G70, ATI R500

“Cray 1-like” floating-point arithmetic

Truncated multipliers

Adders with two guard bits and no sticky

41 / 41 ≠ 1

Different behavior for different units on the same GPU

G70

1 ulp Exact result

R500
Pixel shader,
multiplication

Vertex shader,
multiplication

Error bars

S. Collange, M. Daumas, D. Defour. État de l'intégration de la virgule flottante dans les
processeurs graphiques. RSTI – TSI 27/2008, p. 719 – 733. 2008

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

