
Matroska File Format
(under construction!)

Contents
1 Introduction 4

2 EBML - basics 5
2.1 Unsigned Integer values of variable length (”vlint“) 5
2.2 Signed Integer values of variable length (svlint) 6
2.3 Signed and Unsigned Integers (int and uint) 6
2.4 Float . 6
2.5 Types of Strings . 6
2.6 Usage of EBML elements . 6

3 Level 0 Elements in Matroska files 8
3.1 EBML . 8
3.2 Segment . 8

4 Level 1 - Element: EBML - Header 9
4.1 EBMLVersion . 9
4.2 EBMLReadVersion . 9
4.3 EBMLMaxIDLength . 9
4.4 EBMLMaxSizeLength . 9
4.5 DocType . 9
4.6 DocTypeVersion . 9
4.7 DocTypeReadVersion . 9

5 Level 1 - Elements inside Segments 10
5.1 SegmentInfo . 10

5.1.1 SegmentUID . 10
5.1.2 SegmentFilename . 10

1

5.1.3 PrevUID . 10
5.1.4 PrevFilename . 11
5.1.5 NextUID . 11
5.1.6 NextFilename . 11
5.1.7 TimecodeScale . 11
5.1.8 Duration . 11
5.1.9 DateUTC . 11
5.1.10 Title . 12
5.1.11 MuxingApp . 12
5.1.12 WritingApp . 12

5.2 Seekhead . 13
5.3 Tracks . 14

5.3.1 TrackNumber . 14
5.3.2 TrackUID . 15
5.3.3 TrackType . 15
5.3.4 FlagDefault . 15
5.3.5 FlagLacing . 15
5.3.6 MinCache . 15
5.3.7 MaxCache . 15
5.3.8 DefaultDuration . 16
5.3.9 TrackTimecodeScale 16
5.3.10 TrackOffset . 16
5.3.11 Name . 16
5.3.12 Language . 16
5.3.13 CodecID . 16
5.3.14 CodecPrivate . 16
5.3.15 CodecName . 16
5.3.16 CodecSettings . 17
5.3.17 CodecInfoURL . 17
5.3.18 CodecDownloadURL 17
5.3.19 CodecDecodeAll . 17
5.3.20 TrackOverlay . 17
5.3.21 video . 17
5.3.22 audio . 18

5.4 Cluster . 19
5.4.1 TimeCode . 19
5.4.2 Position . 19
5.4.3 PrevClusterSize . 19

2

5.4.4 BlockGroup . 20
5.5 Cues . 21

5.5.1 CueTime . 21
5.5.2 CueTrackPositions . 21

5.6 Chapters . 23
5.7 Tags . 25

6 Matroska block Layout and Lacing 26
6.1 Basic layout of a Block . 26
6.2 Lacing . 26

6.2.1 Xiph Lacing . 27
6.2.2 EBML Lacing . 27
6.2.3 Fixed Lacing . 27

7 Overhead of Matroska files 28
7.1 Overhead of BlockGroups . 28

7.1.1 video . 28
7.1.2 audio - without lacing 29
7.1.3 audio - with lacing . 29

7.2 Overhead of Clusters . 33
7.3 Overhead caused by Cues . 34

8 Questions, Comments, Contact, Links 35
8.1 Links . 35
8.2 Questions, Comments, Contact 35

3

1 Introduction

This document is intended to be used by developers who want to implement
support for the Matroska file format in their applications, but who want to
build this support from scratch rather than using existing implementations,
or people who just want to understand the Matroska file format in detail.
Thus, the file format itself is described, but not the usage of any existing
library including the official one (’libmatroska’).

This document does not replace the documentation on
http://www.matroska.org/technical/specs/index.html
Especially, default values of elements in case they are not written to a file
should be looked up on that page, as they are not listed again in this docu-
ment.

4

2 EBML - basics

2.1 Unsigned Integer values of variable length (”vlint“)

Files based on EBML use integers of variable length for element IDs and to
store the size of elements. The length of an integer is equivalent to

length = 1 + [number of leading zero bits]

All integers use big endian.

Example: 3A 41 FE:

The first byte 3A (0011 1010) has 2 leading zeros, resulting in a total length
of 3. The final value of this integer is obtained by changing the most signif-
icant bit being 1 to 0. In case of 3A 41 FE, the bit to swap is 0011 1010.
The result is then 0x1A41FE. Another possibility to write 1A41FE would be
10 1A 41 FE or 08 00 1A 41 FE. When writing EBML files, the shortest
possible encoding should be used to avoid wasting space.

Unknown Length

All bits after the leading zeros being set to one, such as FF or 7F FF, indi-
cates an unknown length. Muxers shall avoid writing unknown length values
whenever possible. The only exception is the last Level 0 element of a file. If
encoding a number as described above results in such a sequence, it shall be
encoded again with a greater destination length. Example: When encoding
8191 as described above, the result is 7F FF. In 7F FF, all bits after the
leading zero are set, which would indicate an unknown length. That means,
the length is increased to 3, and the number is encoded again to 20 3F FF.

Note

It is possible to use a lookup table to determine the total length from the
first byte. The Matroska file format does not allow integer lengths greater
than 8, meaning that the number of leading zeros is not higher than 7 and
that the total length can always be retrieved from the first byte.

5

2.2 Signed Integer values of variable length (svlint)

Signed integers have the following value: Read the integer as Unsigned Inte-
ger and then subtract

vsint_subtr[length-1]

where

__int64 vsint_subtr [] =
{ 0x3F, 0x1FFF, 0x0FFFFF, 0x07FFFFFF,
0x03FFFFFFFF, 0x01FFFFFFFFFF,
0x00FFFFFFFFFFFFFF, 0x007FFFFFFFFFFFFF };

2.3 Signed and Unsigned Integers (int and uint)

Integers, signed as well as unsigned, are stored ’normally’ and in big endian
byte order, with leading 0x00 and 0xFF being cut off (example for int: -257
is 0xFE 0xFF).

2.4 Float

A Float value is a 32 or 64 bit real number, as defined in IEEE. 80 Bit
values have been in the specification, but have been removed and should not
be used. The bytes are stored in big endian order.

2.5 Types of Strings

String refers to an ASCII string.
UTF-8 refers to a string that is encoded as UTF-8

2.6 Usage of EBML elements

One piece of information is stored the following way:

typedef struct {
vlint ID // EBML-ID
vlint size // size of element
char[size] data // data

} EBML_ELEMENT;

6

The length of ID shall be called s_ID, the length of size shall be called
s_size. Elements that contain other EBML Elements are called EBML
Master elements.

Generally, the order of EBML elements inside a parent element is not fixed.
In some cases, a certain order is recommended, but it is never mandatory.
Especially, no element order should be assumed inside small parent elements.

7

3 Level 0 Elements in Matroska files

3.1 EBML

This header describes the contents of an EBML file. There should be only
one EBML header in one file. Any further EBML headers do not render a
file invalid, but shall be ignored by any application reading the file.

Files with more than one EBML header could be created for instance if two
or more files are appended by using the copy /b command (which is not
recommended, but no one can be prevented from doing this)

3.2 Segment

A Segment contains multimedia data, as well as any header data necessary
for replay. There can be several Segments in one Matroska file, but this is not
encouraged to be done, as there are no players available which are capable
of replaying multisegment Matroska files correctly.

8

4 Level 1 - Element: EBML - Header

4.1 EBMLVersion (int)

EBMLVersion indicates the version of the EBML Writer that has been used
to create a file.

4.2 EBMLReadVersion (int)

EBMLReadVersion indicates the minimum version an EBML parser needs to
be compliant with to be able to read the file.

4.3 EBMLMaxIDLength (int)

EBMLMaxIDLength indicates the length of the longest EBML-ID the file con-
tains. In case of matroska, this value is 4. Any EBML-ID which is longer
than the value of this element shall be considered invalid.

4.4 EBMLMaxSizeLength (int)

EBMLMaxSizeLength indicates the maximum s_size value the file contains.
Any EBML element having an s_size value greater than EBMLMaxSize-
Length shall be considered invalid.

4.5 DocType (string)

DocType describes the contents of the file. In the case of a Matroska file, its
value is ’matroska’.

4.6 DocTypeVersion (int)

DocTypeVersion indicates the version of the <DocType> writer used to create
the file.

4.7 DocTypeReadVersion (int)

DocTypeReadVersion indicates the minimum version number a <DocType>
parser must be compliant with to read the file.

9

5 Level 1 - Elements inside Segments

5.1 SegmentInfo

The SegmentInfo element contains general information about the Segment,
such as its duration, the application used for writing the file, date of cre-
ation, a unique 128 bit ID, to name a few only. Information included in the
SegmentInfo element is not required for playback, but should be written by
any Matroska muxer.

(read: <element name> (<s_size + s_ID>: <size> bytes at <position in file>: value)

5.1.1 SegmentUID (char[16])

The SegmentUID is a unique 128 bit number identifying a Segment. It shall
be written by any Matroska muxer, but shall not be considered mandatory
by a parser.

5.1.2 SegmentFilename (utf-8)

SegmentFilename contains the name of the file the Segment is stored in.
Since renaming files is easy, the value of this element shall not be considered
reliable.

5.1.3 PrevUID (char[16])

PrevUID contains the unique 128 bit ID of the Segment that is replayed
before the currently active Segment, i.e. the ID of the Segment that should

10

be loaded if seeking to a timecode earlier than the earliest timecode of active
Segment is tried. That segment should, of course, be easy to locate, for
instance in a file in the same directory.

5.1.4 PrevFilename (utf-8)

PrevFilename contains the name of the file in which the Segment having the
ID <PrevUID> is stored. PrevFilename shall not be considered reliable for
the same reason as SegmentFilename.

5.1.5 NextUID (char[16])

NextUID contains the unique 128 bit ID of the Segment that is replayed after
the currently active Segment, i.e. the ID of the Segment that should be
loaded if seeking to a timecode after the end of the active Segment is tried.
Like PrevUID, the corresponding Segment should be easy to locate.

5.1.6 NextFilename (utf-8)

NextFilename contains the name of the file in which the Segment having the
ID NextUID is stored. NextFilename shall not be considered reliable for the
same reason as SegmentFilename.

5.1.7 TimecodeScale (int)

Each scaled timecode in a Matroska file is multiplied by this value to obtain
a timecode in nanoseconds. Note that not all timecodes are scaled!

5.1.8 Duration (float)

The Duration element indicates the duration of the Segment. The duration
measured in nanoseconds is equal to <Duration> * <TimecodeScale>. This
element should be written.

5.1.9 DateUTC

?

11

5.1.10 Title

Contains a general name of the Segment, like ”Lord of the Rings - The
Two Towers“. This element is not mandatory.

5.1.11 MuxingApp

Contains the name of the library that has been used to create the file (like
”libmatroska 0.6.0“). This element should be written by any muxer! Espe-
cially if non-compliant files are encountered, this element will help to find
out who is to be blamed.

5.1.12 WritingApp

Cotains the name of the application used to create the file (like ”mkvmerge
0.8.1“). This element should be written for the same reason as MuxingApp.

12

5.2 Seekhead

The Seekhead element contains a list of positions of Level 1 elements in the
Segment. Each pair (element id, position) is stored in one Seek element:

SeekID contains the EBML-ID, and SeekPosition the position inside the
client area of the Segment of the corresponding element.

Not all Level 1 elements need to be included. Each Segment should contain
a Seekhead element. Typical Seekheads either include a list of all Level 1
elements, or a list of all Level 1 elements except for Clusters (see section
5.4). Seekheads can also include references to other Seekheads. Circles shall
never occur in such cases.

13

5.3 Tracks

The Tracks element contains information about the tracks that are stored
in the Segment, like track type (audio, video, subtitles), the used codec, res-
olution and sample rate. All tracks shall be described in one (or more, but
preferably only one) Tracks element. The contents of a Segment cannot be
processed without the Tracks element. Not finding any Tracks element in-
side a Segment shall be considered a fatal error.

As you can see, there are several TrackEntries in the Tracks element. Each
TrackEntry describes one track of the file. In theory, several TrackEntries
could refer to the same track, but that is not recommended, except for backup
purposes!

5.3.1 TrackNumber (int)

Defines an identification number of the track. This number shall not be equal
to zero.

14

5.3.2 TrackUID (int32)

This 32-bit integer is a unique identificator of the track within the file.

5.3.3 TrackType (int)

Defines the type of a track and can be

• Video: 0x01

• Audio: 0x02

• Complex: 0x03 (e.g. DV with combined Video+Audio)

• Logo: 0x10

• Subtitle: 0x11

• Control: 0x20

5.3.4 FlagDefault (int)

Select whether or not the track should be enabled by default.

5.3.5 FlagLacing (int)

This flag indicates whether or not Lacing (see page 26) is used in the corre-
sponding track. The reliability of this flag should not be overrated.

5.3.6 MinCache (int)

Indicates the number of frames a player must be able to cache during play-
back. This is for instance interesting if a native MPEG4 file with frames in
coding order is played.

5.3.7 MaxCache (int)

Indicates the maximum number of frames a player has to cache. A value of
NULL means that no cache is required.

15

5.3.8 DefaultDuration (int)

This value indicates the number of nanoseconds a frame lasts. This value is
applied if no Duration value is indicated for a frame or if Lacing (see page
26) is used. A value of 0 means that the duration of frames of the track is
not constant (e.g. variable framerate video, or Vorbis audio).

5.3.9 TrackTimecodeScale (float)

Every timecode of a block (cluster timecode + block timecode) is mul-
tiplied by this value to obtain the real timecode of a block.

5.3.10 TrackOffset (int)

This value is added to every timecode of blocks of the corresponding track.
It can be used to adjust sync between video and audio without remuxing the
entire file.

5.3.11 Name (UTF-8)

A human-readable name for the track

5.3.12 Language (string)

Specifies the language of a track, using ISO-639-2 (see
http://lcweb.loc.gov/standards/iso639-2/englangn.html)

5.3.13 CodecID (string)

Specifies the Codec which is used to decode the track. A complete list of
currently supported CodecID strings can be found on
http://matroska.org/technical/specs/codecid/index.html .

5.3.14 CodecPrivate (binary)

Contains information the Codec needs before decoding can be started. An
example is the Vorbis initialization packets for Vorbis audio.

5.3.15 CodecName (UTF-8)

A human-readable name of the Codec

16

5.3.16 CodecSettings (UTF-8)

A string describing the settings used for encoding.

5.3.17 CodecInfoURL (String)

Contains an URL where to find information about that codec

5.3.18 CodecDownloadURL (String)

Indicates an URL where the specified codec can be downloaded.

5.3.19 CodecDecodeAll (uint)

If this value is set to nonzero, the codec can handle potentially damaged data.
That means that damaged data should be passed over to the codec rather
than being dropped, e.g. if reading data from a damaged Mode 2 Form 2 -
CD.

5.3.20 TrackOverlay (uint)

This element contains the number of the track (TrackNumber) which it is an
overlay of.

5.3.21 video

Contains video-specific information about the track. This element is only
present for video tracks.

• FlagInterlaced (int)
If this flag is set to nonzero, the track contains interlaced video.

• StereoMode (int)
0: no stereo, 1: right eye, 2: left eye, 3: both eyes

• PixelWidth (int)
Width of the encoded video track in pixels

• PixelHeight (int)
Height of the encoded video track in pixels

17

• DisplayWidth (int)
Width the video track shall be zoomed to when replaying

• DisplayHeight (int)
Height the video track shall be zoomed to when replaying

• DisplayUnit (int)
Indicates the unit DisplayWidth and DisplayHeight are indicated in.
0: Pixels, 1: centimeters, 2: inches

• AspectRatioType (int)
Indicates the default behaviour of players when resizing the replay win-
dow:
0: free resizing, 1: keep aspect ratio, 2: fixed

• ColorSpace (string)
Same value as in AVI

• GammaValue (float)
Gamma value

5.3.22 audio

Contains audio-specific information about a track. This element is only
present for audio tracks.

• SamplingFrequency (float)
Indicates the sample rate the track is encoded at

• OutputSamplingFrequency (float)
Indicates the sample rate the track should be output at. This value is
often equal to SamplingFrequency. It differs for instance for HE-AAC
audio, which uses SBR.

• Channels
Indicates the number of channels

• BitDepth
Indicates the number of bits per sample of the track. This value is
usually used for PCM audio and may be zero for other formats, even
if the correct value is known.

18

5.4 Cluster

A Cluster contains multimedia data and usually spans over a range of a few
seconds. The layout of a Cluster is the following:

Although sticking to this order of the elements is not mandatory, it is rec-
ommended not to have any non-BlockGroup after the first BlockGroup.

5.4.1 Timecode (int)

The Cluster timecode is the timecode all block timecodes are indicated rela-
tively to.

5.4.2 Position (int)

The Position element indicates the position of the beginning of its parent
element inside its grand parent element. This can help to resync in case of
damaged data, but is of no use if no data is damaged.

5.4.3 PrevClusterSize (int)

Indicates the size of the preceding cluster in bytes. This helps to seek back-
wards, and to find the preceding cluster, without having to look at Metaseek

19

or Cue data. This is also helpful to resync, e.g. if the EBML-ID of the
preceding Cluster is damaged.

5.4.4 BlockGroup

A Blockgroup contains a single block, as well as some additional information
concerning that block.

• ReferenceBlock (sint)
Contains the timecode (relatively to the current block) of a block
that needs to be decoded before the current one can be processed.
In case of bidirectionally encoded frames, there can be more than one
ReferenceBlock.

• BlockDuration (int)
Indicates the scaled duration of the block. If this value is not written,
it is assumed to be

– the difference
<timecode of next block of the same stream> - <timecode>

– equal to DefaultDuration (for the last block of each stream)

As a consequence, the Duration element is mandatory for every block
of subtitle tracks.

• Block
contains data to be replayed. See page 26 for details.

20

5.5 Cues

The Cues element contains information helpful (but not necessary) for seek-
ing. Each piece of information, called a CuePoint, contains a timestamp,
and a list of pairs (track number, (cluster position[, block number within
cluster])). Generally, a CuePoint should only point to keyframes.

5.5.1 CueTime (int)

The CueTime element contains a scaled timecode, telling which timestamp
this CuePoint is pointing to.

5.5.2 CueTrackPositions

One CueTrackPositions element contains information where to find the
block with timecode CueTime of a certain track:

• CueClusterPosition (int)

21

Defines the position of the cluster containing the refered block within
the segment.

• CueTrack (int)
Defines which Track the refered block belongs to

• CueBlockNumber (int)
Number of Block in the specified cluster. The first block is number 1.
CueBlockNumber is not mandatory.

22

5.6 Chapters

The Chapters element contains a list of all chapters found in this Segment.
The basic structure is indicated here:

Each Chapter is decribed by one ChapterAtom, and all ChapterAtoms are
children of EditionEntry elements.
Each ChapterAtom contains

• ChapterUID
A 32 bit number identifying this chapter uniquely. ChapterUID and
TrackUID numbers shall not collide.

• ChapterFlagHidden If this value is 1, the chapter is hidden. In this
case, the user interface should not allow to select this chapter. It should
only be available to control tracks.

• ChapterFlagEnabled If this value is 0, the chapter is disabled. The
player should skip the entire chapter in this case.

23

• ChapterTimeStart Unscaled (!) timecode of the beginning of the
chapter.

• ChapterTimeEnd Unscaled (!) timecode of the end of the chapter.
If ChapterTimeEnd is not indicated, the corresponding chapter ends

– at the beginning of the next chapter

– at the end of the parent chapter, if the chapter is a subchapter

– at the end of the segment, if the chapter is not a subchapter

• ChapterDisplay contains names for the chapter. You can write sev-
eral ChapterDisplay elements if you want to store different names in
different languages for one chapter.

– ChapterString: Name of chapter

– ChapterLanguage: Language of the value of ChapterString

– ChapterCountry: The country corresponding to ChapterString

• ChapterAtoms: Chapters which are subchapters to the current chap-
ter.

24

5.7 Tags

Tags provide additional information not important for replay. A complete
list of specified tags can be found at
www.matroska.org

A Tags element contains a number of Tag elements. Each Tag element
contains a list of UIDs (usually TrackUIDs or ChapterUIDs), and a list of
SimpleTags, each one containing a name and a value:

If no Targets are specified, then the Tag is a global Tag refering to the entire
Segment.

25

6 Matroska block Layout and Lacing

6.1 Basic layout of a Block

A Matroska block has the following format:

BLOCK {
vlint TrackNumber
sint16 Timecode // relative to Cluster timecode
int8 Flags // gap, lacing
if (lacing) {

int8 frame_count-1
if (lacing == EBML lacing) {

vlint size[0]
svlint size[1..frame_count-2]

} else
if (lacing == Xiph lacing) {
int8 size[size of <leading (frame_count-1) frames> / 255 + 1]

}
}
int8[] data

}

The following bits are defined for Flags:

Bit 7 : gap (last block of track)
Bit 5-6: lace type

00 - no lacing
01 - Xiph lacing
11 - EBML lacing
10 - fixed-size lacing

The type of lacing in use defines how the size values are to be read.

6.2 Lacing

Lacing is a technique that allows to store more than one atom of data (like
one audio frame) in one block, with the goal to decrease overhead, without
losing the ability to separate the frames in a lace later again.

26

Generally, the size of the last frame in a Lace is not stored, as it can be
derived from the total block size, the size of the block header and the sum
of the sizes of all other frames.
Frame duration values are not preserved! That means, it is highly recom-
mended not to use lacing if the frame duration is not constant, like Vorbis
audio.

6.2.1 Xiph Lacing

The size of each frame is coded as a sum of int8. A value smaller than 255
indicates that the next value refers to the next frame.

Example
size = { 187, 255, 255, 120, 255, 0, 60 } means that there are 4 frames
with 187, 630, 255, 60 bytes.

6.2.2 EBML Lacing

Size of first frame (”frame 0“) of a lace = size[0]
Size of frame i of a lace: size[i] - size[i-1]

6.2.3 Fixed Lacing

Fixed Lacing is used if all frames in a lace have the same size. Examples are
AC3 or DTS audio. In this case, knowing the number of frames is enough to
calculate the size of one frame. Consequently, there are no size values.

27

7 Overhead of Matroska files
The scope of this section is explaining how to predict the overhead of a
Matroska file before muxing, and without analysing any of the source files
excessively.

7.1 Overhead of BlockGroups

First, here again the layout of a typical BlockGroup

BlockGroup <size>
Block <size> <number, flag, timecode>
[Reference <size> <val>]

The EBML identication for Blocks and BlockGroups are 1 byte each, so that
the structure above, not counting References, takes:

• BlockGroup < 128 bytes: 8 bytes

• BlockGroup < 16kbytes: 10 bytes

• BlockGroup < 2MBytes: 12 bytes

BlockGroups larger than 2MBytes are extremely unlike, and even BlockGroups
larger than 16kBytes won’t occur often, compared to BlockGroups between
128 bytes and 16 kBytes. That means, assuming an overhead of 10 bytes for
BlockGroups without References usually results in a good approximation.

7.1.1 video

In a typical video stream, there are a lot of frames with 1 Reference (P-
Frames, Delta-Frames), and a few keyframes. Typical rations are 100:1.
There might also be frames with 2 References (B-Frames), e.g. native
MPEG4 streams. Assuming a ratio of 66:33:1 for B:P:K, and assuming a
bitrate far below 3,2 MBit/s (meaning that typical B- and P-frames are
smaller than 16 kB), that causes about 15 bytes of overhead per frame. If
there are no B-Frames, there are about 13 bytes per frame.

Example: 2 hours, 25 fps.
The video stream will cause around 2,3 MB of overhead.

28

7.1.2 audio - without lacing

As audio does usually not have any References (all audio frames are keyframes),
one audio frame will take 8 or 10 bytes of overhead. For MP3, AC3, DTS
and AAC, frames causing 8 bytes of overhead are unlikely. They are more
likely for Vorbis.

Example: MP3 audio, 24ms per frame, duration: 2h
This stream will cause 3MB of overhead.

7.1.3 audio - with lacing

1. CBR+CFR: fixed lacing
In this case, fixed lacing (see section 6.2.3) is used. With fixed lacing, the
overhead is the normal BlockGroup overhead, plus 1 byte for the lace header.
Assuming that BlockGroups are not larger than 16k, that means that the
overhead per frame is equal to 11 / frame_count

Example: AC3 audio, 448 kbps, 1792 bytes per frame, 32ms per frame
1.) 8 frames per lace.
overhead for one frame = 11/8 = 1,375 bytes = 1 byte / 23,3 ms.
2.) 9 frames per lace.
overhead for one frame = 11/9 = 1,222 bytes = 1 byte / 26,2 ms.
3.) 10 frames per lace.
overhead for one frame = 13/10 = 1,3 bytes = 1 byte / 24,6 ms.

An AC3 stream of 2 hours with 9 frames per lace will cause 270kB of over-
head.

2. no CBR, but almost all frames smaller than 255 bytes: XIPH
lacing
In this case, XIPH lacing (see section 6.2.1) is used, meaning that the over-
head of a BlockGroup is equal to normal BlockGroup overhead + frame_count,
meaning that the overhead per frame is about (11+frame_count)/frame_count,
if there are frame_count frames in each lace. Again, if the BlockGroups are
larger than 16kBytes, then the overhead is (13+frame_count)/frame_count.
In other words, the ratio in bytes / frame will always be between about
1,2 and 2,5 for audio streams with mainly small frames.

Although XIPH lacing is also defined for larger frames, EBML lacing is usu-

29

ally more effective then.

3. otherwise: EBML lacing Assuming that the difference in size between
2 consecutive frames is smaller than 8191, 1 or 2 bytes are needed to code
the size of each frame, additionally to the normal BlockGroup overhead.

As a result, we get 3 possible estimations:

a) worst case That means, a lace with frame_count frames using EBML
lacing will cause not more than ((11 or 13)+2*frame_count)/frame_count
bytes of overhead per frame.

Example 1: 16 frames per lace, BlockGroup > 16kB, worst case:
overhead <= (13 + 2*16)/16 = 2,8 bytes / frame.
Example 2: 8 frames per lace, BlockGroup < 16kB, worst case:
overhead <= (11 + 2*8)/8 = 3,4 bytes / frame.

b) best case The best case is obviously that 2 consecutive frames differ by
not more than 62 bytes. In that case, one byte is needed to code the size of
one frame. However, the first frame might need to bytes, if it is larger than
126 bytes.

Example 1: 16 frames per lace, BlockGroup > 16kB, best case:
overhead <= (13 + 1*16)/16 = 1,8 bytes / frame.
Example 2: 8 frames per lace, BlockGroup < 16kB, best case:
overhead <= (11 + 1*8)/8 = 2,4 bytes / frame.

c) average case This is the case you need for optimal overhead predic-
tion. Unfortunately, the average case depends on the compression format of
the corresponding audio track, its bitrate, maybe even the encoder that has
been used. The easiest way to gather data on the average case of EBML lace
header overhead is to simulate the lace results of different files that are likely
to be used. Candidates are MPEG 1/2/4 audio and Vorbis, but not AC3 or
DTS.
I have run a simulation with the following file types:
MPEG 1 Layer 3 (128 and 192 kbps, 48 kHz), HE-AAC (224 kbps and 96
kbps, 44,1 kHz), LC-AAC (268 kbps, 44,1 kHz)

The results obtained from those files are discussed on the following pages.
The lace behaviour simulation has been run using mls (short for ’matroska
lace simulator’), which can be found on

30

www-user.tu-chemnitz.de/~noe/Video-Zeug

Note that it would be required to run the simulation and to evaluate the
results as follows for each audio format, in each bitrate, maybe even with
each encoder, for which results as accurate as possible shall be predicted.

The results for the lace header size are as follows:

Lace header overhead per frame @ <x> Frames per lace
4 8 12 16 24 32 48 64 96

Audio format ---
MP3 @128 1,39 1,29 1,26 1,24 1,22 1,22 1,21 1,20 1,20
MP3 @192 1,50 1,41 1,38 1,37 1,36 1,35 1,34 1,34 1,33
HE-AAC@224 1,39 1,29 1,25 1,24 1,22 1,21 1,20 1,20 1,20
HE-AAC@ 64 1,34 1,23 1,19 1,18 1,16 1,15 1,14 1,14 1,13
LC-AAC@268 1,31 1,19 1,16 1,14 1,12 1,11 1,10 1,09 1,09

Applications using libmatroska for Matroska file creation are using 8 frames
per lace. As a consequence, the overhead for a track using EBML lacing can
be predicted to an acceptable accuracy if the audio format is known.
As you can also see, larger laces hardly affect the overhead caused by the
lace headers of Blocks from a certain size on.

However, larger laces mean less Blocks and thus less BlockGroups, so the
total overhead per frame, including the overhead caused by overhead outside
of the Blocks, is worth a look. Here are the results with the same test files
as above

Overhead per frame @ <x> Frames per lace
4 8 12 16 24 32 48 64 96

Audio format ---
MP3 @128 4,14 2,67 2,17 1,93 1,68 1,56 1,48 1,41 1,33
MP3 @192 4,25 2,79 2,30 2,06 1,81 1,75 1,61 1,54 1,47
HE-AAC@224 4,14 2,66 2,23 2,05 1,76 1,62 1,48 1,40 1,33
HE-AAC@ 64 4,09 2,61 2,11 1,86 1,62 1,49 1,40 1,34 1,27
LC-AAC@268 4,06 2,57 2,07 1,82 1,66 1,51 1,37 1,30 1,22

Now lets take the 2nd table and find out how much overhead that means in
a real movie of 2 hours.
In the case of the mp3 files used in that example, one frame lasts 24ms. In
the case of our LC-AAC file, one frame lasts 23,22 ms, and for the HE-AAC

31

file we get 46,44ms.
Thus a file of 2 hours will have the following number of frames:
MP3 - 300,000
LC-AAC - 310,000
HE-AAC - 155,000.

First, lets use the default setting of libmatroska (8 frames per lace) and
calculate the overhead a muxing app using libmatroska would cause when
muxing those files into a movie:

• MP3 @ 128: overhead = 300,000 * 2,67 = 801,000 bytes

• MP3 @ 192: overhead = 300,000 * 2,79 = 837,000 bytes

• HE-AAC @ 224: overhead = 155,000 * 2,66 = 412,300 bytes

• LC-AAC @ 268: overhead = 310,000 * 2,57 = 796,700 bytes

With 24 frames per lace, an MP3 block would have a duration of 576ms,
an HE-AAC block even about 1 second. That means, when seeking in a
file, an awkward impression of the audio being missing for a moment could
occur. Thus, larger laces than 1 second are highly discouraged. Netherthe-
less, let’s analyze the overhead in our file for laces of 24 and 96 frames each,
and compare the overhead to the one caused by libmatroska. Here is the
corresponding table:

Frames per lace
8 24 96

Audio format -----------------------------
MP3 @128 782kB 492kB 389kB
MP3 @192 817kB 530kB 430kB
HE-AAC@224 402kB 266kB 201kB
HE-AAC@ 64 395kB 245kB 192kB
LC-AAC@268 778kB 502kB 369kB

As you can see, putting 24 frames in one block, compared to 8 frames, saves
some overhead. However, putting 96 frames in one Block instead of 24 saves
less overhead than 24 compared to 8. As 96 frames per lace will usually
cause uncomfortable seeking, it is recommended not to put more than about
24 frames in one Block.

32

7.2 Overhead of Clusters

Although most of the overhead is caused by BlockGroups, the amount of
overhead caused by Clusters themselves is noticeable as well.

Here again the basic layout of a Cluster:

Cluster <size>
[CRC32]
TimeCode <size> <timecode>
[PrevClusterSize <size> <prevsize>]
[Position <size> <position>]
{ BlockGroup }

First, some conventions:

• each Cluster has a size between 16kB and 2MB

• each Cluster may begin between 16MB and 4GB

As typical movie files are designed to fit on 1 or 2 CDs, or 2 or 3 of them fill
one DVD, point 2 will be true for most of the clusters in typical files.

With the abovementioned restrictions on Clusters, the overhead inside one
Cluster will be:

• Cluster ID + <size>: 7 bytes

• CRC32: 6 bytes

• Timecode: 5 bytes

• PrevClusterSize: 5 bytes

• Position: 5 bytes

• Seekhead entry for Cluster: 17 bytes

Depending on the muxing settings, the overhead caused by one Cluster will
be between 12 and 45 bytes.

Example: Assuming a size of 1 MB per Cluster, that means an overhead
rate of 0,001% - 0,005%, or up to 100 kB in a file of 2GB.

33

7.3 Overhead caused by Cues

Here again the layout of a CuePoint:

CuePoint <size>
CueTime <size> <time>
{ CueTrackPosition <size>

CueClusterPosition <size> <position>
CueTrack <size> <track>
[CueBlockNumber <size> <block number>]

}

Assuming that a CuePoint only points into one certain track, the overhead
is:

• CuePoint: 2 bytes

• CueTime: 5 bytes

• CueTrackPosition: 2 bytes

• CueClusterPosition: 6 bytes

• CueTrack: 3 bytes

• CueBlockNumber: 4 bytes

Total: 22 bytes.

Example:Assuming that there is a CuePoint each 4 seconds (1 keyframe in
100 frames), this adds on overhead of 0,22 bytes / frame

There can also be CuePoints for audio tracks. In that case, as every frame
will be a keyframe, the number of CuePoints only depends on the muxing
application. Predicting the overhead requires to know its behaviour.

34

8 Questions, Comments, Contact, Links

8.1 Links

Matroska pages:

http://www.matroska.org

8.2 Questions, Comments, Contact

If you have any questions concerning this document, if you have comments,
additions, if you have found an error, or if you want to contact me for what-
ever reason, send a mail (include ’matroska’ in the topic!) to

noe@hrz.tu-chemnitz.de

in german, english or french.

35

