
Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing issue
Introduction to HDF5 and XDMF

Matthieu Haefele

High Level Support Team

Max-Planck-Institut für Plasmaphysik, München, Germany

Lyon, 13 Janvier 2011

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Outline

1 Introduction and Prerequisites
Post-processing
Hardware → Operating System
Operating System → Application

2 HDF5 library
Concepts and API
Examples

3 XDMF language
Concepts
Examples

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

Post-processing definition

Post-processing is a treatment of numerical data that
comes from either experiment measurements or numerical
simulation.

Signal processing (noise reduction, measures
correction. . .)

Diagnostics computing (features extraction)

Visualization

. . .

Anything that can improve the understanding of the data

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

Identify technological requirements, constraints and
choices

How much can the data source be modified ?
What are the hardware requirements/constraints/choices:

CPU
Memory
Network
Storage capacity
Storage system bandwidth

What are the software requirements/constraints/choices:
Operating systems
Grid middleware
I/O library
Programing language

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

Post-processing general rules

It involves read/write accesses from/to a storage system
These Input/Output (I/O) accesses generally represent a
large part of the post-processing

Execution time: bottleneck is often the storage system
bandwidth
Development/maintenance time: file format design and
implementation

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

Hardware/Software stack

I/O library

Standard library

High level I/O

library

Data structures

Hard drive

File system

Operating system

Application

System

Hardware

From the application level

One file ⇔ one sequence
of bytes

These bytes flow through
the operating system layer

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

Data storage device

A data storage device is a device for recording (storing)
information (data). In the context of computer science:

A set of Bytes

Organized as a 1D sequence

Grouped by sectors (512 B, 1, 2, 4 KB)

The sequence is cut into partitions

Partitions can be cut into logical drives

Logical drive 1 Logical drive 2 Logical drive 3

Partition 1 Partition 2Data storage device

Sector

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

File system

A file system is a method of storing and organizing
computer files and their data.

Meta-data

Sectors are gathered in blocks or sectors (1-64)

The block is the smallest amount of disk space that can be
allocated to hold a file.

Logical drive

Sector

Block

Meta-data

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

File (ext3)

A file is an inode in the file system. The inodes are stored in
the file system meta-data and contain:

File size

Owner and Access rights

Timestamps

Link counts

Pointers to the disk blocks that store the file’s contents

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

inode pointer structure (ext3)

inode
Direct blocks

Indirect blocks

Double Indirect blocks

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

Kernel calls

I/O are performed through 3 functions:
o f f t lseek (i n t f i l d e s , o f f t o f f s e t , i n t whence) ;
s s i z e t read (i n t fd , void ∗buf , s i z e t count) ;
s s i z e t w r i t e (i n t fd , const void ∗buf , s i z e t count) ;

Additional functions to manipulate the file system:

readdir, mkdir, . . . : Manipulating directories

link, symlink, unlink, . . . : Manipulating links

open, dup, close, . . . : Manipulating files

fcntl, flock, stat, . . . : Manipulating files cont.

. . .

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

Standard library

I/O are performed through 5 functions:
i n t fseek (FILE ∗stream , long o f f s e t , i n t whence) ;
s i z e t f read (void ∗pt r , s i z e t s ize , s i z e t nmemb, FILE ∗stream) ;
s i z e t f w r i t e (const void ∗pt r , s i z e t s ize , s i z e t nmemb, \

FILE ∗stream) ;
i n t f scan f (FILE ∗stream , const char ∗ format , . . .) ;
i n t f p r i n t f (FILE ∗stream , const char ∗ format , . . .) ;

Additional functions to manipulate the file system:

opendir, . . . : Manipulating directories

fopen, fdup, fclose, . . . : Manipulating files

. . .

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

Two main representations of floating point numbers

ASCII representation : array of characters

One byte per digit

Minus, plus sign, comma, e signs and carriage return take
also 1 byte each

IEEE 754 representation : m × 2e

m: significand or mantissa

e: exponent

Type Sign Exponent Significand Total bits
Half 1 5 10 16
Single 1 8 23 32
Double 1 11 52 64
Quad 1 15 112 128

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

ASCII I/O

i n t f scan f (FILE ∗stream , const char ∗ format , . . .) ;
i n t f p r i n t f (FILE ∗stream , const char ∗ format , . . .) ;

Read: Disk content is turned into the memory number
representation and dumped in memory
Write: Memory content is turned into an array of characters
and dumped on disk

Non optimal performance
CPU involved in the translation
Several calls are needed to read/write the whole data

Storage overhead: each stored character takes a Byte of
memory

Machine independent

Human readable files

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

Binary I/O

s i z e t f read (void ∗pt r , s i z e t s ize , s i z e t nmemb, FILE ∗stream) ;
s i z e t f w r i t e (const void ∗pt r , s i z e t s ize , s i z e t nmemb, \

FILE ∗stream) ;

Read: Memory content is dumped on disk
Write: Disk content is dumped into memory

Most efficient method (no CPU, 1 single call if contiguous
data)

No storage overhead
Can be machine dependent

Floating point data are now normalized by IEEE
Only endianness portability issues remain

Non human readable files

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Post-processing
Hardware → Operating System
Operating System → Application

C order versus Fortran order

/* C language */

#define NX 4

#define NY 3

int x,y;

int f[NY][NX];

for (y=0;y<NY;y++)

 for (x=0;x<NX;x++)

 f[y][x] = x+y;

! Fortran language

integer, parameter :: NX=4

integer, parameter :: NY=3

integer :: x,y

integer, dimension(NX,NY) :: f

do y=1,NY

 do x=1,NX

 f(x,y) = (x-1) + (y-1)

 enddo

enddo

0 1 2 3 1 2 3 4 2 3 4 5

The memory mapping is identical, the language semantic is
different !!

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts and API
Examples

Hardware/Software stack

I/O library

Standard library

High level I/O

library

Data structures

Hard drive

File system

Operating system

Application

System

Hardware

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts and API
Examples

I/O libraries

The purpose of I/O libraries is to provide:

Efficient I/O

Portable binary files

Higher level of abstraction for the developer

Two main existing libraries:

Hierarchical Data Format: HDF5

Network Common Data Form: NetCDF

HDF5 is becoming a standard and parallel NetCDF is built on
top of parallel HDF5

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts and API
Examples

HDF5 library

An HDF5 file consists of:

HDF5 group: a grouping structure containing instances of
zero or more groups or datasets

HDF5 dataset: a multidimensional array of data elements

An HDF5 dataset is a multidimensional array and consists
of:

Name

Datatype (Atomic, NATIVE, Compound)

Dataspace (rank, sizes, max sizes)

Storage layout (contiguous, compact, chunked)

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts and API
Examples

HDF5 library API

H5F: File-level access routines

H5G: Group functions, for creating and operating on
groups of objects

H5S: Dataspace functions, which create and manipulate
the dataspace in which the elements of a data array are
stored

H5D: Dataset functions, which manipulate the data within
datasets and determine how the data is to be stored in the
file

. . .

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts and API
Examples

HDF5 High Level APIs

HDF5 Lite API (H5LT): Enables to write simple dataset in
one call

HDF5 Image API (H5IM): Enables to write images in one
call

HDF5 Table API (H5TB): Hides the compound types
needed for writing tables

. . .

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts and API
Examples

HDF5 Tools

h5ls: List the groups and dataset of a file

h5dump: Dump the content of an HDF5 file on the
standard output

h5diff: Compare two hdf5 files

hdfview: Spreadsheet representation of a HDF5 file

. . .

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts and API
Examples

HDF5 first example

#define NX 5
#define NY 6
#define RANK 2

i n t main (void)
{

h i d t f i l e , dataset , dataspace ;
h s i z e t d imsf [2] ;
h e r r t s ta tus ;
i n t data [NX] [NY] ;

i n i t (data) ;
f i l e = H5Fcreate (” example . h5 ” , H5F ACC TRUNC, H5P DEFAULT,\

H5P DEFAULT) ;
d imsf [0] = NX;
dimsf [1] = NY;

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts and API
Examples

HDF5 first example cont.

dataspace = H5Screate simple (RANK, dimsf , NULL) ;

da tase t = H5Dcreate (f i l e , ” I n t A r r a y ” , H5T NATIVE INT , \
dataspace , H5P DEFAULT) ;

s ta tus = H5Dwrite (dataset , H5T NATIVE INT , H5S ALL , \
H5S ALL ,H5P DEFAULT, data) ;

H5Sclose (dataspace) ;
H5Dclose (da tase t) ;
H5Fclose (f i l e) ;

return 0;
}

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts and API
Examples

HDF5 high level example cont.

s ta tus = H5LTmake dataset int (f i l e , ” I n t A r r a y ” , RANK, dimsf , data) ;

H5Fclose (f i l e) ;

return 0;
}

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts and API
Examples

HDF5 conclusion

HDF5 is not a format. It is an I/O library which:

Provides efficient I/O

Creates portable binary files

Gives the developer an interface to manipulate groups and
datasets rather than binary streams

Allows one to define his own format

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts
Examples

High level I/O libraries

The purpose of high level I/O libraries is to provide the
developer a higher level of abstraction to manipulate
computational modeling objects

Meshes of various complexity (rectilinear, curvilinear,
unstructured. . .)

Discretized functions on such meshes

Materials

. . .

Until now, these libraries are mainly used in the context of
visualization

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts
Examples

Existing libraries

Silo
Wide range of objects
Built on top of HDF5
“Native” format for VisIt

Exodus
Focused on unstructured meshes and finite element
representations
Built on top of NetCDF

Famous/intensively used codes’ output format

eXtensible Data Model and Format (XDMF)

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts
Examples

XDMF

XDMF is an XML language that allows one to describe complex
computational modeling objects from a set of datasets

An XDMF representation consists of:

Light data : An XML file containing XDMF language
statements and references to datasets contained in the
heavy data

Heavy data : A set of binary or HDF5 files

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts
Examples

A flexible design

1 Existing data can be easily brought into the framework
⇒ XML file written by hand

2 Existing I/O procedures can be kept untouched
⇒ XML file written in addition within the procedure

3 I/O procedures are modified to write data through XDMF
API
⇒ Both heavy and light data written by the XDMF
library

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts
Examples

XDMF first example

<?xml version="1.0" ?>

<!DOCTYPE Xdmf SYSTEM "Xdmf.dtd">

<Xdmf Version="2.0">

 <Domain>

 <Grid Name="Structured mesh" GridType="Uniform">

 <Topology TopologyType="2DRectMesh" Dimensions="3 4"/>

 <Geometry GeometryType="VXVYVZ">

 <DataItem Format="XML" Dimensions="3" NumberType="Float" Precision="4">

 0.0 0.5 1.0

 </DataItem>

 <DataItem Format="XML" Dimensions="4" NumberType="Float" Precision="4">

 0.0 1.0 2.0 3.0

 </DataItem>

 </Geometry>

 <Attribute Name="Node Centered Values" Center="Node">

 <DataItem Format="HDF" Dimensions="12" NumberType="Int">

 basic_topology2d.h5:/values

 </DataItem>

 </Attribute>

 </Grid>

 </Domain>

</Xdmf>

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

Introduction and Prerequisites
HDF5 library

XDMF language

Concepts
Examples

Conclusion

Four levels of interfaces to perform I/O:

High level I/O libraries

I/O libraries

Standard library

Kernel call

I/O and high level I/O libraries

need to be mastered

introduce a software dependency, so portability and
durability issues

provide higher level API, so less code and more
maintainable code

Performance is another story. . .

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5 and XDMF

	Introduction and Prerequisites
	Post-processing
	Hardware Operating System
	Operating System Application

	HDF5 library
	Concepts and API
	Examples

	XDMF language
	Concepts
	Examples

