
In-situ Visualization

Dr. Jean M. Favre

Scientific Computing Research Group

13-01-2011

Outline

 Motivations

 How is parallel visualization done today

– Visualization pipelines

– Execution paradigms

– Many grids or subsets on few processors

 A 2D solver with parallel partitioning and “patterns”

 In-situ visualization

– Enable visualization in a running simulation

– Source code instrumentation

– Specify ghost-cells

Context

In-situ visualization is one action item

in our HP2C efforts

The HP2C platform aims at developing applications

to run at scale and make efficient use of the next

generation of supercomputers. Presently this will be

the generation of computing technologies available

in 2013 timeframe.

http://www.hp2c.ch/

Motivations

 Parallel simulations are now ubiquitous

 The mesh size and number of time steps are of

unprecedented size

 The traditional post-processing model “compute-

store-analyze” does not scale because I/O to disks

is the slowest component

Consequences:

 Datasets are often under-sampled on disks

 Many time steps are never archived

 It takes a supercomputer to re-load and visualize

supercomputer data

“Visualization at Supercomputing Centers”, IEEE CG&A Jan/Feb 2011

As we move from petascale to exascale…., favor the use of

the supercomputer instead of a vis. cluster”

• Memory must be proportional to size and is $$$$$

• Aggregate flops instead of a parasitic expense

• Close coupling

• I/O

But,

• Little memory

 per core

Solving a PDE and visualizing the execution

Full source code solution is given here:

 http://portal.nersc.gov/svn/visit/trunk/src/tools/Data

ManualExamples/Simulations/contrib/pjacobi/

A PDE with fixed boundary conditions

Update grid with solver

Fixed boundary conditions

Laplace equation: Δu = 0

sin(Πx)

sin(Πx). sin(-Π)

0 0

2D grid partitioning and I/O pattern

(mp+2) grid lines to read

(mp+2) grid lines to read

(mp+2) grid lines to read

(mp+2) grid lines to read

BC init, or restart

grid partitioning & I/O pattern

(mp+1) grid lines to write

(mp) grid lines to write

(mp) grid lines to write

(mp+1) grid lines to write

Check-pointing and solution dump

grid partitioning & communication pattern

Overlap Send and Receive

Proc. 0 does not receive from “below”

Proc. (N-1) does not send “above”

grid partitioning & in situ graphics

(mp+1) lines to send

(mp+1) lines to send

(mp+1) lines to send

(mp+2) lines to send

Visitrectmeshsetrealindices(h, minRealIndex, maxRealIndex)

Use ghost-nodes to prevent overlapps

Strategies for load balancing (static)

A checkerboard pattern

seem like it would give a

good compromise, but

the communication

pattern is more complex

to program

Grid splitting strategies

will also affect:

• boundary conditions

• I/O patterns

• in-situ ghost regions

Parallel visualization pipelines

• Data parallelism everywhere

• Data I/O

• Processing

• Rendering

• The Source will distribute data

partitions to multiple execution

engines

 Rendering

1 2 N … …

Data Filters

Mappers

Data Source

Arbitrary (or adaptive) 3-D data partitioning

Is the final image order-independent?

A sort-last compositing (valid for opaque geometry)

enables complete freedom in data partitioning

Example of the use of ghost-cells

Ghost- or halo-cells

are owned by

processor P, but reside

in the region covered

by processor P+k

(k is an offset in the

MPI grid)

Their purpose is to

guarantee data

continuity

Example of the use of ghost-cells

Ghost- or halo-cells are

usually not saved in solution

files because the overhead

can be quite high.

A restart usually involves

reading the “normal” grid,

and communicate (initialize)

ghost-cells before

proceeding.

in-situ (parallel) visualization

Could I instrument parallel simulations to communicate

to a subsidiary visualization application/driver?

 Eliminate I/O to and from disks

 Use all my grid data with ghost-cells

 Have access to all time steps, all variables

 Use my parallel compute nodes

 Don’t invest into building a GUI, a new visualization

package, or a parallel I/O module

Two complementary approaches

 Parallel Data transfer to Distributed Shared Memory

– Computation and Post-processing physically separated

– developed at CSCS, publicly available on HPCforge

or,

– Use ADIOS (not described here, google “ADIOS NCCS”)

 Co-processing or in-situ

– Computation and Visualization on the same nodes

– A ParaView project

– A VisIt project

• See short article at EPFL

• Tutorial at PRACE Winter School

• Tutorial proposed at ISC’11

18

http://ditwww.epfl.ch/SIC/SA/SPIP/Publications/IMG/pdf/10-10-page8.pdf

First approach:

Parallel Data transfer to Distributed Shared Memory

 Live post-processing and steering:

– Get analysis results whilst the simulation is still running

– Re-use generated data for further analysis/compute

operations

 Main objectives:

– Minimize modification of existing simulation codes

HDF5 – Virtual File Drivers

 HDF5 (Hierarchical Data Format):

– Widely known data format

 HDF5 based on a Virtual File Drivers (VFD)

architecture:

– Modular low-level structure called “drivers” (H5FDxxx)

– Mapping between HDF5 format address space and storage

 HDF5 already provides users with different file

“drivers” (e.g. MPI-IO driver)

HDF5 – Virtual File Drivers

 The CSCS driver: H5FDdsm

– Data sent into HDF5 is then automatically redirected to this driver

– Based on the Distributed Shared Memory (DSM) concept

…

Addresses divided
among N processes

Free space

Used space

local length 𝟐 × local length 𝑵 − 𝟏 × (local length) 𝟎 𝑵 × (local length)

H5Pset_fapl_dsm(fapl_id, MPI_COMM_WORLD, NULL);

H5FDdsm – Modular communication

 Inter-communicator: MPI/socket/(something else) ;

 Intra-communicator: always MPI

 Main operating mode:

– DSM allocated on the post-processing nodes

 Computation writes using remote put

N-1

…

1

0

N computation

PE

M-1

…

1

0

M post-processing

PE

Inter-communicator

Intra-communicator

Write test with a 20GB DSM

 distributed among 8 post-processing nodes the XT5

0

2

4

6

8

10

12

16 32 64 128 256 512

D
at

a
w

ri
te

 r
at

e
 (

G
B

/s
)

Number of PE used for writing to the DSM

Parallel File System (Lustre)

H5FDdsm (Socket over SeaStar2+
Interconnect)

Saturation of the network

The DSM interface within ParaView

 Pause, Play, Switch to disk implemented within the driver

– No additional calls necessary

 Select datasets to be sent on the fly

 Restart simulation from HDF file stored in the DSM

 Modify parameters/arrays/etc – share datasets back to the

simulation

ParaView

client

MPI or sockets

Cluster 0

Simulation

processes

N-1

…

0

Cluster 1

ParaView

servers

M-1

…

0

Fast switch
(Infiniband)

Advantages

 Parallel real-time post-processing of the simulation

 Easy to use if application uses HDF5 already

 Do not need to have a big amount of memory on

compute nodes since everything is sent to a remote DSM

 Not all post-processing apps scale as well as the

simulation

– Run PV on fat nodes and simulation on a very large number of

nodes

Second Method: VisIt

Desktop Machine Parallel Supercomputer

node220

node221

node222

node223

simulation

code VisIt

library
VisIt GUI

and Viewer

simulation

code

simulation

code

simulation

code

commands

images

M
P

I
M

P
I

M
P

I

VisIt

library

VisIt

library

VisIt

library

Link simulation with

visualization library and drive it

from a GUI

Use VisIt https://wci.llnl.gov/codes/visit

Users select simulations to

open as if they were files

The Simulation’s

window shows

meta-data about

the running code

Control commands

exposed by the code

are available here

All of VisIt’s existing

functionality is accessible

VisIt’s plotting is called from the simulation

Desktop Machine Parallel Supercomputer

node220

node221

node222

node223

simulation

code VisIt

library
VisIt GUI

and Viewer

simulation

code

simulation

code

simulation

code

commands

images

M
P

I
M

P
I

M
P

I

VisIt

library

VisIt

library

VisIt

library

No pre-defined visualization

scenario needs to be defined

L
in

u
x
 d

e
s
k
to

p
 m

a
c
h
in

e

SimCode0

SimCode1

SimCode2

SimCode3

B
P

M

lo
g
in

 n
o
d
e

b
p
m

2
1

b
p
m

2
2

b
p
m

2
3

b
p
m

2
0

BPM Home

Directory

PSUB/SRUN

data

data

data

data

Launch Simulation on Big Parallel Machine

Remote VisIt task connects to Simulation
L
in

u
x
 d

e
s
k
to

p
 m

a
c
h
in

e

SimCode0

SimCode1

SimCode2

SimCode3

B
P

M

lo
g
in

 n
o
d
e

b
p
m

2
1

b
p
m

2
2

b
p
m

2
3

b
p
m

2
0

BPM Home

Directory

~/.visit/simulations

jet00 bpm33 6666 May1

jet01 bpm20 2345 May1

VisIt GUI

and Viewer

listening

data

data

data

data

VisIt Launcher

Simulation becomes engine,

connects to Viewer
L
in

u
x
 d

e
s
k
to

p
 m

a
c
h
in

e

SimCode0

SimCode1

SimCode2

SimCode3

VisIt Engine

VisIt Engine

VisIt Engine

VisIt Engine

B
P

M

lo
g
in

 n
o
d
e

b
p
m

2
1

b
p
m

2
2

b
p
m

2
3

b
p
m

2
0

BPM Home

Directory

~/.visit/simulations

jet00 bpm33 6666 May1

jet01 bpm20 2345 May1

VisIt GUI

and Viewer

listening

data

data

data

data

VisIt Launcher

VisIt requests pull Data from Simulation
L
in

u
x
 d

e
s
k
to

p
 m

a
c
h
in

e

SimCode0

SimCode1

SimCode2

SimCode3

B
P

M

lo
g
in

 n
o
d
e

b
p
m

2
1

b
p
m

2
2

b
p
m

2
3

b
p
m

2
0

BPM Home

Directory

~/.visit/simulations

jet00 bpm33 6666 May1

jet01 bpm20 2345 May1

VisIt Engine

VisIt Engine

VisIt Engine

VisIt Engine

VisIt GUI

and Viewer
data

data

data

data

data interface

data interface

data interface

data interface

listening

VisIt Launcher

Some details on the APIs

 The C and Fortran interfaces for using SimV2 are

identical, apart from calling different function names

 The VisIt Simulation API has just a few functions

– set up the environment

– open a socket and start listening

– process a VisIt command

– set the control callback routines

 The VisIt Data API has just a few callbacks

– GetMetaData()

– GetMesh()

– GetScalar(), etc

Main program

int main(int argc, char **argv)

{

 SimulationArguments(argc, argv);

 read_input_deck();

 mainloop();

 return 0;

}

Main program is augmented

int main(int argc, char **argv)

{

 SimulationArguments(argc, argv);

 VisItSetupEnvironment();

 VisItInitializeSocketAndDumpSimFile();

 read_input_deck();

 mainloop();

 return 0;

}

Example with our

Shallow Water

Simulation code:

Additions to driver

program:

15 lines of F95 code

mainloop() will be augmented

void mainloop(simulation_data *sim)

{

 int blocking, visitstate, err = 0;

 do

 {

 simulate_one_timestep(sim);

 } while(!sim->done && err == 0);

}

Flow diagram

 detect

 input ?

exec. one

iteration

exec. visualization

command

visualization

tries to connect

Simulation main loop is augmented

void mainloop(simulation_data *sim)

{

 int blocking, visitstate, err = 0;

 do

 {

 blocking = (sim->runMode == SIM_RUNNING) ? 0 : 1;

 visitstate = VisItDetectInput (blocking, -1);

 if(visitstate == 0) {

 simulate_one_timestep(sim);

 }

Example with our

Shallow Water

Simulation code:

Additions to

simulation loop:

53 lines of F95 code

Two entry points to the execution

 detect

 input ?

exec. one

iteration

exec. visualization

command

visualization

tries to connect

on-demand

execution from

the GUI

Callbacks are added to advertize the data

visitcommandcallback()

visitgetmetadata ()

 Mesh name

 Mesh type

 Topological and spatial dimensions

 Units, labels

 Variable names and location (cell-based, node-based)

 Variable size (scalar, vector, tensor)

 Commands which will be understood (next(), halt(), run(), …)

visitsimgetmesh()

Example with our

Shallow Water

Simulation code:

New file to link with

the rest of simulation

code:

432 lines of F77 code

Get_Mesh() & GetVariable() must be created

integer function visitgetmesh(domain, name, lname)

parameter (NX = 512)

parameter (NY = 512)

real rmx(NX), rmy(NY)

allocate data handles for the coordinates and advertize them

F90 example:

 visitrectmeshsetcoords(h, x, y)

How much impact in the source code?

The best suited simulations are those allocating large

(contiguous) memory arrays to store mesh connectivity,

and variables

Memory pointers are used, and the simulation (or the

visualization) can be assigned the responsibility to de-

allocate the memory when done.

F90 example:

allocate (v(0:m+1,0:mp+1))

visitvardatasetd(h, VISIT_OWNER_SIM, 1, (m+2)*(mp+2), v)

How much impact in the source code?

The least suited are those pushing the Object Oriented

philosophy to a maximum.

Example: Finite Element code handling a triangular mesh:

 TYPE Element

 REAL(r8) :: x(3)

 REAL(r8) :: y(3)

 REAL(r8) :: h

 REAL(r8) :: u

 REAL(r8) :: zb(3)

END TYPE Element

How much impact in the source code?

When data points are spread across many objects, there

must be a new memory allocation and a gathering done

before passing the data to the Vis Engine

REAL, DIMENSION(:), ALLOCATABLE :: cx

ALLOCATE(cx(numNodes) , stat=ierr)

DO iElem = 1, numElems+numHalos

 DO i = 1, 3

 cx(ElementList(iElem)%lclNodeIDs(i)) = ElementList(iElem)%x(i)

 END DO

END DO

err = visitvardatasetf(x, VISIT_OWNER_COPY, 1, numNodes, cx)

VisIt can control the running simulation

 Connect and disconnect at any time while the

simulation is running

 We program some buttons to react to the user’s

input:

 “Halt”, “Step”, “Run”, “Update”, “others…”

Ex: Domain distributed over MPI tasks

Dimensions = 1080x720x360

10 variable arrays (double)

MPI Partition = 12x6

Data per MPI task: 360 Mbytes

Application linked with (resp.

without) the libsim library = 977

Kb (resp. 850 Kb)

At runtime, one extra lib is

loaded (306 Kb)

Domain distributed over multiple MPI tasks

If graphics is very heavy, it is

done remotely (by the

simulation), and sent over to

the client as a pixmap.

If light, geometry is sent to

client for local rendering

The in-situ library provides many features

 Access to scalar, vector, tensor arrays, and label

 CSG meshes

 AMR meshes

 Polyhedra

 Material species

 Ability to save images directly from the simulation

 Interleaved XY, XYZ coordinate arrays

Advantages compared to saving files

 The greatest bottleneck (disk I/O) is eliminated

 Not restricted by limitations of any file format

 No need to reconstruct ghost-cells from archived data

 All time steps are potentially accessible

 All problem variables can be visualized

 Internal data arrays can be exposed or used

 Step-by-step execution will help you debug your code and

your communication patterns

 The simulation can watch for a particular event and trigger

the update of the VisIt plots

In the past, we focused on raw data => images

4000 time-steps with fluid-

structure interaction

 <DataArray type="UInt8" Name="types"

format="appended" RangeMin=""

RangeMax="" offset="5948" />

 </Cells>

 </Piece>

 </UnstructuredGrid>

 <AppendedData encoding="base64">

_AQAAPAAAAFwAAAA==eJwVzzEoRHE

Ax/H/YDAYbjAYDDcYDIYbDAbluQwGww

0Gg+EGg8Fwg8FgeEm6JF2SLkkvSZekS

9J1SS9Jl6RL0iXpjUaj0Uf9PvOvbwgfxRA+

+SIjngohREZMQkpGmA4hR54CESXKVIip

UqNOQoMmLVI6dOmR8c0PvwT/ffQzQI5

BhhgmzwijjFFgnAkmiZhhljlKzLPAImWWW

GaFCqussf7fzgabbFFlmx12qbHHPgfUOe

SIYxJOOOWMBudccEmTK665oUWbW+5

IueeBRzo88cwLXV55451e8Q8G5lcqAQA

AAACAAABABQAAgQIAAA

We are now adding a new interaction paradigm

Solve Next
Step

Check for
convergence or

end-of-loop

Serve a
Visualization

Request?

mega-,

giga-,

peta-,

exa-scale

simulations

can now be

coupled with

visualization

now focus on source code => live images

REAL, DIMENSION(:), ALLOCATABLE :: cx

ALLOCATE(cx(numNodes) , stat=ierr)

DO iElem = 1, numElems+numHalos

 DO i = 1, 3

 cx(ElementList(iElem)%lclNodeIDs(i))

= ElementList(iElem)%x(i)

 END DO

END DO

err = visitvardatasetf(x,

VISIT_OWNER_COPY, 1, numNodes, cx)

We need a new data analysis infrastrcuture

 Domain decomposition optimized for simulation

is often unsuitable for parallel visualization

 To optimize memory usage, we must share the

same data structures between simulation code

and visualization code to avoid data replication

 Create a new vis infrastructure, develop in-situ

data encoding algorithms, indexing methods,

incremental 4D feature extraction and tracking

 Petascale visualization tools may soon need to

exploit new parallel paradigms in hardware, such

as multiple cores, multiple GPUs, cell

processors…

Conclusion

Parallel visualization is a mature technology, but was

optimized as a stand-alone process. It can run like a

supercomputer simulation, but is also limited by I/O.

In-situ visualization is an attractive strategy to mitigate this

problem, but will require an even stronger collaboration

between the application scientists and the visualization

scientist, and the development of a new family of

visualization algorithms

Demonstrations

