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T. Lelièvre (CERMICS) Greedy algorithms SMAI, 29th May 2013 1 / 51



Plan

1 Motivation and the algorithm

2 Cross norms

3 The linear case

4 The nonlinear case

5 Implementation of the algorithm

6 Non-symmetric problems
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Motivation

High dimensional PDEs are ubiquitous: kinetic models, molecular
dynamics, quantum mechanics, uncertainty quantification (UQ) using
polynomial chaos expansions, finance, etc.

In the context of the estimation of parameters in PDEs, the
high-dimensionality comes from the number of parameters. Typical
example: ∀t ∈ T ,

{
− divx(a(t, x)∇xu(t, x)) = f (t, x) ∀x ∈ X ,

u(t, x) = 0 ∀x ∈ ∂X .

Any optimization loop will require to solve the PDE for many values of the
parameter t. This is why a reduced model may be useful.
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Motivation

The bottom line of deterministic approaches is to represent solutions as
linear combinations of tensor products of small-dimensional functions
(parallelepipedic domains):

u(x1, . . . , xN) =
∑

k≥1

r1k (x1)r
2
k (x2) . . . r

N
k (xN)

=
∑

k≥1

(
r1k ⊗ r2k . . .⊗ rNk

)
(x1, x2, . . . , xN).

If the number of terms in the expansion remains small (this is not the case
for full tensor product expansion), this enables to approximate
high-dimensional functions.
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Motivation

How to use such a representation to solve a PDE ?

One approach consists in using the so-called sparse tensor product
representation (Griebel, Smolyak, Schwab, Lozynski, Pommier): if u is
sufficiently regular, one does not need to use fine discretizations in each
directions:

CN terms −→ C N terms.

This can be used in Galerkin-like discretizations.

Main difficulties: regularity of the solution, mesh adaptation,
implementation.
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The greedy algorithm

Here, we consider another approach proposed recently by: (i) Chinesta
et al. to solve high-dimensional Fokker-Planck equations in the context of
kinetic models for polymers and (ii) Nouy et al in the context of UQ. (See
also Ladevèze et al. for time-space variable separation.)

These are related to so-called Greedy Algorithms introduced in nonlinear
approximation theory: [Temlyakov, Acta Numerica 2008] (Cohen, DeVore,
Mallat, Avellaneda, ...).

Other related works: looking for the best n-term approximation of
operators: [Kolda, Bader, SIAM Review 2009] (Hackbusch, Beylkin,
Mohlenkamp, ...).

Here, we concentrate on:

Approximation of the solution u by a sum of tensor products,

Greedy algorithms: look iteratively for the best tensor product,

and applications to high-dimensional PDEs.
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The greedy algorithm

Let us consider for simplicity the case of tensor products of only two
spaces: u(t, x) ∈ V . The algorithm and (almost) all the results below
generalize to the case of tensor products of more than two functions.

Let us introduce a functional E : V → R with a unique global minimizer:

u = argmin
v∈V

E(v).

The so-called greedy algorithm writes:

(rn, sn) ∈ argmin
r∈Vt , s∈Vx

E

(
n−1∑

k=1

rk ⊗ sk + r ⊗ s

)
.

Here, V , Vt and Vx are Hilbert spaces such that

(H1) Vect{r ⊗ s, r ∈ Vt , s ∈ Vx} ⊂ V is dense.
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The greedy algorithm

Let us denote

un =

n∑

k=1

rk ⊗ sk .

Question: does un converge to u ?

Three frameworks:

The case of cross norms:

E(v) = ‖v − u‖2V and ‖r ⊗ s‖V = ‖r‖Vt
‖s‖Vx

.

The linear case (quadratic functionals):

E(v) = ‖v − u‖2V

(but ‖r ⊗ s‖V 6= ‖r‖Vt
‖s‖Vx

).
The nonlinear case (convex functionals):
(H2) E is α-convex.

∃α > 0, ∀v ,w ∈ V , E(v) ≥ E(w) + 〈E ′(w), v − w〉V +
α

2
‖v − w‖2V .
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Cross norms: examples

The case of cross norms: E(v) = ‖v − u‖2V and ‖r ⊗ s‖V = ‖r‖Vt
‖s‖Vx

.

Example: V = L2(T × X ), Vt = L2(T ) and Vx = L2(X ). One then looks
for an approximation of a function u(t, x) as a sum of tensor products.

Example 1 (A toy example): Approximation of the characteristic function
of a ball in dimension 2.

Example 2: An example in finance (in dimension N): decomposition of the
payoff function for a put option

E(v) =

∫

(R+)N

∣∣∣∣∣∣
v(x1, . . . , xN)−

(
K −

N∑

i=1

xi

)

+

∣∣∣∣∣∣

2

dx1 . . . dxN .
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Cross norms: examples

A toy example: approximate the characteristic function of a ball in
dimension 2. Approximations obtained after 1, 2, 5, 60 iterations.
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Cross norms: examples

Put option in dimension N = 2, with 11 points per dimension.
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T. Lelièvre (CERMICS) Greedy algorithms SMAI, 29th May 2013 13 / 51



Cross norms: examples

Put option in dimension N = 2, with 11 points per dimension.
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Cross norms: examples

Put option in dimension N = 2, with 11 points per dimension.
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Cross norms: examples

Put option: L2 error for dimension N = 2, . . . , 10, with 11 points per
dimension.
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Cross norms: examples

Put option: Number of iterations needed to obtain a relative error of 10−5,
with 11 points per dimension (for comparison 118 ≃ 2.108).

Dimension Number of iterations

1 1
2 2
3 10
4 22
5 101
6 228
7 1077
8 3974

For the same number of terms in the expansion, a full tensor product
approximation would have less than 3 dof per dimension (37 = 2187
38 = 6561).
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Cross norms: relation to Singular Value Decomposition

In the two-dimensional case and for cross-norms, the greedy algorithm is
related to the SVD of matrices. Indeed, in the finite dimensional case (u is
a matrix and r , s are vectors), the algorithm yields the SVD of u.

A fundamental property of the SVD case: ∀n 6= m

〈rn, rm〉Vt
= 〈sn, sm〉Vx

= 0.

This yields easily convergence and convergence rates in terms of the
spectrum.

This orthogonality property has several consequences:

the SVD decomposition is unique (up to degeneracies of the singular
values),

at iteration n, un =
∑n

k=1 rk ⊗ sk is the minimizer of
‖
∑n

k=1 φk ⊗ ψk − u‖2V over all possible (φk , ψk)1≤k≤n ∈ (Vt × Vx)
n.

These properties do not hold anymore in dimension larger than 2, or for
energies which are not associated to cross norms. Convergence then
follows from general convergence results for quadratic functionals −→
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The linear case: examples

The linear case (quadratic functionals): E(v) = ‖v − u‖2V (but
‖r ⊗ s‖V 6= ‖r‖Vt

‖s‖Vx
).

Example: High-dimensional Poisson equation: V = H1
0 (T × X ),

Vt = H1
0 (T ), Vx = H1

0 (X ) and E(v) =

∫

T ×X

a |∇t,x(v − u)|2 dt dx .

Associated linear problem:

− divt,x(a∇t,xv) = f

where f = − divt,x(a∇t,xu). Notice that

E(v) =

∫

T ×X

a |∇t,xv |
2 − 2

∫

T ×X

f v + C .

Only f is needed in practice to implement the algorithm.
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The linear case: examples

In higher dimension,

E(v) =

∫

(0,1)N
a |∇v |2 − 2

∫

T ×X

f v

and the greedy algorithm produces an approximate solution as a sum of
tensor products:

u ≈

n∑

k=1

r1k ⊗ r2k . . .⊗ rNk .

Three situations where such elliptic (or parabolic) PDEs appear:
(i) Fokker-Planck equations in kinetic theory (Chinesta et al),
(ii) Computation of the commitor function in molecular dynamics,
(iii) Valuation of options in finance.
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The linear case: convergence

Convergence analysis:

This case falls into the general theory of Greedy Algorithms developed in
approximation theory, for which convergence results have been proven for
general dictionaries (and not only tensor products).

Let us mention two results ([De Vore, Temlyakov, 1996] [Le Bris, TL, Maday, 2009]):

Strong convergence: limn→∞ un = u in V .
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The linear case: convergence

Rate of convergence: For u ∈ L1, we have

‖u − un‖V ≤ ‖u‖
2/3
V

‖u‖
1/3
L1 n

−1/6.

where

L1 =

{
u =

∑

k≥0

ck rk ⊗ sk , s.t. rk ∈ Vt , sk ∈ Vx , ‖rk ⊗ sk‖V = 1

and
∑

k≥0

|ck | <∞

}
,

and we define the L1-norm (projective norm) as: for u ∈ L1,

‖u‖L1 = inf




∑

k≥0

|ck |, u =
∑

k≥0

ck rk ⊗ sk , where ‖rk ⊗ sk‖V = 1



 .

Remark: The rate can be enhanced to n−1/2 with an orthogonalized
version of the algorithm.
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The nonlinear case: examples

The nonlinear case: E is α-convex.

Example: Uncertainty Quantification for nonlinear problems:
Let us consider, as an example of UQ in a nonlinear problem, the obstacle
problem: 




− divx(a∇xu) ≥ f ,
u ≥ g ,
(divx(a∇xu) + f ) (u − g) = 0,

with homogeneous Dirichlet boundary conditions. All the functions (u, a,
f , g) depend on the space variable x ∈ X ⊂ R

3 and on the value
t ∈ T ⊂ R

p of a random variable T .

Aim: Compute how uncertainties on the data (a(T , x), f (T , x)
and g(T , x)) are propagated on the result (u(T , x)).

The brute force Monte Carlo algorithm is typically too costly. We are thus
interested in computing a reduced model for u.
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The nonlinear case: examples

We again apply the greedy algorithm (see Nouy et al, generalized spectral
decomposition):

u(t, x) ≈
n∑

k=1

rk(t)sk(x).

Remarks:

Compared to a full tensor product discretization approach (Galerkin
procedure), the complexity goes from KL to n(K + L), where K and L
are the number of d.o.f. for functions of t and x respectively.

If p is large, it is possible to apply the same algorithm to obtain a
decomposition:

u(t, x) ≈

n∑

k=1

r1k (t1) . . . r
p
k (tp) sk(x).
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The nonlinear case: examples

To apply the algorithm, we need to recast the problem as a minimization
problem over a Hilbert space. We will therefore consider the solution to
the associated penalized formulation (ρ is a large positive parameter):

u = argmin
v∈L2

T
(T ,H1

0 (X ))

ET

(
1

2

∫

X

a |∇xv |
2 dx −

∫

X

f v dx +
ρ

2

∫

X

[g − v ]2+ dx

)

where ET means that integration on t is wrt to the law of T .

In the limit ρ→ ∞, the solution u to the penalized problem converges to
the solution u to the original obstacle problem.

Thus, in this case, Vt = L2T (T ), Vx = H1
0 (X ), V = L2T (T ,H

1
0 (X )) and

E(v) = ET

(
1
2

∫
X
a |∇xv |

2 dx −
∫
X
f v dx + ρ

2

∫
X
[g − v ]2+ dx

)
.
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The nonlinear case: convergence

Convergence analysis:
Let us assume (H1), (H2), and two additional hypothesis:

(H3) For any sequence rn ⊗ sn in Σ which is bounded in V , there exists a
subsequence which weakly converges in V to an element of Σ.

(H4) E is differentiable, and its gradient is Lipschitz on bouded sets of V .

∀K bdd ⊂ V , ∃LK > 0, ∀v ,w ∈ V , ‖E ′(v)−E ′(w)‖V ≤ LK‖v−w‖V .

Remark: (H1)–(H4) are satisfied for the examples above.

Then ([Cancès, Ehrlacher, TL, 2010]), the iterations are well-defined ((rn, sn)
exists and is non-zero iff un−1 6= u) and: (i) Strong convergence still holds:

lim
n→∞

un = u in V .

(ii) In the finite dimensional case, the convergence is exponentially fast:
∃C > 0, σ ∈ (0, 1),

‖u − un‖V ≤ Cσn.
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The nonlinear case: convergence

(iii) In the case of tensor products of only two functions, these two results
(i) and (ii) can be generalized to the case (rn, sn) is only a local minimum
which ensures the decrease of energy:

(rn, sn) ∈ local argmin
r∈Vt ,s∈Vx

E

(
n−1∑

k=1

rk ⊗ sk + r ⊗ s

)
and E(un) < E(un−1),

under the additional assumption:

(H5) ∃β, γ > 0, ∀(r , s) ∈ Vt × Vx ,

β‖r‖Vt
‖s‖Vx

≤ ‖r ⊗ s‖V ≤ γ‖r‖Vt
‖s‖Vx

.

This assumption is satisfied in the UQ case, and more generally if Vt and
Vx are finite dimensional.

This last result is important since, in practice, only local minima can be
computed.

T. Lelièvre (CERMICS) Greedy algorithms SMAI, 29th May 2013 29 / 51



The nonlinear case: UQ for a 1d obstacle problem

X = T = (0, 1). T has uniform law on (0, 1). The functions f and g are:
∀(t, x) ∈ (0, 1)2,

f (t, x) = −1 and g(t, x) = t[sin(3πx)]+ + (t − 1)[sin(3πx)]−.

Other parameters: ρ = 2500, continuous piecewise linear approximation,
with k = l = 40 d.o.f.
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The nonlinear case: UQ for a 1d obstacle problem
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The convergence seems indeed to be exponentially fast.

For really high-dimensional cases, see the works by F. Chinesta,
A. Lozynski or A. Nouy, and collaborators.
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Implementation of the algorithm: the Euler equations

How to implement the greedy algorithm in practice ?

Method 1: solve the associated Euler equations.
Let us consider again the Poisson problem (with a = 1):

E(v) =
1

2

∫

T ×X

|∇v |2 −

∫

T ×X

f v .

Recall that (rn, sn) ∈ argminr∈H1
0 (T ),s∈H1

0 (X ) E
(∑n−1

k=1 rk ⊗ sk + r ⊗ s
)
, or

equivalently:

(rn, sn) ∈ argmin
r∈H1

0 (T ),s∈H1
0 (X )

1

2

∫

T ⊗X

|∇(r ⊗ s)|2 −

∫

T ⊗X

fn−1 r ⊗ s,

where fn−1 = f +∆
(∑n−1

k=1 rk ⊗ sk

)
. The associated Euler equations

write: for any functions (r , s) ∈ H1
0 (T )× H1

0 (X )
∫

T ×X

∇(rn ⊗ sn) · ∇(rn ⊗ s + r ⊗ sn) =

∫

T ×X

fn−1(rn ⊗ s + r ⊗ sn).
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Implementation of the algorithm: the Euler equations

This can be written equivalently as





−

(∫

X

|sn|
2

)
∆trn +

(∫

X

|∇x sn|
2

)
rn =

∫

X

fn−1 sn,

−

(∫

T

|rn|
2

)
∆x sn +

(∫

T

|∇t rn|
2

)
sn =

∫

T

fn−1 rn.

This is a nonlinear coupled system of low-dimensional Poisson equations,
which may be solved by a simple fixed point procedure.

Remarks:

The data (f , or a) is typically approximated by a sum of tensor
products in a preliminary step (SVD) to avoid high-dimensional
integrals.

In the UQ context for linear problems, this yields non-intrusive type
methods.
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Implementation of the algorithm: the Euler equations

Remarks (cont’d):

Starting from a linear problem with exponential complexity wrt N,
one ends up with a nonlinear problem with linear complexity (?) wrt N.

The space discretized version of the algorithm consists in solving the
discretized Euler equations: find (rhn , s

h
n ) ∈ V h

t × V h
x such that, for

any functions (rh, sh) ∈ V h
t × V h

x ,

∫

T ×X

∇(rhn ⊗shn ) ·∇(rhn ⊗sh+ rh⊗shn ) =

∫

T ×X

f hn−1(r
h
n ⊗sh+ rh⊗shn ),

where V h
t and V h

x denote e.g. finite element spaces discretizing Vt

and Vx .
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Implementation of the algorithm: the minimization

procedure

For nonlinear problems, it seems difficult to solve the Euler equations by a
simple procedure.

Method 2: solve the minmization problem.
Another approach that we have followed in [Cancès, Ehrlacher, TL, 2010] is to
use a minimization procedure (quasi-Newton method), with an appropriate
technique to choose the initial guess. This yields at each step local
minima, with a decrease of the energy.
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Non-symmetric problem

∀v ∈ V , a(u, v) = l(v)

where

a = as + aas where as is a symmetric , coercive continuous bilinear
form on V × V and aas an antisymmetric continuous bilinear form on
V × V ;

l is a continuous linear form on V .

There is no minimization problem formulation of the problem as in the
symmetric case!! How can we define the greedy algorithm?

Naive idea: By solving the Euler equations:

a(un−1 + sn ⊗ rn, sn ⊗ δr + δs ⊗ rn)= l(sn ⊗ δr + δs ⊗ rn),

∀(δs, δr) ∈ Vx × Vt .
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Convection-diffusion example in a periodic setting

Typical example: T = X = (−1, 1), Vt = L2(T ), Vx = H1
per

(X ), b ∈ R.

{
find u ∈ V = Vt ⊗ Vx such that
∀v ∈ V , a(u, v) = l(v),

(1)

where

a(u, v) =

∫

T ×X

∇xu · ∇xv + (b · ∇xu) v + uv

and

l(v) =

∫

T ×X

fv ,

with f ∈ L2
per

(X )⊗ L2(T ).
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Euler equations

For problem (1), at the first iteration, the Euler equations write

(∫

T

|r1|
2

)
(−∆xs1 + b∇x s1 + s1) =

∫

T

f r1,

(∫

X

|∇x s1|
2 + |s1|

2

)
r1 =

∫

X

f s1.

Problem: If f = φ(x − t) with φ ∈ L2
per

(−1, 1) an odd function, then the
only solution to the “Euler” equations is r1 ⊗ s1 = 0 even for arbitrary
small b.
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Proof (1/3)

Let us proceed by contradiction and assume that there exits a solution
(r1, s1) ∈ Vt × Vx such that r1 ⊗ s1 6= 0. The couple (r1, s1) can be chosen
such that

∫ 1

−1
|r1(t)|

2 dt =

∫ 1

−1
|∇x s1(x)|

2 + |s1(x)|
2 dx = λ > 0.

{
−∆x s1(x) + b∇xs1(x) + s1(x) = 1

λ

∫ 1
−1 f (t, x)r1(t) dt,

r1(t) = 1
λ

∫ 1
−1 f (t, x)s1(x) dx .
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Proof (2/3)

Plugging the second equation into the first one yields

−∆x s1(x)+b∇x s1(x)+s1(x) =
1

λ2

∫ 1

−1

(∫ 1

−1
f (t, x)f (t, x ′) dt

)
s1(x

′) dx ′.

(2)
Let us assume that f (x , t) = φ(x − t) when φ ∈ L2

per
(−1, 1) is an odd

function (typically f (t, x) = sin(2π(x − t))),

g(x , x ′) =

∫ 1

−1
f (t, x)f (t, x ′) dt =

∫ 1

−1
φ(x − t)φ(x ′ − t) dt,

= −

∫ 1

−1
φ(x − t)φ(t − x ′) dt = −

∫ 1−x ′

−1−x ′
φ(x − x ′ − u)φ(u) du,

= −

∫ 1

−1
φ(x − x ′ − u)φ(u) du,

= −φ ∗ φ(x − x ′).
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Proof (3/3)

Fourier transform of (2) yields that for all k ∈ πZ,

|k |2ŝ(k) + ikbŝ(k) + ŝ(k) = −
1

λ2

(
φ̂(k)

)2
ŝ(k). (3)

Since φ is an odd function, φ̂(k) ∈ iR, φ̂(0) = 0 and this yields that
ŝ(k) = 0 for all k ∈ πZ.

Conclusion: There are cases when the solution to the original problem is
not zero, while the only solution to the Euler-Lagrange equations
associated to one iteration of the greedy algorithm is zero !
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Non-symmetric problems: which algorithm ?

Let V ′ be the dual space of V with respect to the L2(T × X ) scalar
product and let ‖ · ‖V ′ be its associated norm. Let A : V → V ′ and L ∈ V ′

such that {
find u ∈ V such that
∀v ∈ V , a(u, v) = l(v),

is equivalent to {
find u ∈ V such that
Au = L in V ′,

Let also denote by RV : V → V ′ be the linear operator such that for all
v ∈ V ,

‖v‖V = ‖RV v‖V ′ .
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Symmetrize the problem: minimization of the L
2 residual

Algorithm 1: Symmetrize the problem by minimizing the L2 residual [Falco
et al, 2012].

In other words, perform the symmetric greedy algorithm on

E(v) = ‖Av − L‖L2(X×T ).

The Euler equations are the ones associated to the problem

A∗Au = A∗L

Difficulty: the conditioning of the discretized problems scales quadratically
with the conditioning of the original problem...
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Symmetrize the problem: minimization of the residual in

the dual norm

Algorithm 2: Symmetrize the problem by minimizing the residual in the
dual norm. In other words, perform the symmetric greedy algorithm on

E(v) = ‖Av − L‖2V ′ = ‖R−1
V (Av − L)‖2V .

The Euler equations are the ones associated to the problem

A∗(RV )
−1Au = A∗(RV )

−1L

The conditioning of the discretized problems scales linearly with the
conditioning of the original problem.

Difficulty: how to compute efficiently (RV )
−1f ?
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Explicitation of the antisymmetric part

Algorithm 3: Perform the greedy algorithm with the symmetric part as of
the bilinear form a and update the right-hand side at each iteration:

(rn, sn) ∈ argmin
(r ,s)∈Vt×Vx

En−1(r ⊗ s),

where

En−1(r ⊗ s) =
1

2
as(un−1 + r ⊗ s, un−1+r ⊗ s)− l(r ⊗ s)− aas(un−1, r ⊗ s)

with un−1 =
∑n−1

k=1 rk ⊗ sk . In other words, at each iteration, one performs
one greedy iteration on the problem

∀v ∈ V , as(u, v) = l(v)− aas(un−1, v).
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Partial convergence results

Of course, such an algorithm is expected to converge only if the
antisymmetric part is small enough.

Result: If Vx and Vt are finite-dimensional, there exists κ > 0 such that if
‖aas‖L(V ,V ) ≤ κ‖as‖L(V ,V ), then the algorithm converges strongly in V .

Difficulty: In the proof, the rate κ seems to depend on the dimension of
Vx and Vξ.

Numerically, the rate κ seems not to depend on the dimension...
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Other algorithms in the literature

Minimax algorithm [Nouy, 2010]

Dual algorithm, X-Greedy algorithm (Lozinski, based on ideas of
Temlyakov)

Good numerical results but no theoretical proof of convergence.
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Greedy algorithms

Non-linear approximation techniques are very promising to tackle
high-dimensional problems.

Related works:

Application to high-dimensional PDEs in finance (J. Infante Acevedo).

Application to eigenvalue problems (E. Cancès and V. Ehrlacher) −→
see the talk by V. Ehrlacher this afternoon (15h15, MENUDI, Salle
Pala).

Open problems:

How to modify the algorithm for non-symmetric problems ?

How to obtain a rate of convergence in nonlinear infinite dimensional
cases ?

How to reduce the number of terms generated by the algorithm ?

On which type of problems this technique is efficient ?
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