Couplage entre algorithme SAEM et précalcul pour la paramétrisation populationnelle d'équations de réaction diffusion

Emmanuel Grenier, Violaine Louvet, Paul Vigneaux

Equipe NUMED, Lyon

Congrès SMAI 2013 30 mai 2013

Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
A 11					
Outline	e				

Conclusions

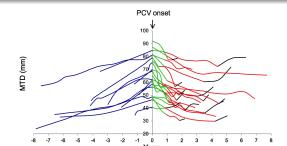
Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
Outline	7				
Outine	•				

- 2 Mixed effects model
- **3** SAEM
- Extension to PDE
- Application : KPP
- 6 Conclusions

Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
Motiva	ations				

Low-grade gliomas

- Progressive brain tumors characterized radiologically by slow and continuous growth preceding anaplastic transformation
- Their treatment includes surgery, radiotherapy and chemotherapy but remains controversial
- Develop model and simulation tool to conceive potentially more effective treatment schedules and to predict treatment efficacy in LGG patients on the basis of pre-treatment time-course tumor size observations.

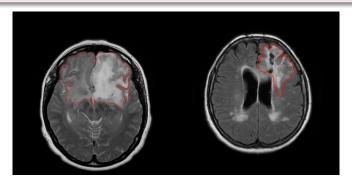


Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
Issues					

ODE Model

- Development in Numed Team of a tumor growth inhibition model for LGG based on ODEs
- Interesting results : correct description of tumor growth and response to treatments

But ...



Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
Issues					

EDP Model

- Significant contributions from the group of Kristin Swanson (University of Washington) toward modeling the time and space evolution of gliomas.
- Models based on partial differential equations, describe the spatiotemporal evolution patterns of tumor cells in the brain as "traveling waves" (based on KPP equations) driven by 2 processes : uncontrolled proliferation and tissue invasion

$$rac{\partial m{c}}{\partial t} =
ho m{c} (1 - m{c}) +
abla . (m{D}
abla m{c})$$

c = tumor cells concentration

Tumor's volume (which is the observed clinical data) :

$$V(t)=\int_{\Omega}c(t,x)dx$$

Model Parameters Estimation

We have :

- a PDE model
- some clinical datas for a few individuals

and we want to adjust the model taking into account the individual variability

Some existing works :

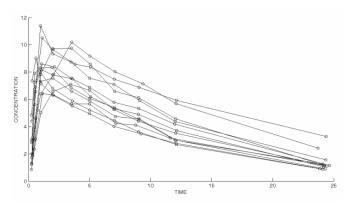
- Inverse problem approaches : huge literature.
 - essentially done indiv. by indiv.
- Another viewpoint : use knowledge from all the population
 - and adopt a statistical approach.
 - Again : huge literature

Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
Outlin	e				

- 2 Mixed effects model
- 3 SAEM
- Extension to PDE
- Application : KPP
- 6 Conclusions

Focusing on : (nonlinear) mixed effects model

Population of 12 individuals :



- each curve described by the same parametric model
- with its own individual parameters (inter-subject variability)

Focusing on : (nonlinear) mixed effects model

$$\mathbf{y}_{ij} = f(\mathbf{x}_{ij}, \psi_i) + \varepsilon_{ij}, 1 \le i \le N, 1 \le j \le n_i$$
(1)

- $y_{ij} \in \mathbb{R}$: j^{th} observation of individual i
- N : number of individuals
- n_i : number of observations of individual i
- $x_{ij} \in \mathbb{R}^{n_x}$: **known** design variables (usually observation times)
- ψ_i : vector of the n_{ψ} unknown individual parameters
- ε_{ij} : residual errors (including measurement errors for example)

Focusing on : (nonlinear) mixed effects model

$$y_{ij} = f(x_{ij}, \psi_i) + \varepsilon_{ij}, 1 \le i \le N, 1 \le j \le n_i$$

$$\psi_i = h(c_i, \mu, \eta_i)$$
(2)

- c_i : known vector of M covariates
- µ : unknown vector of fixed effects (size p)
- η_i ∼_{i.i.d.} N(0, Ω) : unkn. vect. of random effects (size q)
 Ω is the q × q var.− covariance matrix of the rand. eff.

•
$$\varepsilon_{ij} \sim_{i.i.d.} \mathcal{N}(\mathbf{0}, \sigma^2)$$
 : residual errors

Parameters of the model to be determined : $\theta = (\mu, \Omega, \sigma^2)$

Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
Outline	9				

2 Mixed effects model

- Extension to PDE
- Application : KPP

6 Conclusions

The Expectation-Maximization algorithm

(Dempster, Laird & Rubin, 1977)

Goal : Maximum Likelihood Estimation

Since ψ is not observed, log $p(y, \psi; \theta)$ can not be directly used to estimate θ . An option :

Iterative algorithm : at step k

E step : evaluate

$$Q_k(\theta) = \mathbb{E}[\log p(y, \psi; \theta) | y; \theta_{k-1}]$$

• M step : update the estimation of θ

$$\theta_k = \operatorname{Argmax} Q_k(\theta)$$

Some practical drawbacks :

- CV depends on the initial guess
- Slow CV of EM
- Evaluation of $Q_k(\theta)$

The SAEM algorithm (Stocha. Approx. of EM)

(Delyon, Lavielle & Moulines, 1999) Improvement of the EM algorithm implemented in the Monolix software

SAEM : what's done?

To our knowledge, the following is working with MONOLIX :

- ODE's
- Systems of ODE's and Chains of ODE's
- Stochastic DE's
- Numerous validation on real applications :
 - PK/PD (1 or more compart.), viral dynamics models ...

but the integration of PDE's remains an open problem.

Some attempts here and there but essentially done by transforming the PDE into a set of ODE's.

Due to the computational cost

Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
Outline	9				

2 Mixed effects model

3 SAEN

- Extension to PDE
- Application : KPP

6 Conclusions

Assume you don't want to simplify the model and want to keep the PDE to have the solution

- decouple PDE resolution and SAEM evaluation :
- precompute solutions (as functions of parameters)
- store them and call them when SAEM need them

This is the classical Offline/Online concept

- Offline step : very long computational time (who cares ?)
- Online step : "instantaneous" ⇒ SAEM doable

Rk : there is still the problem of storage ... (balance v.s. cpu)

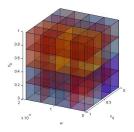
To evaluate quickly a function f, ...

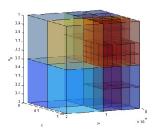
... interpolate from precomputed values on a grid

Start with an hyper-rectangle (let's say a "cube") :

 $C_{init} = \prod_{i=1}^{N} [x_{min,i}, x_{max,i}]$

- Divide the "cube" and compute weigths of children
- Choose a child (e.g. highest weight) and divide it
- Iterate as needed





Let $\{f_k\}_{k=1,2^N}$: values of *f* at the summits of C_i .

- Simplest : volume of cube $C_i \rightarrow$ regular mesh
- L^1 weight :

$$f_m := \frac{1}{2^N} \sum_{k=1}^{2^N} f_k$$
 and $\omega_i^1 = \frac{1}{2^N} \sum_{k=1}^{2^N} |f_k - f_m|.$

• L^{∞} weight :

$$\omega_i^{\infty} = \sup_{1 \le k \le 2^N} |f_k - f_m|.$$

BV weight : avoid excessive ref near discontinuities

$$\omega_i^{BV} = \textit{vol}(C_i) \sup_{1 \le k \le 2^N} |f_k - f_m|$$

Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
Remar	ks				

Errors :

- With this approach the **global error** ε
- decomposes as : **numerical error** ε^{num} (PDE)
- and an interpolation error ε^{interp} (Database,DB)
- Given a level of admissible ε, one can derive the optimal choice of the computational cost needed to solve the PDE.

Feasibility : for a \mathcal{C}^1 function, building database is doable if there are no more than

- 5-6 parameters for a 4 levels DB
- 4-5 parameters for a 5 levels DB

 \rightarrow for more parameters, additional ideas are needed

Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
Outlin	e				

- 2 Mixed effects model
- **3** SAEM
- Extension to PDE
- **5** Application : KPP
- 6 Conclusions

Description of the KPP model

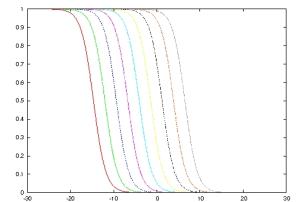
We consider the classical reaction-diffusion PDE named after

Kolmogoroff, Petrovsky and Piscounoff (1937) :

$$\partial_t u - \nabla . (D \nabla u) = R u (1 - u), \forall t > 0, \forall x \in \Delta$$
 (3)

(4)

$$u(T_0, x) = lpha \mathbf{1}_{|x-x_0| \leq \varepsilon}$$
, and Neumann B.C. on Δ



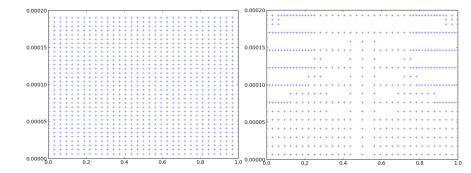
- Maximum principle : $\forall t > 0$, $0 \le u(t, .) \le 1$
- Good model for front propagation
- Speed = $2\sqrt{RD}$, Front width $\propto \sqrt{\frac{D}{R}}$
- Define the "volume" of the invaded zone :

$$V(t) = \int_{\Delta} u(t, x) dx$$
 (5)

- Parameters :
 - R (reaction coefficient),
 - D (diffusion coefficient),
 - x₀ (localisation of the initial "invaded zone").
- Can be applied to numerous fields with propagation phenomena (flame propagation, tumour growth [Swanson], etc) : existence of particular solutions called "*travelling waves*".

Build 2 databases :

- homogeneous : 1089 summits
- heterogeneous : 500 summits

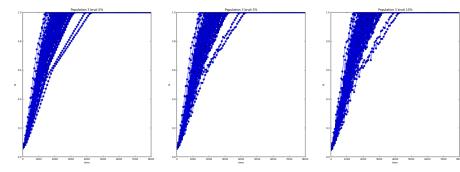


Extension to PDE

Application : KPP

Conclusions

Technical details - Populations



100 to 1000 individuals in each population. Noise : 0%, 5%, 10%Lognormal distribution of parameters.101 points in time.

Results : individual and population errors

Goal : estimation of the population and individual parameters (R, D and x_0) with Monolix using the virtual population as observed data

Population errors for 150 populations with 100 individuals

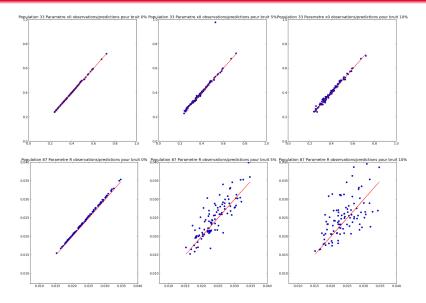
	noise 0%	noise 5%	noise 10%
<i>x</i> ₀	2.8	3.2	4.0
R	2.26	9.9	15.9
D	9.0	15.6	20.9

Individual errors for 150 populations with 100 individuals

	noise 0%	noise 5%	noise 10%
<i>x</i> ₀	20.9	19.2	17.0
R	58.6	46.1	47.5
D	26.5	22.5	23.5

Motivations

Results : pred vs obs indiv params (100 ind)



Results : same quality with a lower cost

	"Exact" case	Interpolation with	Interpolation with
		homogeneous mesh	heterogeneous mesh
Offline	No offline computation	Mesh with <i>n</i> segmenta- tions, $(2^n + 1)^2$ points. For 5 segmentations, 1089 points	Mesh with <i>n</i> points. Example with 500 points
Unit average CPU	-	2.12 <i>s</i>	2.12 <i>s</i>
Offline total CPU	-	38 <i>mn</i> 28 <i>s</i>	17 <i>mn</i> 40 <i>s</i>
Online	SAEM, 10 ⁶ KPP eva- luations	SAEM, 10 ⁶ interpola- tions	SAEM, 10 ⁶ interpola- tions
Unit average CPU	2 <i>s</i>	$4.5 imes 10^{-4} s$	$5.1 \times 10^{-4} s$
Online total Cost	\sim 23 days 3 h	7 <i>mn</i> 30 <i>s</i>	8 <i>mn</i> 30 <i>s</i>
Total cost	\sim 23 days 3 h	45 <i>mn</i> 58 <i>s</i>	26 <i>mn</i> 10 <i>s</i>

The number of calls of the solver in SAEM is about 10⁶ for this case. Note that this is sequential CPU time. The mesh generation can be easily parallelize on many cores with an excellent scalability.

Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
Outlin	e				

- Motivations
- 2 Mixed effects model
- **3** SAEM
- Extension to PDE
- Application : KPP

Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
Concl	usions				

Summary

- Coupling of SAEM and PDE's
- Doable but limited to 5–6 parameters (in basic mode)
- Reasonable quality of param. estimation
- Need a case by case study for each PDE

Perspectives

Explore various way to reach higher # of params

- optimized sparsity of the DB-mesh
- "dynamic" adaptivity
- Kriging, experimental design
- Application to other models (some done, other in progress)

Motivations	Mixed effects model	SAEM	Extension to PDE	Application : KPP	Conclusions
Bibliog	ranhv				

- "Parameter estimation in non-linear mixed effects models with SAEM algorithm : extension from ODE to PDE", E. Grenier, V. Louvet and P. Vigneaux. INRIA RR-8231 (Submitted 2012, in revision).
- "Monolix Version 4.1.2 User's Guide", Lixoft Team.March 2012
- "A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy", Ribba and al, Clin Cancer Res, 2012
- "Etude de l'equation de la diffusion avec croissance de la quantite de matiere et son application à un problème biologique", Kolmogoroff, Petrovsky and Piscounoff. Bulletin de l'universite d'Etat a Moscou. Section A, I(6) :1-26, 1937.
- "Virtual and real brain tumors : using mathematical modeling to quantify glioma growth and invasion", K.R. Swanson et al., J Neurol Sci, 2003.