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Motivations

Low-grade gliomas

Progressive brain tumors characterized radiologically by slow and
continuous growth preceding anaplastic transformation

Their treatment includes surgery, radiotherapy and chemotherapy but
remains controversial

Develop model and simulation tool to conceive potentially more effective
treatment schedules and to predict treatment efficacy in LGG patients
on the basis of pre-treatment time-course tumor size observations.
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Issues

ODE Model
Development in Numed Team of a tumor growth inhibition model
for LGG based on ODEs
Interesting results : correct description of tumor growth and
response to treatments

But ...
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Issues

EDP Model
Significant contributions from the group of Kristin Swanson
(University of Washington) toward modeling the time and space
evolution of gliomas.
Models based on partial differential equations, describe the
spatiotemporal evolution patterns of tumor cells in the brain as
"traveling waves" (based on KPP equations) driven by 2
processes : uncontrolled proliferation and tissue invasion

∂c
∂t

= ρc(1− c) +∇.(D∇c)

c = tumor cells concentration
Tumor’s volume (which is the observed clinical data) :

V (t) =

∫
Ω

c(t , x)dx
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Model Parameters Estimation

We have :
a PDE model
some clinical datas for a few individuals

and we want to adjust the model taking into account the individual
variability

Some existing works :

Inverse problem approaches : huge literature.
essentially done indiv. by indiv.

Another viewpoint : use knowledge from all the population
and adopt a statistical approach.
Again : huge literature
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Focusing on : (nonlinear) mixed effects model

Population of 12 individuals :

each curve described by the same parametric model
with its own individual parameters (inter-subject variability)
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Focusing on : (nonlinear) mixed effects model

yij = f (xij , ψi ) + εij ,1 ≤ i ≤ N,1 ≤ j ≤ ni (1)

yij ∈ R : j th observation of individual i

N : number of individuals

ni : number of observations of individual i

xij ∈ Rnx : known design variables (usually observation times)

ψi : vector of the nψ unknown individual parameters

εij : residual errors (including measurement errors for example)
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Focusing on : (nonlinear) mixed effects model

yij = f (xij , ψi ) + εij ,1 ≤ i ≤ N,1 ≤ j ≤ ni

ψi = h(ci , µ, ηi ) (2)

ci : known vector of M covariates

µ : unknown vector of fixed effects (size p)

ηi ∼i.i.d. N (0,Ω) : unkn. vect. of random effects (size q)

Ω is the q × q var.– covariance matrix of the rand. eff.

εij ∼i.i.d. N (0, σ2) : residual errors

Parameters of the model to be determined : θ =
(
µ,Ω, σ2

)
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The Expectation-Maximization algorithm
(Dempster, Laird & Rubin, 1977)

Goal : Maximum Likelihood Estimation

Since ψ is not observed, log p(y , ψ; θ) can not be directly used to
estimate θ. An option :

Iterative algorithm : at step k
E step : evaluate

Qk (θ) = E[log p(y , ψ; θ)|y ; θk−1]

M step : update the estimation of θ

θk = Argmax Qk (θ)

Some practical drawbacks :
CV depends on the initial guess
Slow CV of EM
Evaluation of Qk (θ)
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The SAEM algorithm (Stocha. Approx. of EM)

(Delyon, Lavielle & Moulines, 1999)
Improvement of the EM algorithm implemented in the Monolix
software

SAEM : what’s done ?
To our knowledge, the following is working with MONOLIX :

ODE’s
Systems of ODE’s and Chains of ODE’s
Stochastic DE’s
Numerous validation on real applications :

PK/PD (1 or more compart.), viral dynamics models ...

but the integration of PDE’s remains an open problem.
Some attempts here and there but essentially done by transforming
the PDE into a set of ODE’s.

Due to the computational cost
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The primitive idea ...

Assume you don’t want to simplify the model

and want to keep the PDE to have the solution

decouple PDE resolution and SAEM evaluation :

precompute solutions (as functions of parameters)

store them and call them when SAEM need them

This is the classical Offline/Online concept

Offline step : very long computational time (who cares ?)
Online step : “instantaneous”⇒ SAEM doable

Rk : there is still the problem of storage ... (balance v.s. cpu)
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Precomputation

To evaluate quickly a function f , ...

... interpolate from precomputed values on a grid

Start with an hyper-rectangle (let’s say a “cube”) :

Cinit = ΠN
i=1[xmin,i , xmax,i ]

Divide the “cube” and compute weigths of children
Choose a child (e.g. highest weight) and divide it
Iterate as needed
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Examples of weights

Let {fk}k=1,2N : values of f at the summits of Ci .

Simplest : volume of cube Ci → regular mesh
L1 weight :

fm :=
1

2N

2N∑
k=1

fk and ω1
i =

1
2N

2N∑
k=1

|fk − fm|.

L∞ weight :
ω∞i = sup

1≤k≤2N
|fk − fm|.

BV weight : avoid excessive ref near discontinuities

ωBV
i = vol(Ci ) sup

1≤k≤2N
|fk − fm|
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Remarks

Errors :
With this approach the global error ε

decomposes as : numerical error εnum (PDE)

and an interpolation error εinterp (Database,DB)

Given a level of admissible ε, one can derive the optimal choice
of the computational cost needed to solve the PDE.

Feasibility : for a C1 function, building database is doable if there are
no more than

5-6 parameters for a 4 levels DB
4-5 parameters for a 5 levels DB

→ for more parameters, additional ideas are needed
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Description of the KPP model
We consider the classical reaction-diffusion PDE named after

Kolmogoroff, Petrovsky and Piscounoff (1937) :

∂tu −∇.(D∇u) = Ru(1− u),∀t > 0,∀x ∈ ∆ (3)

u(T0, x) = α1|x−x0|≤ε, and Neumann B.C. on ∆ (4)
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Properties of the KPP model

Maximum principle : ∀t > 0, 0 ≤ u(t , .) ≤ 1
Good model for front propagation

Speed = 2
√

RD, Front width ∝
√

D
R

Define the “volume” of the invaded zone :

V (t) =

∫
∆

u(t , x)dx (5)

Parameters :
R (reaction coefficient),
D (diffusion coefficient),
x0 (localisation of the initial “invaded zone”).

Can be applied to numerous fields with propagation phenomena
(flame propagation, tumour growth [Swanson], etc) : existence of
particular solutions called "travelling waves".
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Technical details

Build 2 databases :
homogeneous : 1089 summits
heterogeneous : 500 summits
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Technical details - Populations

100 to 1000 individuals in each population. Noise : 0%, 5%, 10%
Lognormal distribution of parameters.
101 points in time.
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Results : individual and population errors

Goal : estimation of the population and individual parameters (R, D
and x0) with Monolix using the virtual population as observed data

Population errors for 150 populations with 100 individuals

noise 0% noise 5% noise 10%
x0 2.8 3.2 4.0
R 2.26 9.9 15.9
D 9.0 15.6 20.9

Individual errors for 150 populations with 100 individuals

noise 0% noise 5% noise 10%
x0 20.9 19.2 17.0
R 58.6 46.1 47.5
D 26.5 22.5 23.5
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Results : pred vs obs indiv params (100 ind)



Motivations Mixed effects model SAEM Extension to PDE Application : KPP Conclusions

Results : same quality with a lower cost

“Exact” case Interpolation with Interpolation with

homogeneous mesh heterogeneous mesh

Offline No offline computation Mesh with n segmenta-
tions, (2n + 1)2 points.
For 5 segmentations,
1089 points

Mesh with n points.
Example with 500
points

Unit average CPU - 2.12s 2.12s

Offline total CPU - 38mn28s 17mn40s

Online SAEM, 106 KPP eva-
luations

SAEM, 106 interpola-
tions

SAEM, 106 interpola-
tions

Unit average CPU 2s 4.5× 10−4s 5.1× 10−4s

Online total Cost ∼ 23 days 3 h 7mn30s 8mn30s

Total cost ∼ 23 days 3 h 45mn58s 26mn10s

The number of calls of the solver in SAEM is about 106 for this case.
Note that this is sequential CPU time. The mesh generation can be
easily parallelize on many cores with an excellent scalability.
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Conclusions

Summary

Coupling of SAEM and PDE’s
Doable but limited to 5–6 parameters (in basic mode)
Reasonable quality of param. estimation
Need a case by case study for each PDE

Perspectives

Explore various way to reach higher # of params
optimized sparsity of the DB–mesh
“dynamic” adaptivity
Kriging, experimental design

Application to other models (some done, other in progress)
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