Calibration of a PDE system for thermal regulation of an aircraft cabin

SMAI 2013, 27 - 31 of May 2013, Seignosse Le Penon

EADS France - Applied Mathematics Team Nabil RACHDI, nabil.rachdi@eads.net Michel FOUQUEMBERGH, michel.fouquembergh@eads.net

Outline

2 Calibration from experimental data

- 3 Meta model strategy
- 4 Summary & challenges

Outline

2 Calibration from experimental data

3 Meta model strategy

4 Summary & challenges

General context of thermal regulation

General context of thermal regulation

- Provide thermal comfort & cabin pressurization for crew / passengers
- Thermal control of electric cores or highly dissipative equipment of avionic bay

General context of thermal regulation

- Provide thermal comfort & cabin pressurization for crew / passengers
- Thermal control of electric cores or highly dissipative equipment of avionic bay

Topics of the presentation

Installation of equipment in avionic bay requires the specification of equipment thermal environment

Figure : Aircraft & Equipment - Avionic bay

- Need to provide convection coefficients around the equipment...
- I... For a robust equipment conception

Topics of the presentation

PHASE I Model Calibration **PHASE II** Thermal Analyses

Two phases:

- 1/ PDE parameter estimation
- 2/ Phenomenon study with parametrized PDE

Topics of the presentation

Two phases:

- 1/ PDE parameter estimation
- 2/ Phenomenon study with parametrized PDE

Modelling

(simplified) Thermal exchange modelling (Navier Stokes equations)

Equations:
$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla .(\rho u) &= 0\\ \frac{\partial (\rho C_p T)}{\partial t} + \nabla .(u . \rho C_p T) &= \nabla .(k \nabla T)\\ \frac{\partial (\rho u)}{\partial t} + (u . \nabla) u + \nabla p &= \mu \Delta u + \rho g \end{cases}$$

Boundary Conditions : $\begin{cases} u = u_0(M) \text{ with turbulence model RANS}(\tau) \\ \phi = h_C (T - T_{Skin}) \end{cases}$

 ρ = air density, *u*=air speed, *T*=temperature, τ =turb. rate, *h*_C= heat transf. coef., *T*_{Skin}= skin temp.

Modelling

(simplified) Thermal exchange modelling (Navier Stokes equations)

Equations:
$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla .(\rho \, u) &= 0\\ \frac{\partial (\rho C_{p} T)}{\partial t} + \nabla .(u . \rho C_{p} T) &= \nabla .(k \nabla T)\\ \frac{\partial (\rho u)}{\partial t} + (u . \nabla) u + \nabla p &= \mu \Delta u + \rho g \end{cases}$$

Boundary Conditions : $\begin{cases} u = u_0(M) \text{ with turbulence model RANS}(\tau) \\ \phi = h_C(T - T_{Skin}) \end{cases}$

 ρ = air density, *u*=air speed, *T*=temperature, τ =turb. rate, *h*= heat transf. coef., *T_{Skin}*= skin temp.

 \Rightarrow Lack of knowledge on τ , h_C and T_{Skin} ! \Leftarrow

Modelling

• (simplified) Thermal exchange modelling (Navier Stokes equations)

Equations:
$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla .(\rho u) &= 0\\ \frac{\partial (\rho C_p T)}{\partial t} + \nabla .(u . \rho C_p T) &= \nabla .(k \nabla T)\\ \frac{\partial (\rho u)}{\partial t} + (u . \nabla) u + \nabla p &= \mu \Delta u + \rho g \end{cases}$$

Boundary Conditions : $\begin{cases} u = u_0(M) \text{ with turbulence model RANS}(\tau) \\ \phi = h_C(T - T_{Skin}) \end{cases}$

 ρ = air density, *u*=air speed, *T*=temperature, τ =turb. rate, *h*= heat transf. coef., *T_{Skin}*= skin temp.

 $\Rightarrow h_{C} \text{ should be estimated} \\\Rightarrow \tau \text{ and } T_{Skin} \text{ are subjected to uncertainties}$

Modelling

• (simplified) Thermal exchange modelling (Navier Stokes equations)

Equations:
$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla .(\rho \, u) &= 0\\ \frac{\partial (\rho C_{p} T)}{\partial t} + \nabla .(u.\rho C_{p} T) &= \nabla .(k \nabla T)\\ \frac{\partial (\rho u)}{\partial t} + (u.\nabla)u + \nabla p &= \mu \Delta u + \rho g \end{cases}$$

Boundary Conditions:
$$\begin{cases} u = u_{0}(M) \text{ with turbulence model RANS(τ)}\\ \phi &= hc \ (T - T_{skin}) \end{cases}$$

 $\rho{=}$ air density, $u{=}{\rm air}$ speed, $T{=}{\rm temperature},$ $\tau{=}{\rm turb.}$ rate, $h{=}$ heat transf. coef., $T_{Skin}{=}$ skin temp.

 $\Rightarrow \frac{h_{C}}{r} \text{ should be estimated}$ $\Rightarrow \tau \text{ and } T_{Skin} \text{ are subjected to uncertainties}$

Input/Output model view

Equation & Boundary Conditions induce an Input/Output system

 $\mathcal{H}((\tau, T_{Skin}), h_{C})$.

In particular, the post-processing providing convection coefficients is some function $h((\tau, T_{Skin}), h_C)$.

Question ?

How to estimate h_C in presence of uncertainties (τ, T_{Skin}) ?

- We need additional information (reference measures, experimental data, etc.)
- How to model the uncertainties ?
- How to take into account uncertainties in identification procedures ?

Outline

2 Calibration from experimental data

3 Meta model strategy

4 Summary & challenges

Experiments

Figure : Flight test - Chamber test

Principle:

At a fixed environmental condition, one can measure convection coefficients C_i^{obs} around the equipment.

- Flight tests / Chamber tests
- Few sensors are used

Experiments

Figure : Flight test - Chamber test

Principle:

At a fixed environmental condition, one can measure convection coefficients C_i^{obs} around the equipment.

- Flight tests / Chamber tests
- Few sensors are used

Finally, one gets a very precious database (C_i^{obs}) for i = 1, ..., N with N limited !

Summary

We have two ingredients:

 We can compute convection coefficients of the equipment from Navier Stokes equations

 $C^{comp} = h((\tau, T_{Skin}), \frac{h_{C}}{h_{C}})$

Experimental database

$$(C_i^{obs})_{i=1,\ldots,N}$$

Summary

We have two ingredients:

 We can compute convection coefficients of the equipment from Navier Stokes equations

 $C^{comp} = h((\tau, T_{Skin}), \frac{h_{C}}{h_{C}})$

Experimental database

$$(C_i^{obs})_{i=1,\ldots,N}$$

Remark: a single run of h may take several hours (\sim 6 hours !)

Summary

We have two ingredients:

 We can compute convection coefficients of the equipment from Navier Stokes equations

 $C^{comp} = h((\tau, T_{Skin}), h_{C})$

Experimental database

$$(C_i^{obs})_{i=1,\ldots,N}$$

Remark: a single run of h may take several hours (\sim 6 hours !)

Q : How to estimate h_C from the experimental database ?

Mathematical formalization

 Variable of interest (induced by a PDE system)
 We call a variable of interest any quantity obtained by a post-processing of some PDE equations resolution. It takes the form

$$h(\mathbf{X}, \boldsymbol{\theta})$$
 field or scalar

where

- $X \in (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), P_x)$ is a random vector representing the uncertainties
- $oldsymbol{ heta} \in \mathbb{R}^k$ is the vector of parameters to identify

(in our application: $\mathbf{X} = (\tau, T_{Skin}) \in (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), P_x)$ and $\theta = h_{\mathsf{C}} \in \mathbb{R}$)

Experimental/Reference data (also called Learning data)

It is a set of points:

- $(z_i, Y_i)_{i=1,...,N} \rightarrow \text{if } h(\mathbf{X}, \theta) \text{ is a field } z \mapsto h(\mathbf{X}, \theta)[z]$
- $(Y_l)_{l=1,\ldots,N} \rightarrow \text{if } h(\mathbf{X}, \boldsymbol{\theta}) \text{ is scalar}$

(Remark: a priori, **There is not** a model linking the observation Y and the simulation $h(\mathbf{X}, \theta)$. For instance, we don't have the regression framework

$$Y = h(\mathbf{X}, \boldsymbol{\theta}) + \varepsilon$$

where ε is the model error. Indeed, we don't have joint information (\mathbf{X}_i,Y_i) !)

Calibration methods

There are two calibration methods depending on the nature of the variable of interest $h(\mathbf{X}, \theta)$, scalar or field.

Page 13

Least Squares principle:

Find parameters $\boldsymbol{\theta} \in \mathbb{R}^k$ which minimize the quantity

$$\mathcal{J}(\mathbf{X}, \boldsymbol{\theta}) = \sum_{i=1}^{N} (Y_i - h(\mathbf{X}, \boldsymbol{\theta})[z_i])^2$$

Remark !:

the function $\theta \mapsto \mathcal{J}(\mathbf{X}, \theta)$ to minimize is random (due to uncertainties **X**) !

Least Squares principle:

Find parameters $\boldsymbol{\theta} \in \mathbb{R}^k$ which minimize the quantity

$$\mathcal{J}(\mathbf{X}, \boldsymbol{\theta}) = \sum_{i=1}^{N} (Y_i - h(\mathbf{X}, \boldsymbol{\theta})[z_i])^2$$

Remark !:

the function $\theta \mapsto \mathcal{J}(\mathbf{X}, \theta)$ to minimize is random (due to uncertainties \mathbf{X}) ! \Rightarrow Classical least squares methods are infeasible ...

Least Squares principle:

Find parameters $\boldsymbol{\theta} \in \mathbb{R}^k$ which minimize the quantity

$$\mathcal{J}(\mathbf{X}, \boldsymbol{\theta}) = \sum_{i=1}^{N} (Y_i - h(\mathbf{X}, \boldsymbol{\theta})[z_i])^2$$

Remark !:

the function $\theta \mapsto \mathcal{J}(\mathbf{X}, \theta)$ to minimize is random (due to uncertainties \mathbf{X}) ! \Rightarrow Classical least squares methods are infeasible ...

Issue: Stochastic Optimization

Principle: Minimize a quantity $\rho(\mathcal{J}(\mathbf{X}, \boldsymbol{\theta}))$ (deterministic)

- Mean : $\rho(\mathcal{J}(\mathsf{X}, \boldsymbol{\theta})) = \mathbb{E}_{\mathsf{X}}(\mathcal{J}(\mathsf{X}, \boldsymbol{\theta}))$
- Variance : $\rho(\mathcal{J}(\mathbf{X}, \boldsymbol{\theta})) = \operatorname{Var}_{\mathbf{X}}(\mathcal{J}(\mathbf{X}, \boldsymbol{\theta}))$
- Mixed : $\rho_{\lambda}(\mathcal{J}(\mathbf{X}, \boldsymbol{\theta})) = \mathbb{E}_{\mathbf{X}}(\mathcal{J}(\mathbf{X}, \boldsymbol{\theta})) + \lambda \sqrt{\operatorname{Var}_{\mathbf{X}}(\mathcal{J}(\mathbf{X}, \boldsymbol{\theta}))}$

etc.

Illustration

 $\theta \mapsto \rho_{\lambda}(\mathcal{J}(\mathbf{X}, \theta)) = \mathbb{E}_{\mathbf{X}}(\mathcal{J}(\mathbf{X}, \theta)) + \lambda \sqrt{\mathsf{Var}_{\mathbf{X}}(\mathcal{J}(\mathbf{X}, \theta))} \text{ for different } \lambda > 0$ (deterministic function $\Leftrightarrow \theta \mapsto \mathcal{J}(\mathbf{X}_{nom}, \theta)$, where \mathbf{X}_{nom} is the nominal value of X)

- Stochastic/Robust Optimization
 - Large literature

• Practical algorithms

Need practical and efficient algorithms ...

Recall the framework:

- We have observations $(Y_i)_{1,...,N}$
- We get a scalar output $h(\mathbf{X}, \theta)$ after a post-processing of a PDE system

Recall the framework:

- We have observations $(Y_i)_{1,...,N}$
- We get a scalar output $h(\mathbf{X}, \theta)$ after a post-processing of a PDE system

Estimation method:

[Rachdi *et al* 2012] Risk bounds for new M-estimation problems, ESAIM:Probability & Statistics, 2012

Principle:

Find parameters $\theta \in \mathbb{R}^k$ which minimize "a distance" between the **empirical distribution** of the Y_i 's and the **simulated distribution** of the random variable $h(\mathbf{X}, \theta)$ (based on a simulated sample $h(\mathbf{X}_1, \theta), ..., h(\mathbf{X}_m, \theta)$, where $\mathbf{X}_1, ..., \mathbf{X}_m$ are m simulations of the uncertainty \mathbf{X}).

Recall the framework:

- We have observations $(Y_i)_{1,...,N}$
- We get a scalar output $h(\mathbf{X}, \theta)$ after a post-processing of a PDE system

Estimation method:

[Rachdi *et al* 2012] Risk bounds for new M-estimation problems, ESAIM:Probability & Statistics, 2012

Principle:

Find parameters $\theta \in \mathbb{R}^k$ which minimize "a distance" between the **empirical distribution** of the Y_i 's and the **simulated distribution** of the random variable $h(\mathbf{X}, \theta)$ (based on a simulated sample $h(\mathbf{X}_1, \theta), ..., h(\mathbf{X}_m, \theta)$, where $\mathbf{X}_1, ..., \mathbf{X}_m$ are m simulations of the uncertainty \mathbf{X}).

Example: Maximum-Likelihood based method

[Rachdi *et al* 2012] Stochastic inverse problem with noisy simulator, Ann. Fac. Sc. Toulouse, 2012

Find θ minimizing

$$\mathcal{J}(\boldsymbol{\theta}) = -\sum_{i=1}^{N} \log \left(\sum_{j=1}^{m} \mathcal{K}_{b}(Y_{i} - h(\mathbf{X}_{j}, \boldsymbol{\theta})) \right) , \quad \text{with} \quad \mathcal{K}_{b}(y) = \frac{1}{\sqrt{2\pi} b} e^{-y^{2}/2b^{2}}$$

Theoretical results of the estimator $\widehat{\theta}_{N,m}$ where

$$\widehat{\theta}_{N,m} = \operatorname{Argmin}_{\theta \in \Theta} - \sum_{i=1}^{N} \log \left(\sum_{j=1}^{m} K_b(Y_i - h(\mathbf{X}_j, \theta)) \right)$$

Theoretical results of the estimator $\widehat{\theta}_{N,m}$ where

$$\widehat{\theta}_{N,m} = \operatorname{Argmin}_{\theta \in \Theta} - \sum_{i=1}^{N} \log \left(\sum_{j=1}^{m} K_b(Y_i - h(\mathbf{X}_j, \theta)) \right)$$

Theorem (Consistency) [Rachdi2012]

Denote by $f_{\theta}^{\mathbf{X}}$ the density function of $h(\mathbf{X}, \theta)$ and θ^* by

$$oldsymbol{ heta}^* = \operatorname*{Argmin}_{oldsymbol{ heta}\in\Theta} - \mathbb{E}\left(\log(f^{\mathbf{x}}_{ heta})(Y)
ight) \quad (ext{unknown target}) \, .$$

Under technical conditions, \exists constants c_1, c_2, c_3, a_1 and a_2 such that $\forall 0 < \tau < 1/2$, with probability at least $1 - 2\tau$

$$\|\widehat{\theta}_{N,m} - \theta^*\|^2 \le c_1 \sqrt{\frac{\log(a_1 \tau^{-1})}{N}} + \frac{c_2 \sqrt{\log(a_2 \tau^{-1})} + c_3 m^{1/10}}{\sqrt{m}}$$

Theoretical results of the estimator $\widehat{\theta}_{N,m}$ where

$$\widehat{\theta}_{N,m} = \operatorname{Argmin}_{\theta \in \Theta} - \sum_{i=1}^{N} \log \left(\sum_{j=1}^{m} K_b(Y_i - h(\mathbf{X}_j, \theta)) \right)$$

Theorem (Consistency) [Rachdi2012]

Denote by $f_{\theta}^{\mathbf{X}}$ the density function of $h(\mathbf{X}, \theta)$ and θ^* by

$$oldsymbol{ heta}^* = \operatorname*{Argmin}_{oldsymbol{ heta}\in\Theta} - \mathbb{E}\left(\log(f^{\mathbf{x}}_{ heta})(Y)
ight) \quad (ext{unknown target})\,.$$

Under technical conditions, \exists constants c_1, c_2, c_3, a_1 and a_2 such that $\forall 0 < \tau < 1/2$, with probability at least $1 - 2\tau$

$$\|\widehat{\theta}_{N,m} - \theta^*\|^2 \le c_1 \sqrt{\frac{\log(a_1 \tau^{-1})}{N}} + \frac{c_2 \sqrt{\log(a_2 \tau^{-1})} + c_3 m^{1/10}}{\sqrt{m}}$$

 \Rightarrow the right hand side is not the rate of convergence ! ... but ensure the consistency.

Theoretical results of the estimator $\widehat{\theta}_{N,m}$ where

$$\widehat{\theta}_{N,m} = \operatorname{Argmin}_{\theta \in \Theta} - \sum_{i=1}^{N} \log \left(\sum_{j=1}^{m} K_b(Y_i - h(\mathbf{X}_j, \theta)) \right)$$

Theorem (Consistency) [Rachdi2012]

Denote by $f_{\theta}^{\mathbf{X}}$ the density function of $h(\mathbf{X}, \theta)$ and θ^* by

$$oldsymbol{ heta}^* = \operatorname*{Argmin}_{oldsymbol{ heta}\in\Theta} - \mathbb{E}\left(\log(f^{\mathbf{x}}_{ heta})(Y)
ight) \quad (ext{unknown target})\,.$$

Under technical conditions, \exists constants c_1, c_2, c_3, a_1 and a_2 such that $\forall 0 < \tau < 1/2$, with probability at least $1 - 2\tau$

$$\|\widehat{\theta}_{N,m} - \theta^*\|^2 \le c_1 \sqrt{\frac{\log(a_1 \tau^{-1})}{N}} + \frac{c_2 \sqrt{\log(a_2 \tau^{-1})} + c_3 m^{1/10}}{\sqrt{m}}$$

 \Rightarrow the right hand side $is\ not$ the rate of convergence $!\ ...$ but ensure the consistency.

Theorem (Central Limit Theorem)

In progress !

Simulation of *h* is limited !

■ Calibration may be very greedy ...

Both calibration methods may need several computations of h involving new PDE system resolutions.

- In most of our applications, one run of h (i.e numerical resolution + post-processing) \sim 6 hours
- + So for 50 calibration algorithm iterations, we have to wait \sim 13 days !

Strategy adopted:

Replace the CPU time expensive model $h(\mathbf{X}, \theta)$ by a mathematical approximation (analytical) $\tilde{h}(\mathbf{X}, \theta)$, very cheap to evaluate.

Outline

2 Calibration from experimental data

- 3 Meta model strategy
- 4 Summary & challenges

Meta model strategy

A well adopted strategy (among others...) :

■ Sample, Build, Validate and Replace

- Different types of meta models
 - Regression-based: (Neural network, Polynomial Chaos, Least squares, etc.)
 - Interpolation-based: (Radial Basis Functions, Gaussian processes/Kriging, etc.)
- Calibration methods only involve the metamodel, i.e one calibrates the metamodel ! (no more the PDE system...)

Outline

- 2 Calibration from experimental data
- **3** Meta model strategy
- 4 Summary & challenges

Summary : global process of thermal analysis

EADS

Conclusions & Issues

- Asymptotic study of the estimator $\hat{\theta}_{N,m}$
- Mathematical study of calibration procedures induced by the Stochastic Optimization of $\theta \mapsto \mathcal{J}(\mathbf{X}, \theta)$
- Quantify the robustness of equipment specification when considering the uncertainties
- Improve existing metamodel-based algorithms (adaptive metamodelling, on-line refinement, etc.)
- HPC capabilities for metamodel constructions
- Facilitate metamodels exportation (distribution to suppliers, etc.)
- Extend the method for Multi-Fidelity learning data (varying mesh size, etc.)

Thank you for your attention !

- N. Rachdi, J-C Fort, T. Klein (2012), Risk bounds for new M-estimation problems, ESAIM : Probability & Statistics - doi: 10.1051/ps/2012025
- N. Rachdi, J-C Fort, T. Klein (2012), Stochastic Inverse Problem with Noisy Simulator, Ann. Fac. Sci. Toulouse, S. 6, 21 no. 3 (2012), p. 593-622
- N. Rachdi (2011), Statistical Learning and Computer Experiments, PhD thesis from University Paul Sabatier of Toulouse.
- F. Mangeant (2011), Joined initiative around uncertainty management, Annals of Telecommunications.

E. de Rocquigny, N. Devictor, S. Tarantola - Eds (2008), Uncertainty in Industrial Practice, Wiley Verlag.

A. Shapiro, D. Dentcheva, A. Ruszczynski (2009), Lectures on Stochastic Programming, MPS-SIAM Series on Optimization

A. Ben-Tal, L. El Ghaoui, A. Nemirovski (2009), Robust Optimization, Princeton Series in Applied Mathematics

