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Thermal control of electric cores or highly dissipative equipment of avionic bay
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Topics of the presentation

Installation of equipment in avionic bay requires the specification of equipment
thermal environment

Figure : Aircraft & Equipment - Avionic bay

Need to provide convection coefficients around the equipment...

... For a robust equipment conception
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Topics of the presentation

Two phases:

1/ PDE parameter estimation

2/ Phenomenon study with parametrized PDE
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PDE calibration for aircraft cabin thermal regulation

Modelling

(simplified) Thermal exchange modelling (Navier Stokes equations)

Equations :



∂ρ

∂t
+∇.(ρ u) = 0

∂(ρCpT )

∂t
+∇.(u.ρCpT ) = ∇.(k∇T )

∂(ρu)

∂t
+ (u.∇)u +∇p = µ∆u + ρg

Boundary Conditions :
{

u = u0(M) with turbulence model RANS(τ)
φ = hC (T − TSkin)

ρ= air density, u=air speed, T=temperature, τ=turb. rate, hC= heat transf.
coef., TSkin= skin temp.
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Modelling
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Equations :



∂ρ

∂t
+∇.(ρ u) = 0
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∂(ρu)

∂t
+ (u.∇)u +∇p = µ∆u + ρg

Boundary Conditions :

{
u = u0(M) with turbulence model RANS( τ )

φ = hC (T − TSkin )

ρ= air density, u=air speed, T=temperature, τ=turb. rate, h= heat transf.
coef., TSkin= skin temp.

⇒ hC should be estimated
⇒ τ and TSkin are subjected to uncertainties

Input/Output model view
Equation & Boundary Conditions induce an Input/Output system

H ((τ ,TSkin), hC ) .

In particular, the post-processing providing convection coefficients is some
function h ((τ ,TSkin), hC ).
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Question ?

How to estimate hC in presence of uncertainties (τ, TSkin) ?

• We need additional information (reference measures, experimental data, etc.)

• How to model the uncertainties ?

• How to take into account uncertainties in identification procedures ?
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Experiments

Figure : Flight test - Chamber test

Principle:
At a fixed environmental condition, one can measure convection coefficients
Cobs

i around the equipment.
- Flight tests / Chamber tests
- Few sensors are used

Finally, one gets a very precious database (Cobs
i ) for i = 1, ...,N with N limited !
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Summary

We have two ingredients:

We can compute convection coefficients of the equipment from Navier Stokes
equations

C comp = h ((τ ,TSkin), hC )

Experimental database
(Cobs

i )i=1,...,N

Remark: a single run of h may take several hours (∼ 6 hours !)

Q : How to estimate hC from the experimental database ?
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Mathematical formalization
Variable of interest (induced by a PDE system)
We call a variable of interest any quantity obtained by a post-processing of some
PDE equations resolution. It takes the form

h(X,θ) field or scalar

where
• X ∈ (Rd ,B(Rd ),Px) is a random vector representing the uncertainties
• θ ∈ Rk is the vector of parameters to identify

(in our application: X = (τ ,TSkin) ∈ (R2,B(R2),Px) and θ = hC ∈ R)
Experimental/Reference data (also called Learning data)
It is a set of points:
• (zi ,Yi )i=1,...,N → if h(X,θ) is a field z 7→ h(X,θ)[z]
• (Yl )l=1,...,N → if h(X,θ) is scalar

(Remark: a priori, There is not a model linking the observation Y and the
simulation h(X,θ). For instance, we don’t have the regression framework

Y = h(X,θ) + ε

where ε is the model error. Indeed, we don’t have joint information
(Xi ,Yi ) ! )
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Calibration methods

There are two calibration methods depending on the nature of the variable of interest
h(X,θ), scalar or field.
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Calibration method I (case for fields)

Least Squares principle:
Find parameters θ ∈ Rk which minimize the quantity

J (X,θ) =
N∑

i=1

(Yi − h(X,θ)[zi ])
2

Remark !:
the function θ 7→ J (X,θ) to minimize is random (due to uncertainties X) !

⇒ Classical least squares methods are infeasible ...

Issue: Stochastic Optimization

Principle: Minimize a quantity ρ(J (X,θ)) (deterministic)

• Mean : ρ(J (X,θ)) = EX(J (X,θ))
• Variance : ρ(J (X,θ)) = VarX(J (X,θ))
• Mixed : ρλ(J (X,θ)) = EX(J (X,θ)) + λ

√
VarX(J (X,θ))

• etc.
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Calibration method I (case for fields)
Illustration

θ 7→ ρλ(J (X,θ)) = EX(J (X,θ)) + λ
√
VarX(J (X,θ)) for different λ > 0

(deterministic function ⇔ θ 7→ J (Xnom, θ), where Xnom is the nominal value of X )

determ. function
rho−Mean function
rho−Mean/Var lamda = 0.1
rho−Mean/Var lamda = 0.2
rho−Mean/Var lamda = 0.4
rho−Mean/Var lamda = 0.8
rho−Mean/Var lamda = 1
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Calibration method I (case for fields)

Stochastic/Robust Optimization

• Large literature

• Practical algorithms
Need practical and efficient algorithms ...
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Calibration method II (case for scalar outputs)
Recall the framework:
• We have observations (Yi )1,...,N
• We get a scalar output h(X,θ) after a post-processing of a PDE system

Estimation method:
[Rachdi et al 2012] Risk bounds for new M-estimation problems, ESAIM:Probability
& Statistics, 2012

Principle:
Find parameters θ ∈ Rk which minimize "a distance" between the empirical
distribution of the Yi ’s and the simulated distribution of the random variable
h(X,θ) (based on a simulated sample h(X1,θ), ..., h(Xm,θ), where X1, ...,Xm are m
simulations of the uncertainty X).

Example: Maximum-Likelihood based method
[Rachdi et al 2012] Stochastic inverse problem with noisy simulator, Ann. Fac. Sc.
Toulouse, 2012

Find θ minimizing

J (θ) = −
N∑

i=1

log

 m∑
j=1

Kb(Yi − h(Xj ,θ))

 , with Kb(y) =
1

√
2π b

e−y2/2b2
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Calibration method II (case for scalar outputs)
Theoretical results of the estimator θ̂N,m where

θ̂N,m = Argmin
θ∈Θ

−
N∑

i=1

log

 m∑
j=1

Kb(Yi − h(Xj ,θ))



Theorem (Consistency) [Rachdi2012]

Denote by f x
θ the density function of h(X,θ) and θ∗ by

θ∗ = Argmin
θ∈Θ

−E (log(f x
θ )(Y )) (unknown target) .

Under technical conditions, ∃ constants c1, c2, c3, a1 and a2 such that ∀ 0 < τ < 1/2,
with probability at least 1− 2 τ

‖θ̂N,m − θ∗‖2 ≤ c1

√
log(a1τ−1)

N
+

c2
√

log(a2τ−1) + c3 m1/10
√

m
.

⇒ the right hand side is not the rate of convergence ! ... but ensure the consistency.

Theorem (Central Limit Theorem)

In progress !
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Simulation of h is limited !

Calibration may be very greedy ...
Both calibration methods may need several computations of h involving new
PDE system resolutions.
• In most of our applications, one run of h (i.e numerical resolution +

post-processing) ∼ 6 hours
• So for 50 calibration algorithm iterations, we have to wait ∼ 13 days !

Strategy adopted:

Replace the CPU time expensive model h(X,θ) by a mathematical
approximation (analytical) h̃(X,θ), very cheap to evaluate.
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Meta model strategy
A well adopted strategy (among others...) :

Sample, Build, Validate and Replace

Different types of meta models
• Regression-based: (Neural network, Polynomial Chaos, Least squares,

etc.)
• Interpolation-based: (Radial Basis Functions, Gaussian processes/Kriging,

etc.)
Calibration methods only involve the metamodel, i.e one calibrates the
metamodel ! (no more the PDE system...)
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Summary : global process of thermal analysis
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Conclusions & Issues

Asymptotic study of the estimator θ̂N,m

Mathematical study of calibration procedures induced by the Stochastic
Optimization of θ 7→ J (X,θ)

Quantify the robustness of equipment specification when considering the
uncertainties

Improve existing metamodel-based algorithms (adaptive metamodelling, on-line
refinement, etc.)

HPC capabilities for metamodel constructions

Facilitate metamodels exportation (distribution to suppliers, etc.)

Extend the method for Multi-Fidelity learning data (varying mesh size, etc.)
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Thank you for your attention !
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