
INTRODUCTION TO
PERFORMANCE

ANALYSIS

William Jalby, UVSQ,

Exascale Computing Research

Overview

1. The stage/actors

2. Measurement Techniques

3. A brief microarchitecture overview

4. Microbenchmarking

5. DECAN

3

Abstraction Layers in Modern Systems

Programming Language

Gates/Register-Transfer Level (RTL)

Algorithm/Libraries

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Devices

Compilers/Interpreters

Circuits

Physics

Application

CS

EE

4

OUR OBJECTIVE/POSITIONNING

Algorithm/Libraries

Microarchitecture

Application

Understand the

relationship/interaction

between Architecture

Microarchitecture and

Applications/Algorithms

We have to take into

account the

intermediate layers

Don’t forget also the lowest

layers

KEY TECHNOLOGIES:

- Performance

Measurement and

Analysis

- Compilers

Standard goals for Performance Analysis

• For a given architecture and application, improve application
performance: tune performance and/or change algorithms.

• For a given set of applications, try to determine best
architecture including its variants (cache size, memory/core
organization etc …)

• For Computing Center managers, optimize resource usage

• For hardware/system designers, understand bottlenecks on
current architectures and derive guidelines for next
generation

• NEW: For a given architecture and application, improve its
energy consumption

5

performance tuning curve*

Effort

M
a
rg

in
a
l

P
e
rf

o
rm

a
n
c
e

G
a
in

Application

Insight

Application

+ Arch

Insight

Microarchitectural

Insight

CHOOSE RIGHT

ALGORITHM CLASS

Parallelism: 1000X

TUNE TO GLOBAL

ARCHITECTURE

CHARACTERISTICS

Optimize communication: 10X

Vectorize: 2X to 8X

TUNE TO LOW LEVEL

ARCHITECTURE

CHARACTERISTICS

Optimize cache usage: 2X to

10X

Optimize unicore execution:

1,2 X to 3X

*fruit-pickers, compilers, and dynamic optimizers all follow this model

Performance Tuning

• Identify clearly performance issues:

 Where ?? source code fragment (ideally a few
statements)

 Who ?? algorithm, compiler, OS, hardware

 How much ?? exact cost of performance issue
(determine optimal possible performance for a given
code fragment)

• Three solution techniques

 Analytical models

 Simulation

 Measurements

7

Analytical Models
Mathematical equations describing system (or more likely

subsystem) performance in function of key parameters

Allows to exactly capture impact of parameters and ideal
for performance tuning

Fast

Requires very strong simplifying assumptions to remain
tractable/usable: low accuracy

Has to validated/calibrated against
simulation/experiment

• Exemples

 Amdahl’s law

 L1/L2 equation: Tav = h T1 + (1-h) T2 h : Hit Ratio

8

Simulation
Software tool modeling hardware behavior of system or

subsystem

Explicit direct relation between hardware and software

Slow: accuracy versus speed trade off (OS impact often
not taken into account)

Has to validated/calibrated against experiment

To be accurate requires deep knowledge on target
architecture

• Examples

 Cache simulators: good tool to apprehend program
temporal locality

9

Measurements
Direct measurement of running programs

Excellent accuracy (if measurements done correctly):
everything taken into account, no simplifying
assumption: IDEAL

Fast (not so fast if good measurement methodology is
used)

Difficult to vary parameters

Difficult separate parameters impact (aggregate effect) s

• Examples

 Analytical models built using measurement
(microbenchmarks)

10

Metrics

• What can be measured:

 Counts of a given hardware event occurrences: cache
miss, instruction stalls, etc …

 Time: time interval

 Values: value profiling: stride of memory access, loop
length, message size etc ….

• Difficulties:

 Accuracy

 Correlation with source code: aggregate values (otal
number of cache misses for the whole loop not for
individual statements)

11

TIME

• Wall clock time: it includes everything: I/O, system etc …..
Including other programs running simultaneously but it
corresponds to response time

• CPU Time:

 Time spent by CPU to execute programs

 Real target

• How to measure time ?? recommendation use RDTSC: Read
Time Stamp Counter (assembly instruction with good
accuracy). However small durations (less than 100 cycles are
extremely difficult to measure if not impossible)

12

Derived Metrics

• Rates: obtained by dividing number of occurrences by time

 GIPS Billions of Instructions per second

 GFLOPS Billions of Floating point instructions per
second

 MBYTE/s number of Mbytes per second (useful for
characterizing stress on various memory levels)

 THROUGHPUT: how many job instances executed per
second

• Rates are useful to assess how well some hardware parts are
used.

• A useful derived metric: SPEEDUP: T1/Tp Where T1 (resp. Tp
execution time on 1 (resp. p) core(s).

13

How to perform measurements ??

• How to trigger measurements ??

 Hardware Driven: sampling

 Code Driven: tracing

• For tracing, how to insert probes ??

 Source level

 Binary level

 Static/dynamic instrumentation

• Three key questions:

 How much perturbation is introduced ??

 How to correlate with source ??

 How to Record/Display information??

14

Sampling (1)

• OPERATION MODE (hardware driven):

1. Focus on a given hardware event: clock ticks, FP
operations, cache miss,

2. At each event occurrence, counter is incremented

3. When threshold is reached (counter overflow), interrupt
occurs and counter reset to 0

• What happens on interrupt ??

 Record instruction pointer and charge the whole
occurrences count to that IP

 Advanced mechanism on INTEL processors: PEBS (Precise
Event Based Sampling): record processor state (register
values etc …)

15

Sampling (2)

KEY PRINCIPLE: general statistical measurement techniques
relying on the assumption that a subset of the population
being monitored is representative of the whole population

• CORRELATION WITH SOURCE CODE:

 Function level, Basic Block Level, Loop level but NOT AT
THE INSTRUCTION LEVEL (reasonably)

 IP is not enough, whole call stack is needed which is not
easy

 Inclusive Versus Exclusive issue

 Call site issue

EXCELLENT EXAMPLE: XE Amplifier (VTUNE/PTU) : INTEL

16

Inclusive versus Exclusive

Subroutine toto1 (…..)

Basic Block 1 (BB1)

Call toto2

Basic Block 2 (BB2)

Return

Toto2 is leaf in the call
graph

INCLUSIVE TIME:

Tinc = T(BB1) + T(toto2) +
T(BB2)

EXCLUSIVE TIME

Texc = T(BB1) + T(BB2)

Exclusive time is easy but
Inclusive time needs call
stack

17

Issue with call sites
Subroutine toto1

……

call toto2 (4)

…….

call toto2 (10000)

……

Return

Usually, all of the counts
relative to the different

occurrences of toto2
will be lumped
together: bad

correlation with source
code.

TRICK: use toto2short and
toto2long to distinguish
the two!!

18

SAMPLING: pros and cons

PROS

• Binary used as is (no
recompile/no
modifications)

• User transparent

• Low overhead if sampling
period is large

• PEBS offers very
interesting opportunities
(whole processor state)

CONS

• Accuracy

• Correlation with source
code

• Difficult to assert its
quality

19

TRACING

• OPERATION MODE (code driven):

1. Insert probes (source/binary, static/binary) at point of
interest (POI)

2. Measurement performed when probe is executed

3. Record tracing event/build trace

• Trace format

 VTF : used by TAU

 OTF: Open Trace format

20

Instrumentation: Probe Insertion

• Source level: EXAMPLE: TAU source code instrumenter

• Library level

• Binary level: EXAMPLE: MAQAO/MIL

• Probe Insertion

 Manual: tedious, error prone

 Automatic: preprocessor, binary rewrite: Might be difficult
to select meaningful POI.

 Automatic by compiler: specification can be done at source
level but instrumentation done by compiler: INTEL IFC/ICC
12.0

21

Source Instrumentation Issue

DO I = 1, 200

DO J = 1, 1000

……

ENDDO

ENDDO

Loop Interchange can be
performed by compiler

DO I = 1, 200

Start Clock

DO J = 1, 1000

……

ENDDO

Stop Clock

ENDDO

Loop interchange no
longer possible!!

22

Source Instrumentation: Pros and Cons

PROS

• Portable

• Good correlation with
source code

CONS

• Needs recompile

• Interaction with
compiler

• Difficult interaction
with high level
abstractions (C++)

• Requires access to
source code

23

Binary Instrumentation: Pros and Cons

PROS

• No recompile

• Instrument the real
target code

• No need to access source
code

• Lowest overhead possible

• OK correlation with
simple source code
constructs.

CONS

• Not portable

• Need access to
specialized tooling
(disassembler)

• Might be difficult to
correlate with High
Level abstractions in
source code (C++)

24

Tracing: pros and cons

PROS

• Excellent correlation with
source code

• Excellent accuracy

• Traces preserve temporal
and spatial relationships
between events

• Allows reconstruction of
dynamic behavior

• Most general technique

CONS

• Traces can be huge

• How to select POI and
events to be measured a
priori ??

• Writing large trace files
can induce measurement
perturbation

• Aggregate view at loop
level at best

25

A simplified view at X86 architecture

Three key components

• Front End pipeline: prepares instructions for execution; IN ORDER

• Execution pipeline: OUT OF ORDER

• Completion pipeline: retires completed instructions: IN ORDER

• Library level

These three components coupled through buffers:

• REORDER BUFFER (ROB): keep track of instruction status

• RESERVATION STATION (RS): store instructions ready to execute

• MEMORY ORDER BUFFER: make sure memory instructions are
executed in an OK order.

26

Simplified view of X86 Pipeline

27

FE1 FE3FE2

FU0

FU2

FU1

FU3

FU4

R

e

s

e

r

v

S

T

A

T

R

R

O

B

R

E

A

D

R

R

O

B

W

R

I

T

E

Typical Front End Pipeline

• Branch Prediction

• Instruction Fetch (16 B/cycle): fetches instructions

• Predecode (6 instruc /cycles): find instruction boundaries

• Decode (4 instruct/cycle): indentify operands; operations,
generate micro operations

• Register allocation/rename (4 micro/cycle)

• Read Operands (4 micro/cycle)

• Wait for operands from ROB

• Get into reservation station

INSTRUCTIONS FLOW ALL OF THESE STAGES IN ORDER

28

Execution Units

Functional units are grouped into clusters with PORT as entry points

• PORT0: ALU Operation/SSE FMUL

• PORT1: ALU Operation/SSE FADDD

• PORT5: ALU Operation/Branch

• PORT2: Loads

• PORT3: Store Address

• PORT4: Store Data

In general ports can accept one new instruction every cycle: max of 6
instructions can be issued every cycle

OUT OF ORDER EXECUTION: all dependencies have been resolved
earlier except between memory address (MOB)

Between 50 and 100 instructions simultaneously in flight

29

Completion/Retirement

• Once an instruction finishes its execution, results are provide to
the ROB so subsequent instructions can use directly these results

• Write back to register file

• Retire instructions in order (4 / cycle)

STRANGE EFFECT: a long latency instruction (divide) can induce a
quickly fill up of the ROB and freeze pipeline

30

Analysis of Out of Order

• Simplified version of Little’s Law: Operation
Latency = L cycles, L operations have to be in
flight for ensuring a sustained rate of 1
operation per cycle.

• Out of Order will buy you a few cycles (at
most 10 or 20) not hundreds of cycle of main
memory latency.

31

Hardware Performance Counters/Events

• A large number of hardware events (around 1200 on Nehalem
processors) can be counted

• BUT DURING A SINGLE RUN, only 4 to 6 counters are available

• Therefore multiple runs are necessary to gather a good set of
events

• Multiplexing can increase number of events monitored but at
accuracy expense

• Very precise

• Some nice feature: count number of loads exceeding a given
latency threshold

• REAL GOAL: hardware debugging. SECONDARY GOAL: understand
machine behavior

32

Critics on hardware performance events

• TOO LOW LEVEL: very local view at the hardware level

• NEEDS A DEEP UNDERSTANDING OF MICROARCHITECTURE: no
good documentation available on microarchitecture

• CHANGE FROM ONE PROC GENERATION TO THE NEXT: different
names designate similar events, same names designate different
events

• NEED TO KNOW WHAT TO MONITOR: with 1200 events task is not
easy

• HARD TO QUANTIFY: what is high ??

• ALMOST IMPOSSIBLE TO ACCURATELYCORRELATE WITH SOURCE
CODE

33

(NxN)(NxN) DGEMM L2 Behavior

DGEMM (NxN) (NxN) L3 Behavior

(NxN) (NxN) DGEMM Performance

THE 4 KEY ROADBLOCKS

• Algorithm

• Compiler (MAQAO on Wednesday)

• OS (Today with S. Valat)

• Hardware (next)

37

