

DEEP

LEARNING INSTITUTE

DEEP LEARNING DEMYSTIFIED

Frédéric Parienté NVIDIA Corporation

DEFINITIONS

PERCEPTRON

Rosenblatt, 1958

DEEP NEURAL NETWORK (DNN)

HOW DL CAN BE APPLIED

INPUTS		BUSINESS QUESTION	AI/DL TASK	EXAMPLES IN HEALTHCARE	EXAMPLES IN RETAIL	EXAMPLES IN FINANCE
		ls "it" <u>present</u> or not?	Detection	Cancer Detection	Targeted ads	Cybersecurity
Text Data		What <u>type</u> of thing is "it"?	Classification	Image Classification	Basket Analysis	Credit Scoring
	mages	To what <u>extent</u> is "it" present?	Segmentation	Tumor Size/Shape Analysis	Build 360° Customer View	Credit Risk Analysis
⊗ .⊗	Ļ	What is the likely outcome?	Prediction	Survivability Prediction	Sentiment & behavior recognition	Fraud Detection
Video	Audio	What will satisfy the objective?	Recommendations	Therapy Recommendation	Recommendation Engine	Algorithmic Trading
		What is the speaker saying?	Natural Language Processing	Expert diagnosis	Virtual personal assistants	Robo Advisors

DEEP LEARNING IS SWEEPING ACROSS INDUSTRIES

Internet Services

Medicine

Media & Entertainment

Security & Defense

Ŧ.

Autonomous Machines

Aler Bon NY CREAT

- ➤ Image/Video classification
- ➤ Speech recognition
- Natural language processing
- Cancer cell detection
- > Diabetic grading
- Drug discovery

- \succ Video captioning
- Content based search
- ➤ Real time translation
- ▹ Face recognition
- ▹ Video surveillance
- ➤ Cyber security

- Pedestrian detection
- ➤ Lane tracking
- Recognize traffic signs

Predicting Disruptions in Fusion Reactor using DL

Background

Grand challenge of fusion energy offers mankind changing opportunity to provide clean, safe energy for millions of years. ITER is a \$25B international investment in a fusion reactor.

Challenge

Fusion is highly sensitive, any disruption to conditions can cause reaction to stop suddenly. Challenge is to predict when a disruption will occur to prevent damage to ITER and to steer the reaction to continue to produce power. Traditional simulation and ML approaches were 65% to 85% accurate with 5% false alarm rate

Solution

DL network called FRNN using Theano exceeds today's best accuracy results. It scales to 200 Tesla K20s, and with more GPUs, can deliver higher accuracy. Current level of accuracy is 95% prediction with 5% false alarm rate.

Impact

Vision is to operate ITER with FRNN, operating and steering experiments in realtime to minimize damage and down-time.

http://www.ncic.ac.cn/codesign/codesign_ppt/W_Tang_HPC_China_2016_ML_Disruption%20Talk.pdf

Al Quantum Breakthrough

Background

Developing a new drug costs \$2.5B and takes 10-15 years. Quantum chemistry (QC) simulations are important to accurately screen millions of potential drugs to a few most promising drug candidates.

Challenge

QC simulation is computationally expensive so researchers use approximations, compromising on accuracy. To screen 10M drug candidates, it takes 5 years to compute on CPUs.

Solution

Researchers at the University of Florida and the University of North Carolina leveraged GPU deep learning to develop ANAKIN-ME, to reproduce molecular energy surfaces with super speed (microseconds versus several minutes), extremely high (DFT) accuracy, and at 1-10/millionths of the cost of current computational methods.

Impact

Faster, more accurate screening at far lower cost

https://www.ncbi.nlm.nih.gov/pubmed/28507695

Real-Time Simulation of Fluid Flow

Background

Eulerian methods are able to produce accurate results simulating fluids like water with high compute costs. The most demanding portion of this method is the "pressure projection" step, which satisfies the incompressibility constraint. It involves solving the discrete Poisson equation and leads to a well-known sparse, symmetric and positive-definite linear system.

Challenge

Real-time simulation of fluid and smoke is a long standing problem in computer graphics, where state-of-the-art approaches require large compute resources, making real-time applications often impractical.

Solution

Researchers at Google and the New York University (NYU) used CNN to solve the linear system. "Obtained results are realistic and show good generalization properties."

Impact

Produces very stable divergence-free velocity fields while being orders of magnitude faster

https://arxiv.org/pdf/1607.03597.pdf

AI-HPC CONVERGENCE: A TAXONOMY

Transformation HPC + AI couple simulation with live data in real time detection/control system Augmentation HPC + AI combined to improve simulation time to science > orders of magnitude

Experimental/simulated data is used to train a NN that is used to for detection/control of an experiment or clinical delivery system in real time. The NN is improved continuously as new simulated / live data is acquired

Experimental/simulated data is used to train a NN that is used to replace all or significant runtime portions of a conventional simulation. The NN is improved continuously as new simulated / live data is acquired **Modulation** HPC + Al combined to reduce the number

of runs needed for a parameter sweep

Experimental/simulated data used to train a NN which steers simulation/experiment b/w runs

The steering NN can be trained continuously as new simulated / live data is acquired

Potential for Breakthroughs in Scientific Insight

THE EXPANDING UNIVERSE OF MODERN AI

OpenAl DEEPMIN Université ma Mir Star OXFORD † NYU TORONTO

ODETE	CHNOLO	GY / FRAME	WORI
		Preferred Networks	Chaine
cebook.	torch	Université H de Montréal	thear
boogle	fensorFlow	Berkeley	Caff
Microsoft	CNTK	© oxford	the second
-			

i vi amazon BM Watson Google Microsoft Azure

	STARI-O	
		nerva
soni oi	drive.ai	Tech
papi.ai	Automotive	Al-as-a-service
Personal Assistants conversational interface	computer vision	YSADA
	MetaMind	Waste Manage
TECHNOLOGY	eCommerce & Medical	sorting robots
Agriculture	recommendation engines	
crop-yield optimization	Morpho	
clarifai	Tach	diabetic retinopat
Tech	computer vision	
visual recognition platform		HERN ARE VED
A deep	Orbital Insight	Education
genomics	Geospatial	teaching robots
Genomics	predictions from images	
genetic interpretation		

nervana Tech Al-as-a-service **Y**SADAKO

MetaMind. Waste Management sorting robots merce & Medical SocialEves* Morpho Medical diabetic retinopath

\$5B IN FUNDING

COW ARE VO

charles SCHWAB

EL

Alibaba com

AstraZeneca

 \mathfrak{m}

Baidの百度

Bloomberg

C

...... CISCO ebay

Pinterest Schlumberger

FANUC ROBOTICS

SIEM

O TAP

THE

(TO)

UB

VOL

Walm

YAH

Find

(38)

gsk

HOME

MASSACHUSETTS GENERAL HOSPITAL

Mercedes-Benz

MERCK

A NEW COMPUTING MODEL

Algorithms that Learn from Examples

DEEP LEARNING

DEEP NEURAL NETWORK (DNN)

Application components:

LEARNING

CHALLENGES

Deep Learning Needs	Why
Data Scientists	Demand far exceeds supply
Latest Algorithms	Rapidly evolving
Fast Training	Impossible -> Practical
Deployment Platform	Must be available everywhere

NVIDIA DEEP LEARNING INSTITUTE

Hands-on Training for Data Scientists and Software Engineers

Training organizations and individuals to solve challenging problems using Deep Learning

On-site workshops and online courses presented by certified instructors

Covering complete workflows for proven application use cases Self-driving cars, recommendation engines, medical image classification, intelligent video analytics and more

www.nvidia.com/dli

DEEP LEARNING SOFTWARE

NVIDIA DIGITS™

Interactively manage data and train deep learning models for image classification without the need to write code.

Learn more

Deep Learning Frameworks

Design and train deep learning models using a high-level interface. Choose a deep learning framework that best suits your needs based on your choice of programming language, platform, and target application.

NVIDIA Deep Learning SDK

This SDK delivers high- performance multi-GPU acceleration and industry-vetted deep learning algorithms, and is designed for easy drop-in acceleration for deep learning frameworks.

developer.nvidia.com/deep-learning

END-TO-END PRODUCT FAMILY

TRAINING

INFERENCE

CHALLENGES

Deep Learning Needs	NVIDIA Delivers
Data Scientists	DIGITS, DLI Training
Latest Algorithms	DL SDK, GPU-Accelerated Frameworks
Fast Training	DGX, P100, P40, TITAN X
Deployment Platform	TensorRT, P40, P4, Jetson, Drive PX

KEY TAKEAWAYS

Al is everywhere

DL is the key technology for Modern AI

NVIDIA provides the products and solutions powering the revolution

GPU TECHNOLOGY CONFERENCE

Oct 10-12, 2017 | ICC Munich www.gputechconf.eu Use promo code **FredericParienteGTCEU17** for a discount on the conference fee!

Europe's Brightest Minds & Best Ideas

DEEP LEARNING & ARTIFICIAL INTELLIGENCE

SELF-DRIVING CARS

VIRTUAL REALITY & AUGMENTED REALITY

SUPERCOMPUTING & HPC

GTC Europe is a three-day conference designed to expose the innovative ways developers, businesses and academics are using artificial intelligence and parallel computing to transform our world.

3 Days | 2000+ Attendees | 50+ Exhibitors | 3 Keynotes | 150+ Sessions | Workshops | 1-to-1 Meetings

www.nvidia.com/dli

