Hybrid High-Order (HHO) methods on general meshes

Daniele A. Di Pietro

University of Montpellier
Institut Montpelliérain Alexander Grothendieck

Paris, 19th June, 2015
Mimetic Finite Differences
- Extension to polyhedral meshes [Kuznetsov et al., 2004]
- Convergence analysis [Brezzi et al., 2005]

Mixed/Hybrid Finite Volumes
- Pure diffusion (mixed) [Droniou and Eymard, 2006]
- Pure diffusion (primal) [Eymard et al., 2010]
- Link with MFD [Droniou et al., 2010]

More recently
- Compatible Discrete Operators [Bonelle and Ern, 2014]
- Generalized Crouzeix–Raviart [DP and Lemaire, 2015]
Bibliography: High-order polyhedral methods

- **Discontinuous Galerkin**
 - General meshes [DP and Ern, 2012]
 - Adaptive coarsening [Bassi et al., 2012, Antonietti et al., 2013]

- **Hybridizable Discontinuous Galerkin**
 - Pure diffusion [Cockburn et al., 2009]

- **Virtual elements**
 - Pure diffusion [Beirão da Veiga et al., 2013a]
 - Nonconforming VEM [Ayuso de Dios et al., 2014]
 - Linear elasticity [Beirão da Veiga et al., 2013b]

- **Hybrid High-Order**
 - Pure diffusion [DP and Ern, 2014b]
 - Linear elasticity [DP and Ern, 2015]
 - Bridge between HHO and HDG [Cockburn, DP and Ern, 2015]
Features of HHO

- Capability of handling general polyhedral meshes
- Construction valid for arbitrary space dimensions
- Arbitrary approximation order (including $k = 0$)
- Reproduction of desirable continuum properties
 - Integration by parts formulas
 - Kernels of operators
 - Symmetries
- Reduced computational cost after hybridization

\[
N_{\text{dof}}^{\text{hho}} \approx \frac{1}{2} k^2 \text{card}(\mathcal{F}_h) \quad N_{\text{dof}}^{\text{dg}} \approx \frac{1}{6} k^3 \text{card}(\mathcal{T}_h)
\]
1. Poisson

2. Variable diffusion and local conservation

3. Linear elasticity
1. Poisson

2. Variable diffusion and local conservation

3. Linear elasticity
Definition (Mesh regularity)

We consider a sequence \((\mathcal{T}_h)_{h \in \mathcal{H}}\) of polyhedral meshes s.t., for all \(h \in \mathcal{H}\), \(\mathcal{T}_h\) admits a simplicial submesh \(\mathcal{S}_h\) and \((\mathcal{S}_h)_{h \in \mathcal{H}}\) is

- **shape-regular** in the sense of Ciarlet;
- **contact-regular**: every simplex \(S \subset T\) is s.t. \(h_S \approx h_T\).

Main consequences:

- Trace and inverse inequalities
- Optimal approximation for broken polynomial spaces
Mesh regularity II

Figure: Admissible meshes in 2d and 3d: [Herbin and Hubert, 2008, FVCA5] and [Di Pietro and Lemaire, 2015] (above) and [Eymard et al., 2011, FVCA6] (below)
Let Ω denote a bounded, connected polyhedral domain.

For $f \in L^2(\Omega)$, we consider the Poisson problem

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial\Omega$$

In weak form: Find $u \in H^1_0(\Omega)$ s.t.

$$a(u, v) := (\nabla u, \nabla v) = (f, v) \quad \forall v \in H^1_0(\Omega)$$
Key ideas

- **DOFs**: polynomials of degree $k \geq 0$ at elements and faces
- **Differential operators reconstructions** tailored to the problem:

$$a_T(u, v) \approx (\nabla p_T^{k+1} u_T, \nabla p_T^{k+1} v_T) + \text{stab.}$$

with

- high-order reconstruction p_T^{k+1} from local Neumann solves
- stabilization via face-based penalty
- **Construction yielding superconvergence** on general meshes
For $k \geq 0$ and all $T \in \mathcal{T}_h$, we define the local space of DOFs

$$U^k_T := \mathbb{P}^k_d(T) \times \left\{ \prod_{F \in \mathcal{F}_T} \mathbb{P}^k_{d-1}(F) \right\}$$

The global space has single-valued interface DOFs

$$U^k_h := \left\{ \prod_{T \in \mathcal{T}_h} \mathbb{P}^k_d(T) \right\} \times \left\{ \prod_{F \in \mathcal{F}_h} \mathbb{P}^k_{d-1}(F) \right\}$$
Local potential reconstruction

- Let $T \in \mathcal{T}_h$. The local potential reconstruction operator

$$p_{T}^{k+1} : U_{T}^k \rightarrow \mathbb{P}^k(T)$$

is s.t. $\forall v_T \in U_{T}^k$, $(p_{T}^{k+1}v_T, 1)_T = (v_T, 1)_T$ and $\forall w \in \mathbb{P}^k(T)$,

$$ (\nabla p_{T}^{k+1}v_T, \nabla w)_T := -(v_T, \Delta w)_T + \sum_{F \in \mathcal{F}_T} (v_F, \nabla w \cdot n_{TF})_F $$

- To compute p_{T}^{k+1}, we solve a small SPD linear system of size

$N_{k,d} := \binom{k+1 + d}{k+1}$

- Perfectly suited to GPU computing!
Lemma (Approximation properties for $p_T^{k+1} I_T^k$)

Define the local reduction map $I_T^k : H^1(T) \to U_T^k$ s.t.

$$I_T^k : v \mapsto \left(\pi_T^k v, (\pi_F^k v)_{F \in \mathcal{F}_T} \right).$$

Then, for all $T \in \mathcal{T}_h$ and all $v \in H^{k+2}(T)$,

$$\| v - p_T^{k+1} I_T^k v \|_T + h_T \| \nabla (v - p_T^{k+1} I_T^k v) \|_T \lesssim h_T^{k+2} \| v \|_{k+2,T}.$$
Since \(\triangle w \in \mathbb{P}^{k-1}_{d}(T) \) and \(\nabla w|_{F} \cdot \mathbf{n}_{TF} \in \mathbb{P}^{k}_{d-1}(F) \),

\[
(\nabla p^{k+1}_{T} I^{k}_{T} v, \nabla w)_{T} = - (\pi^{k}_{T} v, \triangle w)_{T} + \sum_{F \in \mathcal{F}_{T}} (\pi^{k}_{F} v, \nabla w \cdot \mathbf{n}_{TF})_{F}
\]

\[
= - (v, \triangle w)_{T} + \sum_{F \in \mathcal{F}_{T}} (v, \nabla w \cdot \mathbf{n}_{TF})_{F} = (\nabla v, \nabla w)_{T}
\]

This shows that \(p^{k+1}_{T} I^{k}_{T} \) is the elliptic projector on \(\mathbb{P}^{k+1}_{d}(T) \):

\[
(\nabla p^{k+1}_{T} I^{k}_{T} v - \nabla v, \nabla w)_{T} = 0 \quad \forall w \in \mathbb{P}^{k+1}_{d}(T)
\]

The approximation properties follow
Stabilization I

- The following naive choice is not stable

\[a_T(u, v) \approx (\nabla p_{T}^{k+1} u_T, \nabla p_{T}^{k+1} v_T)_T \]

- To remedy, we add a local stabilization term

\[(\nabla p_{T}^{k+1} u_T, \nabla p_{T}^{k+1} v_T)_T + s_T(u_T, v_T) \]

- Coercivity and boundedness are expressed w.r.t. to

\[\| v_T \|_{1,T}^2 := \| \nabla v_T \|_T^2 + \sum_{F \in \mathcal{F}_T} \frac{1}{h_F} \| v_F - v_T \|_F^2 \]
Define, for $T \in \mathcal{T}_h$, the stabilization bilinear form s_T as

$$s_T(u_T, v_T) := \sum_{F \in \mathcal{F}_T} h_F^{-1}(\pi_F^k(\hat{p}^{k+1}_T u_T - u_F), \pi_F^k(\hat{p}^{k+1}_T v_T - v_F))_F,$$

with \hat{p}^{k+1}_T high-order correction of cell DOFs based on p^{k+1}_T

$$\hat{p}^{k+1}_T v_T := v_T + (p^{k+1}_T v_T - \pi_T^k p^{k+1}_T v_T)$$

With this choice, a_T satisfies, for all $v_T \in U^k_T$,

$$\|v_h\|_{1,T}^2 \leq a_T(v_T, v_T) \leq \|v_T\|_{1,T}^2$$
Stabilization III

Lemma (High-order consistency of s_T)

s_T preserves the approximation properties of ∇p_T^{k+1}.

- For all $u \in H^{k+2}(T)$, letting $\hat{u}_T := I_T^k u = (\pi_T^k u, (\pi_F^k u)_{F \in T})$, $\pi_F^k (\hat{p}_T^{k+1} \hat{u}_T - \hat{u}_F) \|_F = \pi_F^k (\pi_T^k u + p_T^{k+1} \hat{u}_T - \pi_T^k p_T^{k+1} \hat{u}_T - \pi_F^k u) \|_F \\
 \leq \pi_F^k (p_T^{k+1} \hat{u}_T - u) \|_F + \pi_T^k (u - p_T^{k+1} \hat{u}_T) \|_F \\
 \lesssim h_T^{-1/2} \| p_T^{k+1} \hat{u}_T - u \|_T$

- Recalling the approximation properties of p_T^{k+1}, this yields

$$\left\{ \| \nabla (p_T^{k+1} \hat{u}_T - u) \|_T^2 + s_T(\hat{u}_T, \hat{u}_T) \right\}^{1/2} \lesssim h_T^{k+1} \| u \|_{k+2,T}$$
We enforce boundary conditions strongly considering the space

$$\overline{U}_{h,0}^k := \left\{ v_h \in \overline{U}_h^k \mid v_F \equiv 0 \quad \forall F \in \mathcal{F}_h^b \right\}$$

The discrete problem reads: Find \(u_h \in \overline{U}_{h,0}^k \) s.t.

$$a_h(u_h, v_h) := \sum_{T \in T_h} a_T(u_T, v_T) = \sum_{T \in T_h} (f, v_T)_T \quad \forall v_h \in \overline{U}_{h,0}^k$$

Well-posedness follows from the coercivity of \(a_h \)
Theorem (Energy-norm error estimate)

Assume \(u \in H^{k+2}(\mathcal{T}_h) \) and let

\[
\widehat{u}_h := (\pi^k_T u)_{T \in \mathcal{T}_h}, (\pi^k_F u)_{F \in \mathcal{F}_h} \in U^k_{h,0}.
\]

Then, we have the following energy error estimate:

\[
\max \left(\|u_h - \widehat{u}_h\|_{1,h}, \|u_h - \widehat{u}_h\|_{a,h} \right) \leq h^{k+1} \|u\|_{H^{k+2}(\Omega)},
\]

with

\[
\|v_h\|_{1,h}^2 := \sum_{T \in \mathcal{T}_h} \|v_T\|_{1,T}^2.
\]
Theorem (L^2-norm error estimate)

Further assuming elliptic regularity and $f \in H^1(\Omega)$ if $k = 0$,

$$\max (\|\tilde{u}_h - u\|, \|\hat{u}_h - u_h\|) \lesssim h^{k+2}N_k,$$

with $N_0 := \|f\|_{H^1(\Omega)}$, $N_k := \|u\|_{H^{k+2}(\mathcal{T}_h)}$ if $k \geq 1$, and, $\forall T \in \mathcal{T}_h$,

$$\tilde{u}_h|_T := p_T^{k+1}u_T, \quad \hat{u}_h|_T := p_T^{k+1}I_T^k u, \quad u_h|_T := u_T.$$
Convergence for a smooth 2d solution

Figure: Energy (left) and L^2-norm (right) of the error vs. h for uniformly refined triangular (top) and hexagonal (bottom) mesh families, $u(x) = \sin(\pi x_1) \sin(\pi x_2)$
Figure: Assembly/solution time for triangular (left) and hexagonal (right) mesh families, sequential implementation
Mesh adaptivity: Fichera’s 3d test case I

- Let $\Omega := (-1, 1)^3 \setminus [0, 1]^3$
- We consider the following exact solution:
 \[
 u(\boldsymbol{x}) = (x_1^2 + x_2^2 + x_3^2)^{\frac{1}{4}}
 \]
 corresponding to the forcing term
 \[
 f(\boldsymbol{x}) = -\frac{3}{4}(x_1^2 + x_2^2 + x_3^2)^{-\frac{3}{4}}
 \]
- We consider an adaptive procedure driven by guaranteed residual-based a posteriori estimators [DP & Specogna, 2015]
Mesh adaptivity: Fichera’s 3d test case II

Figure: HHO solution on a sequence of adaptively refined meshes
Mesh adaptivity: Fichera’s 3d test case III

Figure: Energy error vs. $\dim(U_h^k)$
Mesh adaptivity: Fichera’s 3d test case IV

Figure: Estimated (left) and true (right) error distribution
Outline

1. Poisson

2. Variable diffusion and local conservation

3. Linear elasticity
Let \(\nu : \Omega \rightarrow \mathbb{R}^{d \times d} \) be a SPD tensor-valued field s.t.

\[
\forall T \in \mathcal{T}_h, \quad 0 < \nu_T \leq \lambda(\nu) \leq \bar{\nu}_T
\]

Consider the variable diffusion problem

\[
-\nabla \cdot (\nu \nabla u) = f \quad \text{in } \Omega \\
\quad u = 0 \quad \text{on } \partial \Omega
\]

We confer built-in homogeneization features to \(p_T^{k+1} \)

\[
(\nu \nabla p_T^{k+1} \nu_T, \nabla w)_T = (\nu \nabla \nu_T, \nabla w)_T + \sum_{F \in \mathcal{F}_T} (\nu_F - \nu_T, \nu \nabla w \cdot n_{TF})_F
\]
There is C independent of h_T and ν s.t., for all $v \in H^{k+2}(T)$, it holds with $\alpha = \frac{1}{2}$ if ν is piecewise constant and $\alpha = 1$ otherwise:

$$\|v - p_T^{k+1} I_T^k v\|_T + h_T \|\nabla (v - p_T^{k+1} I_T^k v)\|_T \leq C \rho_T^\alpha h_T^{k+2} \|v\|_{k+2,T},$$

with local heterogeneity/anisotropy ratio

$$\rho_T := \frac{\bar{\nu}_T}{\nu_T} \geq 1.$$
Theorem (Energy-error estimate)

Assume that \(u \in H^{k+2}(\mathcal{T}_h) \) and modify the bilinear form as

\[
a_{\nu,T}(u_T, v_T) := (\nu \nabla p_T^{k+1} u_T, \nabla p_T^{k+1} v_T)_T + s_{\nu,T}(u_T, v_T)
\]

where, setting \(\nu_{TF} := \| n_{TF} \cdot \nu |_{T} \cdot n_{TF} \|_{L^\infty(F)} \),

\[
s_{\nu,T}(u_T, v_T) := \sum_{F \in \mathcal{F}_T} \frac{\nu_{TF}}{h_F} (\pi_F^k (\hat{p}_T^{k+1} u_T - u_F), \pi_F^k (\hat{p}_T^{k+1} v_T - v_F))_F.
\]

Then, with \(\hat{u}_h \) and \(\alpha \) as above,

\[
\| \hat{u}_h - u_h \|_{\nu,h} \lesssim \left\{ \sum_{T \in \mathcal{T}_h} \nu_T \rho_T^{1+2\alpha} h_T^{2(k+1)} \| u \|_{k+2,T}^2 \right\}^{1/2}.
\]
A highly prized property in practice is local conservation

At the discrete level, we wish to mimic the local balance

\[(\nu \nabla u, \nabla v)_T - \sum_{F \in \mathcal{F}_T} (\nu_{|T} \nabla u \cdot \mathbf{n}_{TF}, v)_F = (f, v)_T \quad \forall v \in H^1(T)\]

where, for all interface \(F \in \mathcal{F}_{T_1} \cap \mathcal{F}_{T_2},\)

\[\nu_{|T_1} \nabla u \cdot \mathbf{n}_{T_1F} + \nu_{|T_2} \nabla u \cdot \mathbf{n}_{T_2F} = 0\]

This requires to identify numerical fluxes
Define the face residual operator \(R^k_T : \mathbb{P}_d^k(F_T) \rightarrow \mathbb{P}_d^k(F_T) \) s.t.

\[
R^k_T \varphi|_F = \pi^k_F \left(\varphi|_F - p^{k+1}_T(0, \varphi) + \pi_T^k p^{k+1}_T(0, \varphi) \right)
\]

Denote by \(R^{*,k}_T \) its adjoint and let \(\tau_{\partial T} \) and \(u_{\partial T} \) be s.t.

\[
\tau_{\partial T}|_F = \frac{\nu_{TF}}{h_F} \quad \text{and} \quad u_{\partial T}|_F = u_F \quad \forall F \in F_T
\]

The penalty term can be rewritten in conservative form as

\[
s_T(u_T, v_T) = \sum_{F \in F_T} \left(R^{*,k}_T (\tau_{\partial T} R^k_T (u_{\partial T} - u_T)), v_F - v_T \right)_F
\]
Lemma (Flux formulation)

The HHO solution $u_h \in \mathcal{U}_{h,0}^k$ satisfies, for all $T \in \mathcal{T}_h$ and all $v_T \in \mathcal{P}_d^k(T)$

$$(\nu \nabla p_T^{k+1} u_T, \nabla v_T)_T - \sum_{F \in \mathcal{F}_T} (\Phi_{TF}(u_T), v_T)_F = (f, v_T)_T,$$

with numerical flux

$$\Phi_{TF}(u_T) := \nu |_T \nabla p_T^{k+1} u_T \cdot n_T F - R_T^*(\tau_{\partial F} R_T^k(u_{\partial F} - u_T)),$$

s.t., for all interface $F \in \mathcal{F}_{T_1} \cap \mathcal{F}_{T_2}$,

$$\Phi_{T_1 F}(u_{T_1}) + \Phi_{T_2 F}(u_{T_2}) = 0.$$
The flux formulation shows that $\text{HHO} = \text{HDG on steroids}$

Smaller local problems to eliminate flux unknowns:

$$\nabla \mathbb{P}^{k+1}_d(T) \ vs. \ \mathbb{P}^k_d(T)^d$$

Superconvergence of the potential in the L^2-norm

$$h^{k+2} \ vs. \ h^{k+1}$$

HHO can be adapted into existing HDG codes!
Outline

1. Poisson

2. Variable diffusion and local conservation

3. Linear elasticity
Consider the linear elasticity problem: Find \(u : \Omega \to \mathbb{R}^d \) s.t.

\[
-\nabla \cdot \sigma(u) = f \quad \text{in } \Omega,
\]
\[
u = 0 \quad \text{on } \partial \Omega
\]

with real Lamé parameters \(\lambda \geq 0 \) and \(\mu > 0 \) and

\[
\sigma(u) = 2\mu \nabla_s u + \lambda (\nabla \cdot u) I_d
\]

When \(\lambda \to +\infty \) we need to approximate nontrivial incompressible displacement fields.
Rigid body motions

- Applied to vector fields, the operator ∇_s yields strains
- Its kernel $\text{RM}(\Omega)$ contains rigid-body motions

$$\text{RM}(\Omega) := \{ \mathbf{v} \in H^1(\Omega)^3 \mid \exists \alpha, \omega \in \mathbb{R}^3, \mathbf{v}(\mathbf{x}) = \alpha + \omega \otimes \mathbf{x} \}$$

- We note for further use that

$$\mathbb{P}^0_d(\Omega)^d \subset \text{RM}(\Omega) \subset \mathbb{P}^1_d(\Omega)^d$$
DOFs and reduction map I

\[U^k_T \] for \(k \in \{1, 2\} \)

- For \(k \geq 1 \) and all \(T \in \mathcal{T}_h \), we define the local space of DOFs

\[
U^k_T := \mathbb{P}^k_d(T)^d \times \left\{ \prod_{F \in \mathcal{F}_T} \mathbb{P}^k_{d-1}(F)^d \right\}
\]

- The global space has single-valued interface DOFs

\[
U^k_h := \left\{ \prod_{T \in \mathcal{T}_h} \mathbb{P}^k_d(T)^d \right\} \times \left\{ \prod_{F \in \mathcal{F}_h} \mathbb{P}^k_{d-1}(F)^d \right\}
\]
Let $T \in \mathcal{T}_h$. The local displacement reconstruction operator $p^{k+1}_T : \underline{U}_T^k \to \underline{\mathbb{P}}_{d}^{k+1}(T)^d$ is s.t., for all $\underline{v}_T = (v_T, (v_F)_{F \in \mathcal{F}_T}) \in \underline{U}_T^k$ and $\underline{w} \in \underline{\mathbb{P}}_{d}^{k+1}(T)^d$,

\[
(\nabla s p^{k+1}_T v_T, \nabla s w)_T = - (v_T, \nabla \cdot \nabla s w)_T + \sum_{F \in \mathcal{F}_T} (v_F, \nabla s w n_{TF})_F
\]

Rigid-body motions are prescribed from \underline{v}_T setting

\[
\int_T p^{k+1}_T v_T = \int_T v_T, \quad \int_T \nabla s p^{k+1}_T v_T = \sum_{F \in \mathcal{F}_T} \int_F \frac{1}{2} (n_{TF} \otimes v_F - v_F \otimes n_{TF})
\]
Lemma (Approximation properties for $p_T^{k+1} I_T^k$)

There exists $C > 0$ independent of h_T s.t., for all $v \in H^{k+2}(T)^d$,

$$
\| v - p_T^{k+1} I_T^k v \|_T + h_T \| \nabla (v - p_T^{k+1} I_T^k v) \|_T \leq C h_T^{k+2} \| v \|_{H^{k+2}(T)^d}.
$$

Proceeding as for Poisson, one can show that

$$
(\nabla_s p_T^{k+1} I_T^k v - \nabla_s v, \nabla_s w)_T = 0 \quad \forall w \in P_d^{k+1}(T)^d,
$$

and the approximation properties follow.
Define, for \(T \in \mathcal{T}_h \), the stabilization bilinear form \(s_T \) as

\[
s_T(u_T, v_T) := \sum_{F \in \mathcal{F}_T} h_F^{-1}(\pi_F^k(\hat{p}_T^{k+1} u_T - u_F), \pi_F^k(\hat{p}_T^{k+1} v_T - v_F))_F,
\]

with displacement reconstruction \(\hat{p}_T^{k+1} : U_T^k \rightarrow P_{d+1}^k(T)^d \) s.t.

\[
\forall v_T \in U_T^k, \quad \hat{p}_T^{k+1} v_T := v_T + (p_T^{k+1} v_T - \pi_T^k p_T^{k+1} v_T).
\]

Stability can be proved in terms of the discrete strain norm

\[
\| v_T \|^{2, T}_{\varepsilon, T} := \| \nabla_s v_T \|_T^2 + \sum_{F \in \mathcal{F}_T} h_F^{-1} \| v_F \|_F^2
\]
Lemma (Stability and approximation)

Let $T \in T_h$ and assume $k \geq 1$. Then,

$$\|v_T\|_{\varepsilon,T}^2 \lesssim \|\nabla_s p_T^{k+1} v_T\|_T^2 + s_T(v_T, v_T) \lesssim \|v_T\|_{\varepsilon,T}^2.$$

Moreover, for all $v \in H^{k+2}(T)^d$, we have

$$\left\{ \|\nabla_s (I_T^k v - v)\|_T^2 + s_T(I_T^k v, I_T^k v) \right\}^{1/2} \lesssim h_T^{k+1} \|v\|_{H^{k+2}(T)^d}.$$

Generalization of a classical result: Crouzeix–Raviart does not meet Korn!
For all $F \in \mathcal{F}_T$ one has, inserting $\pm \pi_F^{k} \hat{p}_T^{k+1} \nu_T$,

$$\|\nu_F - \nu_T\|_F \lesssim \|\pi_F^k (\nu_F - \hat{p}_T^{k+1} \nu_T)\|_F + h_F^{-1/2} \|p_T^{k+1} \nu_T - \pi_T^k \hat{p}_T^{k+1} \nu_T\|_T$$

For any function $w \in H^1(T)^d$ with rigid-body motions w_{RM},

$$\|w - \pi_T^k w\|_T = \|(w - w_{\text{RM}}) - \pi_T^k (w - w_{\text{RM}})\|_T \lesssim h_T \|\nabla_s w\|_T$$

where $\pi_T^k w_{\text{RM}} = w_{\text{RM}}$ requires $k \geq 1$ to have

$$\text{RM}(T) \subset P_d^k(T)^d$$

Clearly, this reasoning breaks down for $k = 0$
Divergence reconstruction

- We define the **local local discrete divergence operator**

\[D^k_T : U^k_T \rightarrow \mathbb{P}^k_d(T) \]

s.t., for all \(\mathbf{v}_T = (\mathbf{v}_T, (\mathbf{v}_F)_{F \in \mathcal{F}_T}) \in U^k_T \) and all \(q \in \mathbb{P}^k_d(T) \),

\[(D^k_T \mathbf{v}_T, q)_T := -(\mathbf{v}_T, \nabla q)_T + \sum_{F \in \mathcal{F}_T} (\mathbf{v}_F \cdot \mathbf{n}_{TF}, q)_F\]

- By construction, we have the following commuting diagram:

\[
\begin{array}{ccc}
H^1(T) & \xrightarrow{\nabla} & L^2(T) \\
\downarrow I^k_T & & \downarrow \pi^k_T \\
U^k_T & \xrightarrow{D^k_T} & \mathbb{P}^k_d(T)
\end{array}
\]
We define the local bilinear form a_T on $U_T^k \times U_T^k$ as

$$a_T(u_T, v_T) := 2\mu(\nabla_s p_T^{k+1} u_T, \nabla_s p_T^{k+1} v_T) + \lambda(D_T^k u_T, D_T^k v_T) + (2\mu)s_T(u_T, v_T)$$

The discrete problem reads: Find $u_h \in U_{h,0}^k$ s.t.

$$a_h(u_h, v_h) := \sum_{T \in \mathcal{T}_h} a_T(u_T, v_T) = \sum_{T \in \mathcal{T}_h} (f, v_T)_T \quad \forall v_h \in U_{h,0}^k$$

with $U_{h,0}^k$ incorporating boundary conditions
Theorem (Energy-norm error estimate)

Assume $k \geq 1$ and the additional regularity

$$\mathbf{u} \in H^{k+2}(\mathcal{T}_h)^d \text{ and } \nabla \cdot \mathbf{u} \in H^{k+1}(\mathcal{T}_h).$$

Then, there exists $C > 0$ independent of h, μ, and λ s.t.

$$(2\mu)^{1/2}\|\mathbf{u}_h - \hat{\mathbf{u}}_h\|_{a,h} \leq Ch^{k+1} B(\mathbf{u}, k),$$

with

$$B(\mathbf{u}, k) := (2\mu)\|\mathbf{u}\|_{H^{k+2}(\mathcal{T}_h)^d} + \lambda \|\nabla \cdot \mathbf{u}\|_{H^{k+1}(\mathcal{T}_h)}.$$
- **Locking-free** if $B(u, k)$ is bounded uniformly in λ
- For $d = 2$ and Ω convex, one has using Cattabriga’s regularity

\[B(u, 0) = \|u\|_{H^2(\Omega)^d} + \lambda \|\nabla \cdot u\|_{H^1(\Omega)} \leq C_\mu \|f\| \]

- More generally, for $k \geq 1$, we need the regularity shift

\[B(u, k) \leq C_\mu \|f\|_{H^k(\Omega)^d} \]

- **Key point:** commuting property for D^k_T
Theorem (L^2-error estimate for the displacement)

Let $e_h \in \mathbb{P}^k_d(\mathcal{T}_h)^d$ be s.t.

$$e_h|_T := u_T - \pi^k_T u \quad \forall T \in \mathcal{T}_h.$$

Then, assuming elliptic regularity for Ω and provided that

$$u \in H^{k+2}(\mathcal{T}_h)^d \text{ and } \nabla \cdot u \in H^{k+1}(\mathcal{T}_h),$$

it holds with $C>0$ independent of λ and h,

$$\|e_h\| \leq C h^{k+2} B(u, k).$$
We consider the following exact solution:

\[u(x) = \left(\sin(\pi x_1) \sin(\pi x_2) + (2\lambda)^{-1} x_1, \cos(\pi x_1) \cos(\pi x_2) + (2\lambda)^{-1} x_2 \right) \]

The solution \(u \) has vanishing divergence in the limit \(\lambda \to +\infty \):

\[\nabla \cdot u(x) = \frac{1}{\lambda} \]
Figure: Energy error with $\lambda = 1$ (above) and $\lambda = 1000$ (below) vs. h for the triangular (left) and hexagonal (right) mesh families.
Figure: Energy (above) and displacement (below) error vs. τ_{tot} (s) for the triangular and hexagonal mesh families
\textit{h}p\text{-version composite discontinuous Galerkin methods for elliptic problems on complicated domains.}

The nonconforming virtual element method.

On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations.

Basic principles of virtual element methods.

Virtual elements for linear elasticity problems.

Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes.

Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes.
References II

Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin methods.
Submitted. Preprint hal-01115318.

Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems.

A discontinuous-skeletal method for advection-diffusion-reaction on general meshes.

A hybrid high-order locking-free method for linear elasticity on general meshes.
DOI: 10.1016/j.cma.2014.09.009.

An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators.

