Virtualization on Grid’5000

Lucas Nussbaum

with the Grid’5000 architects committee
and the Grid’5000 technical team
The Grid’5000 testbed

- World-leading testbed for distributed computing
 - 9 sites, 30 clusters, 859 nodes, 8456 cores
 - Dedicated 10-Gbps backbone network
 - 550 users and 100 publications per year
The Grid’5000 testbed

▶ World-leading testbed for distributed computing
 ◇ 9 sites, 30 clusters, 859 nodes, 8456 cores
 ◇ Dedicated 10-Gbps backbone network
 ◇ 550 users and 100 publications per year

▶ Not a typical grid / cluster / Cloud, more a meta-grid, meta-cloud:
 ◇ Used by CS researchers in HPC / Clouds / Big Data / Networking to perform experiments

♦ Design goals:
 ✭ Large-scale, shared infrastructure
 ✭ Support high-quality, reproducible research

♦ Litmus test: are you interested in the result of your computation, or in how it performed?
Some virtualization & Cloud experiments

- Virtual machines management
 - Study of the migration process \(\sim\) SimGrid model\(^1\)
 - Improving performance of VM migration\(^2\)
 - Evaluation of VM placement strategies\(^3\)

- Energy efficiency of cloud infrastructures

- Design / Improvement of cloud middlewares
 - Autonomic IaaS Cloud: Snooze\(^4\)
 - Fog computing, Distributed OpenStack (DISCOVERY project, Inria/Orange joint lab)\(^5\)

Reconfiguring the testbed

- Typical needs:
 - How can I install $SOFTWARE on my nodes?
 - How can I add $PATCH to the kernel running on my nodes?
 - Can I run a custom MPI to test my fault tolerance work?
 - How can I experiment with that Cloud/Grid middleware?
 - Can I get a stable (over time) software environment for my experiment?
Reconfiguring the testbed

Typical needs:

- How can I install $SOFTWARE on my nodes?
- How can I add $PATCH to the kernel running on my nodes?
- Can I run a custom MPI to test my fault tolerance work?
- How can I experiment with that Cloud/Grid middleware?
- Can I get a stable (over time) software environment for my experiment?

Likely answer on any production facility: you can’t

Or:

- Install in $HOME, modules, etc. → no root access, need to handle custom paths
- Use virtual machines → experimental bias (performance), limitations
- Containers: kernel is shared → various limitations, security?
Reconfiguring the testbed

- Operating System reconfiguration with Kadeploy:
 - Provides a *Hardware-as-a-Service* Cloud infrastructure
 - Enable users to deploy their own software stack & get *root* access
 - Scalable, efficient, reliable and flexible: 200 nodes deployed in ~5 minutes (120s with Kexec)
Creating and sharing Kadeploy images

► Avoid manual customization:
 ♦ Easy to forget some changes
 ♦ Difficult to describe
 ♦ The full image must be provided
 ♦ Cannot really serve as a basis for future experiments
 (similar to binary vs source code)

► Kameleon: Reproducible generation of software appliances
 ♦ Using recipes (high-level description)
 ♦ Persistent cache to allow re-generation without external resources
 (Linux distribution mirror) ~ self-contained archive
 ♦ Supports Kadeploy images, LXC, Docker, VirtualBox, qemu, etc.

http://kameleon.imag.fr/
Other Virtualization & Cloud XP requirements

- Efficient provisioning of hypervisors
 - ✔ Kadeploy (support for Xen & KVM)

- Storage (VM images, etc.)
 - ✔ Storage5k (reserved NFS storage), Ceph clusters (block)

- Easy Cloud stacks deployment
 - ✔ Tool to automate OpenStack installation inside a job

- Networking support
IP range reservation: G5K-subnets

- Grid’5000 enables different users to run experiments concurrently
 - Need a mechanism to provide IP ranges for virtual machines

- G5K-subnets adds IP ranges reservation to OAR
  ```
oarsub -l slash_22=2+nodes=8 -I
  ```

- Those IP ranges are routed inside Grid’5000

- But no isolation: one can steal IP addresses
Network isolation with KaVLAN

- Reconfigures switches for the duration of a user experiment to achieve complete level 2 isolation:
 - Avoid network pollution (broadcast, unsolicited connections)
 - Enable users to start their own DHCP servers
 - Experiment on ethernet-based protocols
 - Interconnect nodes with another testbed without compromising the security of Grid’5000

- Some nodes with several (up to 4) network interfaces

- Relies on 802.1q (VLANs)

- Compatible with many network equipments
 - Can use SNMP, SSH or telnet to connect to switches
 - Supports Cisco, HP, 3Com, Extreme Networks and Brocade

- Controlled with a command-line client or a REST API
KaVLAN - different VLAN types

default VLAN
- routing between Grid’5000 sites

global VLANs
- all nodes connected at level 2, no routing

local, isolated VLAN
- only accessible through a SSH gateway connected to both networks

routed VLAN
- separate level 2 network, reachable through routing
Conclusions

- Bare metal deployment, virtual machines, containers, modules all have pros and cons
 - Bare-metal is slow and a heavy solution for some needs
 - On Grid’5000, we also provide sudo-g5k (root access on the standard (default) environment)

- Other problems must be addressed:
 - Images management (home-made, or Vagrant, Docker, etc.?)
 - Images storage
 - Networking support
 - Allocation and reservation of IP addresses
 - Isolation? (\(\sim\) VLANs? VXLAN?)
 - Orchestration: shell scripts might not be sufficient

- Note: Grid’5000 has an Open Access program. Feel free to try it!
Bibliography

- **Resources management**: Resources Description, Selection, Reservation and Verification on a Large-scale Testbed. http://hal.inria.fr/hal-00965708

- **Kadeploy**: Kadeploy3: Efficient and Scalable Operating System Provisioning for Clusters. http://hal.inria.fr/hal-00909111

- **KaVLAN, Virtualization, Clouds deployment**:
 - Adding Virtualization Capabilities to the Grid'5000 testbed. http://hal.inria.fr/hal-00946971
 - Enabling Large-Scale Testing of IaaS Cloud Platforms on the Grid'5000 Testbed. http://hal.inria.fr/hal-00907888

- **Kameleon**: Reproducible Software Appliances for Experimentation. https://hal.inria.fr/hal-01064825

- **Distem**: Design and Evaluation of a Virtual Experimental Environment for Distributed Systems. https://hal.inria.fr/hal-00724308

- **XP management tools**:
 - A survey of general-purpose experiment management tools for distributed systems. https://hal.inria.fr/hal-01087519
 - XPFlow: A workflow-inspired, modular and robust approach to experiments in distributed systems. https://hal.inria.fr/hal-00909347
 - Using the EXECO toolbox to perform automatic and reproducible cloud experiments. https://hal.inria.fr/hal-00861886
 - Expo: Managing Large Scale Experiments in Distributed Testbeds. https://hal.inria.fr/hal-00953123

- **Kwapi**: A Unified Monitoring Framework for Energy Consumption and Network Traffic. https://hal.inria.fr/hal-01167915

- **Realis’2014**: Reproductibilité expérimentale pour l’informatique en parallélisme, architecture et système. https://hal.inria.fr/hal-01011401