& _ cCscCs ETH:irich
(. Centro Svizzero di Calcolo Scientifico

. Swiss National Supercomputing Centre

Vislt Libsim. An in-situ visualisation library

December 2017

Jean M. Favre, CSCS

Outline

= Motivations

= |n-situ visualization
* |n-situ processing strategies
= Vislt’s libsim library
= Enable visualization in a running simulation
= Source code instrumentation

\:o:o cscs ETHziirich

Facts

= Parallel simulations are now ubiguitous
= The mesh size and number of timesteps are of unprecedented size

= The traditional post-processing model “compute-store-analyze”
does not scale

Consequences:

= Datasets are often under-sampled

» Many time steps are never archived

= |t takes a supercomputer to re-load and visualize
supercomputer data

\:o:o cscs | ETHziirich

Motivations Statements

Having a real-time monitoring capability on all supercomputing resources is
essential to avoid wasting valuable time on computational resources...

Scientists have needs for both run-time monitoring and for coupling of those
codes...with other codes

There are great opportunities to do better science (analysis) when access to
the full spatio-temporal resolution data is possible.

\:o:o cscs 4 ETHziirich

History has shown how compute and I/O capacities are unbalanced

And
the
future
1S
no

different
111

30,
\\0‘0 CSCS

How does Summit compare to Titan

Featwe | Summit_ __________ Titan

Application Performance 5-10x Titan
Number of Nodes ~3,400
Node performance >40TF
Memory per Node >512 GB (HBM + DDR4)
NVRAM per Node 800 GB

Node Interconnect NVLink (5-12x PCle 3)

System Interconnect Dual Rail EDR-IB (23 GB/s)

(node injection bandwidth)

Interconnect Topology Non-blocking Fat Tree

Processors IBM POWER9™

NVIDIA Volta™
File System 120 PB, 1 TB/s, GPFS™
Peak power consumption 10 MW

Data courtesy A. Geist (ORNL)

Baseline

18,688

147TF

38GB (GDDR5+DDR3)
0

PCle 2

Gemini (6.4 GB/s)

3D Torus

AMD Opteron™
NVIDIA Kepler™

32 PB, 1 TB/s, Lustre®
9 MW

%0& K RIDGE LEADERSHIP

" National Laboratory | COMPUTING FACILITY

Typical situation...

o
<¥,® CSCs

Compute engines

Engine: | rosa 2 |

-

Engine Information
MNodes: 100
Processors: 3200
Processors using GPUs: 0
Load balancing: Static
Domainassignment: Contiguous Blocks Together

Total Status: Stage 1/13

i 0%
Stage Status: Reading from Nek5000
I 0%
Interrupt | Clearcache || Closeengine |

| Post || Dismiss |

Engine: |rosa =

Engine Information
MNodes: 100
Processors: 3200
Processors using GPUs: 0
Load balancing: Static
Domain assignment: Contiguous Blocks Together

Total Skatus: Stage 2/13

) 7%

Stage Status: Waiting for all processors to finish 1/O
| 0%

Interrupt | clearcache || Closeengine |

| Post || Dismiss |

ETHzurich

When there is too much data...

Several strategies are available to mitigate the data problem:
 read less data:

e multi-resolution,

e on-demand streaming,
e out-of-core, etc...

Do no read data from disk but from memory:
In-situ visualization

\:o:o cscs ETHziirich

In-situ (parallel) visualization

Instrument parallel simulations to:

30,
\\0‘0 CSCS

Eliminate I/O to and from disks

Use all grid data with or without ghost-cells
Have access to all time steps, all variables
Use the available parallel compute nodes
Maximize features and capabilities
Minimize code modifications to simulations
Minimize impact to simulation codes

Allow users to start an in-situ session on demand instead of deciding before running a

simulation

= Debugging
= Computational steering

ETHzurich

= gcalable vis infrastructure accessible in situ

= Vislt/Libsim
= Paraview/Catalyst

= ADIOS: I/O library approach

= SENSEI: generic in situ interface

\:o:o cscs o ETHziirich

Existing in-situ approaches

ADIOS and GLEAN both provide tools for in situ I/O and some analysis

They allow simulations to adopt in situ techniques by leveraging their advanced I/O
Infrastructures that enable co-analysis pipelines rather than changing the simulator.

The non-intrusive integration provides resilience to third party library bugs and possible
jitter in the simulation.

ParaView and Vislt both provide tools for in situ analysis and visualization

30,
\\0‘0 CSCS

Catalyst can be tightly or loosely linked to a simulation, allowing the simulation to share
data with Catalyst for analysis and visualization.

Similar capabilities are available within Vislt with the Libsim library.

Catalyst-Live, Libsim, and ADIOS enable the opposite flow of information, sending data
from the client to the simulation, enabling the possibility of in situ and/or
monitoring/simulation steering.

(text source SENSEI SC17 tutorial)

10 ETH:zurich

INn-situ Processing Strategies

Loosely coupled
a.k.a.
“Concurrent
processing”

Tightly coupled
a.k.a.
“Co-processing”

Hybrid

30,
\\0‘0 CSCS

Visualization and
analysis run on
concurrent resources
and access data over
network

Visualization and
analysis have direct
access to memory of
simulation code

Data is reduced in a
tightly coupled setting
and sent to a
concurrent resource

1)
2)

Data movement costs
Requires separate resources

1) Very memory constrained

2)

1)
2)

Large potential impact
(performance, crashes)

Complex
Shares negative aspects (to
a lesser extent) of others

ETHzurich

Loosely Coupled in-situ Processing

= |/O layer stages data into
secondary memory buffers,
possibly on other compute
nodes

= Visualization applications access
the buffers and obtain data Possible network boundary

Visualization tool

= Separates visualization
processing from simulation
processing

\\)0 CSCS ETHziirich

4 = Copies and moves data

Tightly Coupled Custom in-situ Processing

= Custom visualization routines are
developed specifically for the
simulation and are called as
subroutines

-
= Create best visual .

representation
= Optimized for data layout

= Tendency to concentrate on very
specific visualization scenarios

images, etc

= \Write once, use once

\:o:o cscs ETHziirich

Tightly Coupled General in-situ Processing

= Simulation uses data adapter
layer to make data suitable for
general purpose visualization

library

_ Data Adapter
= Rich feature set can be called ! .

by the simulation

: General
E O_perat_e dl,rectly on the it
simulation’s data arrays when Library

possible

= \Write once, use many times

ETHzurich

30,
\\0‘0 CSCS

Libsim in Vislt

o
<¥,® CSCs

1: /Vislt/Junk.slio
2; proto

elyslum.linl.gov Tue Apr 12 16:34:08 201

ST
TRamdd (AP ((u)
2@BhAaE® 5%

v QI

T

W
Hy

sig

W ok eae abhBeR e

5

proto on elysium.linl.gov

Tue Apr12 16:34:08 2005
elysium.linl.gov

proto

1

Prototype Simulation
/useful/path

o elyslum.linl.gov Tue Apr12 16:34:08 2005

The Simulation’s
window shows
meta-data about
the running code

Control commands
exposed by the code
are available here

All of Vislt's existing

functionality is accessible

Users select simulations to
open as if they were files

ETHzurich

Visualization Tool Architecture

= Clients runs locally and display Server runs remotely in parallel,
results computed on the server , handling data processing for client
Local Vislt Clients I Parallel Cluster Files
I_ ﬁt SVis Data lL,
I erver Plugin E
él ; . L
%I E St;/rl\?er PEI)uagtian' \
i —)
CooooopmEEed®. || Y ve low J
COoOooooonoon [| F o serer Clugn
[—— . \
) ' ! S
« Data processed in data flow 2
networks Vis Sle”er)
Filter
e Filters in data flow networks | 'F‘._’ f_VisugﬁZl\tion
can be implemented as plug- Y NN
|nS Filter J Plpe“ne

30,
\\0‘0 CSCS

ETHzurich

Coupling of Simulations and Vislt

Libsim is a Vislt library that simulations use to enable couplings
between simulations and Vislt. Not a special package. It is an
Integral part of Vislt.

\\).0 CSCS ETHziirich

30,
\\0‘0 CSCS

Front-end library lets Vislt connect

Runtime library processes the simulation’s data

Runtime library obtains data on demand through user-supplied

Data Access Code callback functions

Local Vislt Clients

/llllllIllllI

Parallel Cluster

Data
Access
Code

Libsim
Runtime

Front
end

MPI1

Data
Access
Code

Libsim
Runtime

Front
end

Data
Access
Code

Libsim
Runtime

Front
end

ETHzurich

In Situ Processing Workflow

1. The simulation code launches and starts execution

2. The simulation regularly checks for connection attempts
from visualization tool

3. The visualization tool connects to the visualization

4. The simulation provides a description of its meshes and
data types

5. Visualization operations are handled via Libsim and
result in data requests to the simulation

\:o:o cscs ETHziirich

Instrumenting a Simulation

Additions to the source code are usually minimal, and follow three incremental

steps:
Initialize Libsim Create data Add control
and alter the access functions that
simulation’s callback let Vislt
main iterative functio the si

loop to li
for co
from

\\):o CSCS ETH ziirich

Instrumenting Application’s flow diagram (before and
after)

Connection to the | Initialize
visualization library
IS optional

Execution is step-
by-step or in

. Solve next
continuous mode

time-step
\ Y

Live connection
can be closed and
re-opened at later

time

Check for
convergence

7

¥

\?:‘ eses { Exit ETHziirich

Vislt in-the-loop

Libsim opens a socket and ‘-

writes out connection
parameters

VisltDetectinput checks for:

= Connection request
= Vislt commands
= Console input

o ETHzirich

\\).0 CSCS

Data-access callbacks

Vislt requests data on demand through data access
callback functions

= Return actual pointers to your simulation’s data
(nearly zero-copy)

= Return alternate representation that Libsim can free

= Written in C, C++, Fortran, Python

\:o:o cscs ETHziirich

Sharing Data Example

Simulation Buffer

// Example Data Access Callback

(=)
visit _handle SimData _t m
GetVariable(int domain, char *name, Nx=6 “mn
void *cbdata) Ny=8
{ pressure _J M

visit handle h = VISIT_INVALID HANDLE;
SimData_t *sim (Simbata_t *)cbdata;
if(strcmp(name, ‘“‘pressure™) == 0)

{

Vislt VariableData alloc(&h); 1
Vislt VariableData setDataD(h, : .
VISIT OWNER SIM, _,Passswnﬁaﬂon
1, sim->nx*sim->ny, buffer to Libsim

sim->pressure) ;

}

return h;

\:o:o cscs ETHziirich

Supported Data Model

= Mesh Types

e Structured meshes
* Point meshes
e CSG meshes
* AMR meshes
e Unstructured & Polyhedral meshes

: "-.) - ..\J:...

= Variables = Materials
 1to N comg = Species
e Zonal and

\:o:o cscs ETHziirich

Adding Control Functions

= The simulation provides
commands to which it will poateplals on 2ob :
Fes p ond g:tn;e gﬂ?\aj an I§§s1 1:33:48 2011

~-Num Processors 1
~path /path/to/where/sim/was/started

comment Demonstrates VisltUpdatePlots function

= Commands generate user
Interface controls in
Simulations Window

Dismiss

\\):0 CSCS ETH ziirich

Custom User Interfaces

o) £ (=] SunFeb27, 9:36 PM

©) brad

Simulation can provide Ul description |

for more advanced computational
steering

Window Help

RN EEEYSIERES " F]

Bl 8- Form - mandelbrot.ui

H = rad
Maximum level |1 =l S ; 527 2113458 2017

30,
\\0‘0 CSCS

BIER) =] Simulations - [x]
| Sinulation [mandelbrot on coruscant =
Httribute [value |
i Host. coruscant.
i Name: nandslbrot
- Tate Sun Feb 27 21:34:41 2011
ohum Proce...
i path /path/to/uheredsin/uas/started
S comment; Temonstrates creating the Mandelbrot set on an AHR mesh
-uiFile wandelbrot,ui
| Sinulation status Stopped
Yislt status |
Interrupt | Clear cache | Disconnect |

Controls | fessases | Strip charts |

Conmand
hatt | o [|
update | togglevpdates | Lus |
‘ ¥ Enable time ranging
{ Start. [Step | stop |
Unpost | Tiswiss

- Form LEE
Cgtee] Hae | mn | Resst |
[~ Save inages I™ Update plots

AMR settings

ETHzurich

Advantages compared to saving files

= The greatest bottleneck (disk 1/O) Is eliminated
= Not restricted by limitations of any file format

= No need to reconstruct ghost-cells from archived data
= All time steps are potentially accessible

= All problem variables can be visualized

* Internal data arrays can be exposed or used

= Parallel compute nodes are already allocated

= The simulation can watch for a particular event and trigger the
update of the Vislt plots

\:o:o cscs ETHziirich

Libsim enables flexible workflows

Interactive exploration:
= Use the Vislt client to connect to your simulation and explore
= Simulations are like any other data source

Batch mode data extracts:

* Create automated routines to generate data in batch

= Program directly using Libsim
= Use Vislt session files

&% cscs 2 ETHziiric
SO T (extsource SENSEI SCI7 tutor ial)

Libsim resources

Information about instrumenting a simulation can be found here:

= Getting Data Into Vislt

= (https://wci.linl.gov/codes/visit/2.0.0/GettingDatalntoVislt2.0.0.pdf)

= Vislt Example Simulations

= (http://visit.ilight.com/trunk/src/tools/DataManualExamples/Simulations)
= Vislt Wiki (http://www.visitusers.org)

= Vislt Email List (visit-users@email.ornl.gov)

\:o:o cscs 20 ETHziirich

	VisIt Libsim. An in-situ visualisation library
	Outline
	Facts	
	Motivations Statements
	History has shown how compute and I/O capacities are unbalanced
	Typical situation…
	When there is too much data…
	in-situ (parallel) visualization
	Slide Number 9
	Existing in-situ approaches
	in-situ Processing Strategies
	Loosely Coupled in-situ Processing
	Tightly Coupled Custom in-situ Processing
	Tightly Coupled General in-situ Processing
	Libsim in VisIt
	Visualization Tool Architecture
	Coupling of Simulations and VisIt
	A Simulation using Libsim
	In Situ Processing Workflow
	Instrumenting a Simulation
	Slide Number 21
	VisIt in-the-loop
	Data-access callbacks
	Sharing Data Example
	Supported Data Model
	Adding Control Functions
	Custom User Interfaces
	Advantages compared to saving files
	Libsim enables flexible workflows
	Libsim resources

