Lab Exercise

Optimizing the Hough Transform Kernel

Background Information

In this lab exercise, you will be optimizing a kernel for an FPGA to calculate the Hough Transform of the
pixels within a picture. You will follow the flow presentedin class toachieve this optimization — you will
verify functionality using emulation, and you will use an HTML optimization report to decipher which
optimizations might be beneficial.

The Hough transformis used in computer vision applications. After an image has been processed with
an edge-detection algorithm such as a Sobel filter, you are left with a monochrome (black/white) image.
Itis useful for many further detection algorithms to consider the image as a set of lines. However, an
image of black and white pixels is not a convenient or useful representation of these lines to algorithms
such as object detection. The Hough transformis a transform from pixels to a set of “line votes.”

Before getting tothe code, here is the theory behind the Hough Transform.

Itis commonly known that a line can be representedin a slope-intercept form:

y=mx+b

In this form, each line can be represented by two unique constants, the slope (m) and the y-intercept
(b). So, every (m,b) pair represents a unique line. However, this form presents a couple of problems.
First, since vertical lines have an undefined slope, it cannot represent vertical lines. Secondly, it is
difficult to apply thresholding techniques to.

Therefore, for computational reasons in many detection algorithms, the Hesse normal form is used. This
form has the equation below.

p=xcos0 +ysinb

In this form, each unique line is represented by a pair (p,8) (pronounced “rho” and “theta”). This form
has no problem representing verticallines, and you will learn how thresholding can easily be applied
after the Hough Transformis applied.

The following picture depicts what the p and 0 values represent in the equation. For every line you want
to represent (see the red line in the picture), there will be a unique line you can draw from the origin to
it with the shortest distance (see the grayline in the picture). Another way of looking at this, is
perpendicular line from the red line crossing the origin. p is the distance of the shortest line that can be
drawn from the origin to the line you are wanting to represent. 8is the angle from the x-axis to that line.

Y

A

When working with animage, a corner of the image is traditionally consideredto be the origin (the
origin is not at the center), so the largest value p canbe is the measure of the diagonal of the image. You
can choose for the p values to all be positive, or to be allowed to be positive and negative. If you choose
for all p values to be positive, then the range of 0 is from 0 to 360 degrees. If you choose for p to be
allowed to be positive or negative, the range of 8 is from 0 to 180 degrees. These ranges are quantized
in order todefine a finite solution space.

Remember that the picture before being input into the Hough Transform has already gone through an

edge detection algorithm and is therefore monochrome (each pixel is either black or white). The edges
that have been detected are represented by the white pixels. The Hough Transform will transform the

white pixels into an array of votes for lines.

Each white pixel in the image is potentially a point on a set of lines. The picture below represents the
lines one pixel can potentially be a part of. (Note: not all potential lines are drawn, it is meant only for
illustrative purposes.) A line with every potential slope passing through that pixel is potentially a line
that appears in the image. So, 1 vote will be accumulated for each of these lines.

y.ll

»
>

X

The code will loop through each pixel in the image, accumulating votes for lines as it goes. As a line
accumulates more votes, the likelihood of that being a correct representation for a line in the picture
goes up. So, as visualized below, the green line is going to accumulate 3 votes, which will make it a more
likely candidate than the other lines. A threshold can easily be applied, therefore, by simply defining the
amount of votes which is “enough” to define whether a line is present or not.

yll

AJ

Now, let’s take a look at the code to implement this transform. First, the complete algorithm will be
shown, and then it will be explained piece by piece.

//A lookup table of sin and cos values at whole integer degree values
#include "sin_cos values.h"

char pixel array[IMAGE_HEIGHT*IMAGE_WIDTH];
short accumulators[THETAS*RHOS*2];

for (uint y=0; y<IMAGE HEIGHT; y++) {
for (uint x=0; X<IMAGE WIDTH; x++){
unsigned short int increment = 0;

if (pixel_array[(WIDTH*y)+x] != @) {
increment = 1;

} else {
increment = 0;

}

for (int theta=@; theta<THETAS; theta++) {
int rho = x*cos_table[theta] + y*sin_table[theta];
accumulators[(THETAS*(rho+RHOS))+theta] += increment;

Let’s first take a look at the array declarations at the top of the code.

char pixel array[IMAGE_HEIGHT*IMAGE_WIDTH];
short accumulators[THETAS*RHOS*2];

The pixel arrayis the image itself, and each pixel occupies a placein the array.

The accumulators array will keep track of our line votes. Each place in the arrayrepresents a potential
line in the image. Recall that a unique line is represented by a pair (p,8). Therefore, the number of all of
the potential lines in our image is equal to all potential values of p times all potential values of 8. p is the
distance from the origin, which is defined as a corner of the picture. The greatest value of p is the
measure of the diagonal of the picture. We will alsolet p be either positive or negative so that 0 is

bounded between 0 and 180 degrees. We will quantize atinteger values for p, and integer degrees for 6.

Our number of accumulators, therefore, is the measure of the diagonal of the picture (RHOS in the code)
times 2 times 180 degrees (THETAS in the code).

Now, let’s examine at the code to implement the algorithm.

for (uint y=0; y<IMAGE_HEIGHT; y++) {
for (uint x=0; X<IMAGE_WIDTH; x++){

}

}

The outer loop will loop through each pixel in the image, accumulating votes for all the potential lines a
pixel could be a part of asit goes.

unsigned short int increment = 0;

if (pixel array[(WIDTH*y)+x] != @) {
increment = 1;

} else {
increment = 0;

}

If the pixel is white (1=0), then we will add a 1 to all of the accumulators for potential lines defined by
that pixel. Otherwise, we will not add anything to the accumulator. We do it in this manner so that the
control logic inside the FPGA and the computation logic that we will duplicate later with pragmas is
simpler and consumes less logic resources..

for (int theta=0; theta<THETAS; theta++) {
int rho = x*cos_table[theta] + y*sin_table[theta];
accumulators[(THETAS*(rho+RHOS))+theta] += increment;

}

For each pixel location, all of the lines that can have that pixel location as part of their values needs to
receive a vote. Recallthe formula we are using to represent aline:

p=xcos@ +ycosf

The x and y values are constants for the duration of this inner loop. We will plug in every possible value
of 6, along with the x and y, and solve for p given that 8. We will then cast avote (add 1 to the
accumulator location) for that (p,0) pair. In this manner, we cast a vote for every line that is a pos sibility,
traversing the possibilities in an arcfrom 0 degrees to 180 degrees.

Now, let’s begin the lab and see what optimizations we can do to improve the total execution time in
the FPGA. Don’t worry if you don’t completely understandthe algorithm, it is sufficient to think of it as a
convenient piece of code to perform optimizations on. However, if you would like to learn more, the
Wikipedia* entry for the Hough Transformis a great place to start:
https://en.wikipedia.org/wiki/Hough transform

https://en.wikipedia.org/wiki/Hough_transform

Part A. Setup

1. For this lab, you will be working directly in the terminal in Jupyter Lab, and also opening the
source code files directly. To get started, open a terminal within the Jupyter Lab if you do not
already have one open.

To open aterminal, double-click the Terminal button in the Launcher tab of Jupyter Lab, as
shown below.

& Launcher X

class_dev/labs/lab3

[E] Notebook
Tensorflow (Al Python 2.7 PyTorch 140 (Al
kit) (Intel® onedPl) kit)
H Console
Tensorflow (Al Python 3.7 PyTorch 1.4.0 (Al
kit) (Intel ® eneAPl) kit)
E Other
Terminal Text File Markdown File Show Contextual
Help
Start a rfw terminal session

If you do not see the Launcher tab, click the “+” button at the top left of Jupyter Lab, and a
Launcher tab will open. The “+” button is shown below.

" lupyterlab b4 +
&« C {Y @& jupyteroneapidevcloud.intel.com/user/u29413/|

: File Edit View Run Kernel Tabs Settings Help

* c
]
W - Jlabs /lab3 f
O MName - Last Modified
B loczl_memory 7 minutes ago
| coriginal 7 minutes ago
O ’ :

After the terminal is open, navigate to the lab directory, and run the setupscript. (Note: The
instructions for the lab will assume you unzipped your lab files to your home directory.)

$ cd ~/labs/lab3
$ source ./setup.sh

Note: It is important to source the setup script, and not simply run it, since it is modifying
environment variables. Itis modifying your path to point to the Beta 8 versions of the tools,
since thereis a report file rendering presentin the current version we need to avoid.

Here are some important notes about the lab that you should read before moving on:

Your results mayvary somewhat from the screenshots, andthe code line numbers may vary
slightly from what is shown. This is because the screenshots were taken with a different version
of the tool, and the code has also changed slightly.

This lab is designed to give you valuable insight and experience each step of the way. You will go
through a series of optimizations to a kernel. If you want to skip the code modifications and
usethesolutions, itis OK! You will still learn a lot. If you do not get to every part, itis OK! You
will still learn a lot.

Solutions for every coding step are available in the directory ~/labs/lab3/solutions.

The file ~/labs/lab3/commands.txt contains the commands you will be running so you can cut
and paste them if you desire.

A clean scriptis contained in every subdirectory if you need it. Run it by typing source ./clean.sh

Part B. Examine the Code Structure

1. Once you have a terminal open within Jupyter Lab, at the terminal prompt browse to the

directory named “original” within lab3. The remainder of the instructions in this lab will assume
you unzipped the labs.zipfile into your home directory (denoted by ~). If you unzipped the files
into a different directory, replace the ~ in the commands with the directory you started from.

$ cd ~/labs/lab3/original

B uZ25413@s001-n047: ~/labs/ x

u29413[@se81-ne47:~% cd labs/lab3/original
u29413@se81-ne47 ~/1abs/1ab3/originals

2. Open the source code within Jupyter Lab by double-clicking on the file

~/labs/lab3/hough_transform.cppin the file browser on the left side of the Jupyter Lab
environment. This is shown below.

—

{.

-

r

Jupyterlab

c 0O # jupyter.oneapi.devcloud.intel.com/user/u29413

x +

File Edit View Run ®ernel Tabs Settings

+
m/ - /lab3/ original /
Name
B json_folder
3 cleansh
[golden_check_file.txt
[hough_transform.cpp I,\}
M picbmp

[sin_cos_values.h

b g

Help
c

Last Modified
18 minutes ago
13 minutes ago
18 minutes ago

18 minutes ago

Mame: hough_transform.cpp [WE€S 200

Size: 6.2 KB
Path: labs/lab3/original

Created: 2020-05-18 23:39:28
Madified: 2020-05-18 23:39:28

utes ago

3.

The code should now be open in a tab within Jupyter Lab as shown below.

M u29413@s001-n047: ~flabs/ X | = hough_transform.cpp X

2 #include <CL/sycl.hpp>

2 #include <ClL/sycl/intel/fpga_extensicons.hpp:
#include <chrono:

#include <fstream:

£/ This file defines the sin and cos values for each degree up to 180

RHOS 217 //51

ze of the image diagonally: (sqrt{i188-2+128°2))
NS (loeeeeceea.e) // number of nanoseconds in g second

4

#include “sin_cos_values.h”
18 #defime WIDTH 188
11 € HEIGHT 1i@
12 e IMAGE_SIZE WIDTH*HEIGHT
13 e THETAS 1E8@

17 wusing namespace std;
1% using namespace cl;

28 // This function reads in a bitmap and outputs an array of pixels
4 e, 4
21 wvold read_image(char *image_array);

22 ¢lass Hough_Transform_kernsl;
int main() {
2 S/Declare arrays

23 char pixels[IMAGE_SIZE];
29 short accumulators[THETAS*RHOS*2];

In the text editor, search for “Block off this code” by using Ctrl-F to open a Find dialog. This will
take you to the section of code with all of the SYCL code. Blocking off the code in this manner
and restricting all of the SYCL constructs tothe block ensures that when the block finishes
execution, the SYCL objects are destructed. The destructor routines for the SYCL objects ensure
that all work with them is complete before destruction. Inthis manner, the block (enclosed by {}
) acts as a synchronization mechanism.

This is important because without this synchronization mechanism, the buffer that holds the
accumulators will not be written back to the host before the host reads the memory allocated
for the accumulators.

Blocking is this manner is the technique most SYCLsamples use in order to ensure
synchronization of data at the host.

Note, another wayto synchronize this without a block would be to create an access tothe
buffer from the host. Since only one thing can interact with the buffer at a time, the device’s
interactions would finish up before the host could useits accessor. |fyou would like to seean
example of this alternate technique, consult the sample called “FPGA tutorial: Caching local
memory to improve performance” that you can generate using the command oneapi-cli.

9

_5. The command scope in a DPC++ program is where actions are submitted to the queue. Search
for “Device queue submit” within the source code. Here you will see where the command scope
begins. The screenshot shown next illustrates the entire command scope.

SfDevice gueue submit

queue_svent = device queue.submit({[&](sycl::handler &cgh) {
FfUncomment if you need to output to the screen within your kernel
FAsycl:istream os(1824,128,cgh);
f/Example of how to output to the screen
Ffos<<"Hello world "<<8+S5<<sycl::endl;

//Create accessors

auto pixels = pixels buf.get access<sycl::access::mode::read>(cgh);

auto _sin_table = sin_table_buf.get_access<sycl::access::mode::read>(cgh);

auto _cos_table = cos_table_buf.get_access<sycl::access::mode::read>(cgh);

auto _accumulators = accumulators_buf.get_access«<sycl:iaccess::mode::read_writesx(cgh);

//Call the kernel
cgh.single_task<class Hough_transform_kernel>{[=]() {
for (uint y=8; y<HEIGHT; y++) {
for (uint x=8; x<WIDTH; x++){
unsigned short int increment = @;
if (_pixels[(WIDTH®y)+x] != @) {
increment = 1;
T else {
increment = @;
¥
for (int theta=@; theta<THETAS; theta++){
int rho = x*_cos_table[theta] + y*_sin_table[theta];
_accumulators[(THETAS* (rho+RHOS))+theta] += imcrement;
¥
¥
h

T
1

10

_ 6. Recallthatin DPC++the kernel scope is what encases the kernel code that will run on the
device. Searchwithin the code for “Callthe kernel”. It is the code shown below which comprises

the kernel code. We will be optimizing the code within the kernel scope during this lab.

95 SfCall the kernel
97 cgh.single task<class Hough_transform_kernel>{[=]() {
98 for (uint y=@; y<HEIGHT; y++) {
99 for (uint x=8; x<WIDTH; x++){
18@ unsigned short int increment = 8;
181 if (pixels[{WIDTH®y)+x] != @) {
182 increment = 1;
183 1 else {
184 increment = @;
185 }
186 for (int theta=8; theta<THETAS; theta++){
187 int rho = x*_cos_table[theta] + y*_sin_table[theta];
188 _accumulators[(THETAS®(rho+RHOS))+theta] += increment;
189 1
116 1
111 }
112
113 s
114
7 Examine the remainder of the code to your desired level of understanding. If thereis anything

you do not understand, your instructor will be happy to answer your questions.

11

Part C. Emulate the Code and Examine the Optimization Report

You should stillbe atthe terminal prompt in the directory~/labs/lab3/original . Ensure that you
arein this directory.

We will now compile the code for emulation. Recall from the presentation and the previous lab
that emulation is used to ensure functionality of the code, including the code within the kernel
scope. To compile for emulation, run the following command:

dpcpp -fintelfpga -DFPGA_EMULATOR hough_transform.cpp -o fpga.emu

This command will produce a file called fpga.emuwhich is an executable which will run on the
host that contains the host code as well as an emulated version of the kernel code. Run this
code now by typing in the following command:

./fpga.emu

You should see the following output to your screen. This means the run was successful. Ifyou
were working with code of your own, it would be expected that you would go through many
rounds of emulation to get the functionality of your code correct.

M u29413@s001-n047: ~/labs/ % | = hough_transform.cpp =

u25413fs@81-n47 :~/labs/lab3/original$ dpcpp -fintelfpga -DFPGA_EMULATOR hough_transform.cpp -o fpga.emu
Options used by backend compiler:

u28413@see1-n47:~/labs/1lab3/originals . /fpga.emu

Platform name: Intel(R) FPGA Emulation Platform for OpenCL({TM)

Device name: Intel(R) FPGA Emulation Device

Kernel execution time: ©.28955769 seconds

VERIFICATION PASSED!!

u28413@s2e1-nB47:~/labs/lab3/originals

After you achieve successful emulation of your kernel, the next stepis to examine the
optimization report to examine the estimate performance of the loops, the structure of the
kernel’s memory, and the amount of resources that the kernel consumes in the FPGA. We will
do that now. Inorder to compile the code to an object file and generate a static HTML
optimization report for the kernel, run the following 2 commands. The second of these
commands will take a little longer to complete than the prior (15-30 seconds).

dpcpp -fintelfpga -c hough_transform.cpp -o fpga.o

dpcpp -fintelfpga -fsycl-link -Xshardware fpga.o

12

6. After the commands in the last step have completed, a subdirectory called fpga.prj/ will be
created. Underthat directory, thereis a reports/ subdirectory, and the optimization report is
there called report.html. Open that report now by browsing to it on the left side panel of
Jupyter Lab and double-clicking it.

— Jupyterlab x 4+
& C {Y @& jupyteroneapidevcloud.intel.com/user/u29413
: File Edit VWiew FRun Kernel Tabs Seftings Help
+ + &
[
W/ - /fpgapr/reports /
o Mame - Last Medified
i lib seconds ago
o @ ide_reporthtml seconds ago

B reporthtml seconds ago

R
Mame: report.html

Eﬂ" Size: 7.3 KB

Path: labs/lab3/originalfpga.prfreports

Created: 2020-05-19 00:30:25

qﬂ Meodified: 2020-05-19 00:30:25

O

7. Click “Trust HTML” if needed to get the report file to open fully.

L]

B u20413@s001-n047: ~/labs/ % | & report.html X
& Trust HRML

Whether the HTML file is trusted.
Repﬂrt Trusting the file allows scripts to run in it

which may result in security risks.

Cnly enable for files you trust,

13

You will now see the static HTML optimization report in your browser. Look at the different
report sections by clicking on the boxes outlined in blue atthe top to get an overview of the
type of information contained in them.

B 129413@s001-n047: ~/labs/ X | & report.html X | E hough_transform.cpp X
C Distrust HTML

Reports ‘ Summary H Throughput Analysis ~ H Area Analysis ~ H System Viewers ~ o a o

Summary hough_transform.cpp MBS
Finclude <vectors> -
#include <CL/sycl.hpp>
#include <CL/sycl/intel/fpga_extensions.hpp>
#include <chrono>

1
2

Compile Info 3

4

5 #include <fstream>

3

7

8

Project Name fpga_fd57d3
. i . /7 This file defines the sin and cos values for each degree up to 180
Target Family, Device, Arria 10, TOAX11552F45125GES, #include “"sin_cos_values.h”
. 9
Board dcp_bsp:pac_al0 1 WIDTH 180
11 HETGHT
SYCL Version 20.1.0 Build 116 ;'Aé jﬁ; WIDTHHETGHT
14 S 217 //Size of the image diagonally: (sqrt(189°2+120%2))
Quartus Version 15 NS (186000000.8) // number of nanoseconds in a second
16
17 using namespace std;
Reports Generated At Mon May 18 22:30:28 2020 18 using namezpace cl;

28 // This function reads in a bitmap and outputs an array of pixels
21 void resd_imags(char “image_srray);

23 class Hough_Transform_kernel;
24
2o zaiol s

This first implementation of the Hough Transform was not a very good one. Go to the Loops
Analysis section of the report by going to the Throughput Analysis box, clicking it, and then
clicking Loops Analysis, as shown below.

B u29413@s5001-n047: ~flabs/ X | B report.html = hough_transform.cpp X

@ Distrust HTML

Reports | Summary ‘ Throughput Analysis ~ | Area Analysis ¥ || System Viewers ~

Loop Analysis

Loops Analysis
|nformation such as pipelined and initiati

faax Il Report (deprecated)

14

_10. This section of the report gives you an analysis of how well your loops will perform. For single
work-item kernels (those launched with the single_task SYCLAPI call), the Initiation Interval (I1)
of every loop is calculated and reported. Recallthat the Il is the number of clock cycles between
new pieces of data being input into the processing pipeline. A high |l means that many cycles are
spent stalling, with the hardware not being used.

Examine the |l values in this version of the kernel by clicking on the line that begins with Kernel:
under the Loop List section of the report.

B u29413@s001-n047: ~/class X | & report.html X | E commands.txt X
€ Distrust HTML

Reports Summary | Throughput Analysis ~ | Area Analysis = | System Viewers ~
Loop List o Loop Analysis
4 |Kernel: Hough_Transform_kernel
| on_ = - { Scheduled
4 Hough_Transform_kernel.B1 (h: Mame Source Location Pipelined n fMAX Latency
4 Hough_Transform_kernel.B3
Hough_Transform_kernel. Kernel: Hough_Transform_kernel ~ hough_transform.cpp:10z
Hough_Transform_kernel .B1 hough_transform.cpp103 | Yes ==1 240.0 11
Hough_Transform_kernel B3 hough_transform.cppo104 Yes ==1 240.0 202
Hough_Transform_kernel.B5 | hough_transform.cpp:111 Yes ~233 2400 481
3 2

The highest Ilis 233 clock cycles! This is very high, amounting to hundreds of wasted clock cycles
between eachloop iteration!

15

_ 11, Click on the line in the report where the highest loop Il is shown. Details about why this Il is so
long will be shown in the bottom pane of the report. The block of code where the bottleneck is
inferred will also be highlighted.

Loop List 7o Loop Analysis
4 Kernel: Hough_Transform_kernel {
9n- = — Scheduled
4 Hough_Transform_kernel.B1 (h: Name Source Location Pipelined 1] fMAX Latency
4 Hough_Transform_kernel.B3
Hough_Transform_kernel. Kernel: Hough_Transform_kernel | hough_transform.cpp:102
Hough_Transform_kernel.B1 hough_transform.cpp:102 | Yes ==1 240.0 11
Hough_Transform_kernel.B3 nough_transform.cop:1o4 | Yes ==1 2400 203
Hough_Transform_kernel.B5 = hough_transform.cpp:111 Yes ~233 2400 481
3 3

Details

Hough_Transform_kernel.B5:

* Compiler failed to schedule this loop with smaller Il due to memory dependency:
* From: Load Operation (hough_transform.cpp: 113)
& To: Store Operation (hough_transform.cpp: 113)

s Most critical loop feedback path during scheduling:
® 192.00 clock cycles Load Operation (hough_transform.cpp: 113)

You can alsojump to the line of code where the loop was written by clicking on the link within
the “Source Location” column.

Hough_Transform_kernel B1 hough_transform.cpp-103 | Yes >=1 2400 11 187 increment = 1;
168 - Te
189 increment = 8;

110 }

111~ | for (int theta=8; theta<THETAS; thetas+){
Hough_Transform_kernel B3 hough_transform.cpp:104 = Yes »=1 2400 203 112 int rho = x*_cos_table[theta] - y*_sin_table[theta];

113 _accumulators[(THETAS* (rho+RHOS))+theta] += increment;

114 }

115 T

116 T

Hough_Transform_kernel.BS housh transform.cpp:111 Yes ~233 240.0 481 117
j 118 35

119
1@
121
122 //Wait for the kernel to get finished before reporting the profiling

The bottlenecks occurring are “memory dependencies.” This means we are waiting on an
operation from memory to complete before starting a new iteration of the pipeline. (As a side
note, the other type of dependency that cancause a bottleneck is a data dependency, which
means a calculation takes too long to complete.) They all occur on lines 112 and 113, where we
are obtaining values from the sine and cosine lookup tables and looking up and incrementing
accumulators.

16

12, Examine the Details shown at the bottom for this loop. Notice memory dependencies are
mentioned often. Memory dependencies are making the Il of the loop very large. This means we
are waiting on an operation from memory to complete before starting a new iteration of the
pipeline.

Details

Hough_Transform_kernel.B5:

e Compiler failed to schedule this loop with smaller Il due to memory dependency:
e From: Load Operation (hough_transform.cpp: 113)
¢ To: Store Operation (hough_transform.cpp: 113)

e Most critical loop feedback path during scheduling:
e 192.00 clock cycles Load Operation (hough_transform.cpp: 113)

13. Scroll until you see the section entitled “Most critical loop feedback path during scheduling.”

Details

e Most critical loop feedback path during scheduling:

192.00 clock cycles Load Operation (hough_transform.cpp: 113)

40.00 clock cycles Store Operation (hough_transform.cpp: 113)

0.85 clock cycles 16-bit Integer Add Operation (hough_transform.cpp: 113)

0.29 dock cycles 1-bit Or Operation (hough_transform.cpp: 113)
e Hyper-Optimized loop structure: n/a

- T o . e = e S | e N L N e e

One of the lines of code having a large impact to the scheduling of the loop is happening at line
113. When the code is examined, it can be seenthat this line accesses the accumulators with
both a load and a store (to increment the value). We will optimize this bottleneck some in the
next section of the lab.

11& H

111 - for (int theta=8; theta<THETAS; theta++){

112 int rho = ®%_cos_table[theta] + y*¥_sin_table[theta]l;
113 | _accumulators[(THETAS*(rho+RHOS) }+theta] += increment;
114 H

115 3

116 T

117

118 1

17

15,

_ 14, Open the “Area Analysis of System” section of the report. Expand the Kernel System section.

This shows the resources used by the kernel.

Reports Summary H Throughput Analysis > ‘ Area Analysis ~ ‘ System Viewers = Area Analysis
Resource utilizat]
Area Analysis %System organized by i
System Area Analysis of Sy . hardware hiera
(area utilization values are e €@ Analysis of Source (deprecated) LI
a Kernel System Motation file:X = fle Y INGICE o e s e e e e s e e v g e s e
Static Partition
Global interconnect ALUTs FFs RAMSs MLABs DSPs
System description ROM
Hough_Transform_kernel O Static Partition 179950 (21%%) 358572 (2104) 492 (189%) o (0%) 1232 (800)
O Kernel System 13702 (2%) 22747 (1%) 215 (2%%) 75 (095) 2 (o)
Global interconnect 1720 2581 51 o o
System description ROM o a7

[
%]
[=]

[=]

O Hough_Transform_kernel 11982 (1%) 20009 (1%) 152 (69%0) 75 (0%) 2 (0%)

The next step would be to compile the kernel to a full executable for the FPGA and to run it on
the FPGA itself (including the -Xsprofile switchif it is desired to see profiling information in the
Intel® VTune™ Amplifier). Remember you can do all of that (including running it on an FPGA
board!) on the Intel® DevCloud. Since that step takes hours, we won’t do it here. To get started
on the Intel DevCloud with Intel FPGAs, visit this site after the lab:
https://software.intel.com/en-us/articles/getting-started-with-intel-devcloud-for-
oneapiprojects and click on “FPGA Vector-Add Sample Walkthrough.”

If you did run the kernel on an FPGA in the DevCloud, you would find the execution time is
about 2.704 seconds. We will compare that to other runs as we optimize the kernel.

18

Part D. Implement Local Memory for the Accumulators

_ 1 Change the directoryto ~/labs/lab3/local_memory by typing the following command in the
terminal prompt.
cd ../local_memory

2. Open the file ~/labs/lab3/hough_transform_CHANGEME.cpp by browsing to it in the left panel
in Jupyter Lab and clicking on it.

3. For this optimization, you will implement a local memory to hold the accumulator values since
our Ilis still very high due to the access time required to load and store these values from/to
global memory. Recallfrom the presentationthat to implement a local memory in a single work-
item kernel, you simply declare an array within the kernel scope. In the file
hough_transform_CHANGEME.cpp, create a local memory for the accumulators by declaring an
array called accum_localin the kernel scope of the code. accum_local should be the same size
and type as the arraycalled accumulators.

4, When you are finished modifying the code, save the file as hough_transform.cpp. Dothis by
using the File -> Save File As... dialog within the Jupyter Lab environment.

Jupyterlab X +
&« C 1Y & jupyteroneapidevcloud.intel.cor
" | File | Edit view Run Kernel Tabs Settings H

New »

])
Mew Launcher Ctrl+Shift+L

O Open from Path... L
Mew View for File

o MNew Console for Editor
Close Tab Alt+w

E} Clase and Shutdown Ctrl+shift+Q
Close All Tabs

-

o Save File Ctrl+s

Save File As.. Ctrl+Shift +S

;) save All %

Reload File from Disk

Remember that solutions are available if you need them or would like to get through the lab
faster. The solution for this step ofrecoding is available in
~/labs/lab3/solutions/local_memory/hough_transform.cpp.

5. Compile the code for emulation using the same command you have used in previous steps. If
there are syntaxerrors, correct them and recompile.

6. Run the emulation executable by using the command . /fpga.emu. Ifyou do not seethe
message VERIFICATION PASSED!, then correct your code and try again.

7. Compile your code into an object file and generate a static optimizationreport using the 2-step
method with the dpcpp commands used in previous steps.

19

8. Open the static optimization report by browsing to it in Jupyter Laband double clicking. It will be
in the following location. You may have to click “Trust HTML.”
~/labs/lab3/local_memory/fpga.prj/reports/report.html

0. Open the Loops Analysis section of the report and observe the improved Il. Wow, what a
difference! The largest Il is now only ~2 clock cycles (it is approximate because it is an
interaction with global memory, which has some nondeterminism).

[u29413@s001-n047: ~/class. X | B repart.html ¥ | E commands.bet x
& Distrust HTML

Reports Summary ‘ Throughput Analysis ~ H Area Analysis = ‘ System Viewers ~
Loop List - Loop Analysis
4 |I<erne|: Hough_Transform_kernel | Scheduled
Hough_Transform_kernel.B2 (h: Name Source Location Pipelined 1l fMAX Laten
4 Hough_Transform_kernel.B4 (h
a Hough Transform kernel.B& Kernel: Hough_Transform_kernel hough_transform.cpp 102
Hough_Transform_kernel.
Hough_Transform_kernel.BS (hi
Hough_Transform_kernel.B2 hough_transform.cpp106 | Yes 1 240.0 [
Hough_Transform_kernel B4 hough_transform.cpp 110 | Yes =z 2400 11
Hough_Transform_kernel B hough_transform.cpp:111 fes ==1 2400 202
Hough_Transform_kernel. B8 = hough_transform.cpp118 Yes ~2 240.0 236
Hough_Transform_kernel B9 hough_transform.cpp126 | Yes ~1 2400 =1
3 +

_10. Open the Area Analysis of System section of the report. Alsoopen that section for the last
compilation (from the constant_cache/subdirectory). Observe how the FPGA resource
utilization has changed, especially that the onchip RAMs being used have gone up. This makes
sense because we usedthem to hold local copies of the accumulators.

20

11. We will not run on the FPGA in the interest of time, but if you did compile and run this code on
the FPGA, you would find the runtime would be about 0.0599 seconds, much reduced from our
last 2 runtime numbers.

onFPGALab/local_memory$. /hough_local_memory.out
for Open
Platform (p
B3 seconds

local memory$

21

Part F. Unroll the Inner Loop and Apply the ivdep attribute

Change the directoryto ~/labs/lab3/unroll_ivdep by typing the following command in the
terminal prompt.
cd ../unroll

For this optimization, you will unroll the inner loop of the code in order to direct the compiler to
create hardware sothat more loop iterations can occur in parallel. You will also apply the
pragma ivdep tothe loop so that the compiler knows the memory operations within the loop
are independent of memory operations that happen during other iterations of the loop (if they
are considered dependent, the loop will not be unrolled).

In order to unroll the loop, a pragma presented during class needs to be applied to the loop by
inserting the pragma before the loop in the code. Also, in order to apply the ivdep attribute to
the code, the attribute needs to be inserted before the loop. The pragma and attribute should
be applied to the loop that loops through every possible value of theta. Unrolltheloop 32
times, anything larger will result in long compile times (which would be ok if we weren’t time
constrained for the lab) for the optimization report stage.

Make the change to the code and save it as hough_transform.cpp or copy in the solution in
~/labs/lab3/solutions/unroll/hough_transform.cpp.

Compile the code for emulation, and run the emulation executable (see past steps for the
commands). Do this until you get the VERIFICATION PASSED! message.

Compile the code into an object file and static optimizationreport using the dpcpp commands
presentedin past steps. Expect this steptotake a couple of minutes.

Open the static optimization report by browsing to it and clicking, as in previous steps.

22

and that the Il is improved.

B u29413@5001-n047: ~/class. X | @ report.html ¥ | = commands.bxt

& Distrust HTML

Reports Summary H Throughput Analysis = l Area Analysis = H System Viewers
Loop List . Loop Analysis
a |Kerne|: Hough_Transform_kernel | Scheduled
Hough_Transform_kernel.B2 (h: Mame Source Location Pipelined 1] fMAX Laten
4 Hough_Transform_kernel.B4 (hi
4 Hough_Transform_kernel.B6 Kernel: Hough_Transform_kernel | hough_transform.cpp:102
I 32X Partially unrolled Hout_l
Hough_Transform_kernel.B8 [h
Hough_Transform_kernel B2 hough_transform.cpp:106 ~ Yes 1 2400 [
Hough_Transform_kernel.B4 hough_transform.cpp:110 | Yes ==1 N 2400 [
Hough_Transform_kernel B& hough_transform.cpp:111 Yes ==1 f§ 2400 109
32X Partially unrolled hough_transform.cpp:121 Yes ~1 2400 467
Hough_Transform_kernel B7
Hough_Transform_kernel B2 hough_transform.cpp:122 | Yes ~1 2400 12
3 »
7 Now, open the “Kernel Memory Viewer” section of the report. Itis under the Systems Viewers
heading.
M u29413@s001-n047: ~/class, X | @ report.html X | = commands.be *

C Distrust HTML

Reports Summary ” Throughput Analysis ~ ” Area Analysis System Viewers ™
Graph Viewer (Beta)
Kernel Memory List o Kernel Memory Viewer
4 @ system Kernel Memory Viewer
4 (3] Hough_Transfarm_kernel Click on amemory vi Schedule Viewer (Beta)
D _arg_

£J AccessRange

£T AccessRange (inline#0)

£7 AccessRange (inline#1)
> @ﬁ accum_local

[

£T 1d (inline%0)

£7 1d (inline#1)

B MemRange

£ MemRange (inlinez0)

£T MemRange (inline#1)

T offset

£T offset (inline#0)

{7 offset (inlinez1)

Unknown Name #0

23

Kernel Memory Viewer
Shows memory system
connections including those
between loads and stores

specific to logical ports on
the memory banks. You can

also view replicate nodes for
each memory bank.

28 class Hough_Tr.

6. Open the Loops Analysis section of the report. Observe that the loop has been unrolled 32 times

9.

Click on accum_local in the Memory List, as shown below. This section of the report is giving us
a visual representation of the onchip memory structures built for our kernel scope code. Red in
generalis bad, it means that there is potential stalling on those load and store points. Since we
unrolled the loop, 32 values from the accum_local memory structure are demanded by the
unrolled loop structure at one time. This massive demand from the memory structure has

causedthe need for arbitration, and introduced potential stalling.

|Reset ZoomIClear Selection

M u29413@s001-n047: ~/class X | & report.html * | E commands.txt b4
C Distrust HTML
Reports Summary H Throughput Analysis = H Area Analysis ™ H : em Viewers =
Kernel Memory List o~ Kernel Memory Viewer
2 [J system

s B Hough_Transform_kerne

T _ara_

I AccessRange

11 AccessRange (inline#0)
fT AccessRange (inline#1)

8 5 facam_oal

i 1d

I 1d (inline£0)

T 1d (inline£1)

T MemRange

£ MemRange (inlinez0)
T MemRange (inlinez1)
1T offset

I offset (inline£0)

11 Offset (inlinaz1)
Unknown Mame #0

If you compiled to a full FPGA executable and ran this version of the code on an FPGA, you
would see the runtime is about 0.0205 seconds.

seconds

onFPGALab/unroll_ivdep$

24

Part F. Bank the accum_local Memory Structure

Change the directory to ~/labs/lab3/banking by typing the following command in the terminal
prompt.
cd ../banking

For this step, more extensive changes tothe code were necessary. So, the re-coding has been
done for you.

The next optimization will use the numbanks attribute. Recallthat banks are structures that
have independent ports from the rest of the memory structure, but that only containa portion
of the contents. For example, if we created 2 banks, 1 bank would contain half of the data and
the other bank would contain the other half of the data, each half could be read from
independently.

The banks will be created using the lower index, and the numbanks attribute must be settoa
power of 2.

There are 2 changes that were made to the code for this step:
e Structureaccum_local as a 2-dimensional arrayinstead of a 1-dimensional array.
o The lower dimension should be a power of 2 closestto 180, so 256
o Everywhere you loop through the indices for accum_local will need a change

e Apply the numbanks attribute to the accum_local variable.

25

5.

Open thefile hough_transform.cpp within the Jupyter Lab environment and search for “Callthe
kernel.” Observe where the banking has been declared using an attribute when accum_local is
delcared. Also observe that the memory needed to be made 2 dimensional in order to
accomplish this, soit had implications for other code in the kernel.

96 F/Call the kernel
cgh.single task<class Hough_transform _kernel>{[=]() {

99 [[intelfpga: inumbanks(256)]]

Laa short accum_local[RHOS*2][256];

a1

L2z for (int 1 = @; 1 < RHOS*2; i++) {
L@a3 for (int j=0; Jj<THETAS; j++) {
LB4 accum_local[i][j] = @;

La5 j;

a6 1

Le7

L8 for (uint y=8; y<HEIGHT; y++) {
Las for {uint x=8; =X<WIDTH; x++){
L1a unsigned short int increment = @;
111 if {_pixels[(WIDTH¥y)+x] != @) {
112 increment = 1;

113 1} else {

114 increment = @;

115 }

117 #pragma unroll 32
L18 [[intelfpga: :ivdep]]
119 for (int theta=8; theta<THETAS; theta++){

=

2 int rho = ®*_cos_table[theta] + y*_sin_table[theta];
121 accum_local[rho+RHOS][theta] += increment;
122 1
123 }

124 }

125

L26 for (int 1 = @; i < RHOS%2; i++) {
L27 for (int j=8; J<THETAS; j++) {
128 _accumulators[i*THETAS+]] = accum_local[i][J]:
129 T

138 1

131

132 13

133

134 D

Compile the code for emulation, and run the emulation executable until you achieve the
VERIFICATION PASSED! statement.

Compile the code to an object file and a static optimizationreport. This will take a few minutes.

26

6. Open the optimization report.

7. Navigate tothe Memory Viewer section of the report. Select accum_local. Notice that thered is
gone! This means thereis no arbitration, and no more potential stalling when accessing that
memory structure.

B u23413@s001-n047: ~/class ¥ | & reporthtml ®
C Distrust HTML

commands.txt X

i

Re ports Summary H Throughput Analysis ~ H Area Analysis = ‘ System Viewers ~
; o o ’ Kernel Memory Viewer
Graph Viewer (Beta) Shows memory system
Kernel Memory List av Kernel Memory Viewer | connections including those
- between loads and stores
Kernel Memory Viewer i i
4) system gg specific to logical ports on
4 [@ Hough_Transform_kernel Schedule Vigwer (Beta) the memory banks. You can
T _arg_ = also view replicate nodes for
{1 AccessRange | BHARE) each memory bank.)
1T AccessRange (inline#0) LD #include <C
i 9 #include <CL/
{1 AccessRange (inline#1) Bl £include <chroncs
- W {F accum_local =T 11 #include <fstream>
12
T 1 | SHARE w 13
11 1d (inline#0) [14
7 1d (inline#1) 12
I MemRange ekt 12
I MemRange (inlinez0) i;
{T MemRange (inline#1) 20
T Offset Bank 2 21
22
1T offset (inline#0) 23
1T Offset (inline#1) Bank 2 E;
2
Unknown Name #0 26
27
Bank 4 28 class Hough_Transfo

_ 8. The execution time of this final version of the kernel is about 0.00825 seconds onan FPGA in the
Intel DevCloud.

9. You have reached the end of the exercise, and the end of the class. Thankyou so much for
attending!

You havereached the end ofthe lab exercise. The next section is an appendix.

27

Appendix. How to Transfer Report Files to Your Local Computer

1. The original (Part C) subdirectory was used for these instructions. Replace with the subdirectory
you are working from. In the terminal, navigate tothe subdirectory you are working from. You
will need to transfer the entire fpga.prj/reports/subdirectory to your local machine. The first
stepis to zip this directory into a zip file. Execute the following command (this command was
done from ~/labs/lab3/original/)

$ zip -r report.zip fpga.prj/reports

2. Afile calledreport.zip will be createdin the current directory. Navigate tothe directory you are
ininside of the terminal using the file browser on the left side of Jupyter, as shown in the
screenshot below.

: File Edit View Run Kernel Tabs Settings Help

o £ B * c
m/ - /lab3 / original /
o Name - Last Modified
W fpga.pr 36 minutes ago
o I json_folder 5 months ago
[clean.sh 5 months ago
[compare_results.txt 37 minutes ago
B [fpga.a 36 minutes ago
3 fpga.emu 37 minutes ago
n¢ [fpgao 36 minutes ago
[golden_check_file.txt 5 months ago
[[hough_transform.cpp 11 days ago
M picbmp 5 months ago
.= | [reportzip a minute ago
o [sin_cos_valuesh 11 days ago

3. Right-click the report.zipfile, and select Download.

M picbmp 5 mo

_

(™ sin_ca @ Open ¢
Open With »
Open in New Browser Tab

Eename

N+

Delete
Cut

D Copy

[0 Duplicate

% x

#* Downloag

B Shut Do'.']%Ker"uel

2 (nnv Shareahle |ink

28

4, Unzip the report.zip file on your local machine, navigate tofpga.prj/reports/within the unzipped
directory, and open the file report.html.

@ Report: fpga_bas426 b +
[Q @ File| C:fwork/developer/oneAPl/class_instances/class_1013/labs_work/report/fpga.pri/reports/report.htm#view1

™M Phoenix Buy o & &c A % @ [@ ramiy Phoenix Virtual Learning Animation Career Health SaC Griffin Learning Shutdowr

Reports I Summary ” Throughput Analysis ~ H Area Analysis ~ “ System Viewers ~

Summary Content Summary hough_transfc
N i
Compile Info - o 2 // Copyri
ompile Info
Kernels Summary F 3/
4 [/ SPDK-L
Clock Frequency Summary Project Name fpga baed26 5 /7
System Resource Utilization Summary ?
Quartus Fitter Resource Utilization Summary Target Family, Device, Board Arria 10, 10AX11552F4512SGES, intel_a10gx_pacpac_al0 8
Compile Estimated Kernel Resource Utilization S 9
Rk SYCL Version 20.3.0 Build 72 15
Warnings Summary 11
) 12
Quartus Version 13/ This £
14 #include
Reports Generated At Tue Oct 13 07:12:27 2020 15
16 #define U
17 #define H
Kernels Summary 18 #define I
19 #define T
2@ #define R
2 Target 21 #define N
22
Source Kernel Workgroup Compute Frequency 23 using nam
Mame Location Type Autorun Size Units (MHz) 24
25 // This §
26 void read
Hough_Transform_kernel Q Single No 111 1 Not specified 27
work- 28 class Hou
item .
3@ -~ int main(
31
< 32 //Decla
Clock Fi St
ock Frequency Summary = char b1
3 short &
ilization S - 35
System Resource Utilization Summary % JiIniti
37 std::fi
38
Quartus Fitter Resource Utilization Summary
4 13 -
Details

29

Intel Corporation. All rights reserved.

Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and
logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

Intel warrants performance of its FPGA and semiconductor products to current specificationsin
accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability
arising out of the application or use of any information, product, or service described herein
except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any
published

information and before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

30

