
 Débogage
et

profilage

Konrad HINSEN

Centre de Biophysique Moléculaire (Orléans)
and

Synchrotron Soleil (St Aubin)

Debugging vs. profiling

Debugging: Identifying the origin of “undesirable” behavior:

 •	

 Crash
	

 1)	

Python exception
	

 2)	

OS-level crash (segmentation fault, memory allocation fault, ...)
 •	

 Non-termination
	

 Program stuck in a loop or recursion
 •	

 Wrong results

Profiling: Identifying the parts of a program that require a lot of CPU
time and/or memory.

First debug, then profile!

Python level vs. C level

Bugs and performance problems can occur in plain Python code, but
also in extension modules written in C/C++/Cython/Fortran/etc.

Python code is analyzed using Python debuggers and Python profilers.
Extension modules are analyzed using C-level debuggers and profilers.

If you don’t know at which level your problem is located, start with the
Python tools, which are easier to handle!

This course concentrates on Python-level analysis. C-level tools are
mentioned, but not explained in any detail.

Debugging

Debuggers

Common features of debugging tools:

 •	

 Post-mortem analysis
Analysis of the program state when an exception is raised.

 •	

 Breakpoints
Defining places in the program where execution is halted
to permit an inspection of the state of the program.

 •	

 Single-stepping
Executing one line/statement at a time.

 •	

 Tracing
Showing the value of an expressions at predefined points during
program execution (just like adding a print statement!)

Python debuggers

Module pdb in the Python standard library.

Winpdb (http://winpdb.org/), a GUI debugger based on
wxWindows.

PuDB (http://pypi.python.org/pypi/pudb), a console-based
GUI for PDB.

pydb / pydbgr (http://code.google.com/p/pydbgr/), a more
gdb-compatible enhancement of pdb

PyDev (http://pydev.org/), an Eclipse plugin

WingIDE (http://wingware.com/)

Komodo IDE (http://www.activestate.com/komodo/features/)

Integrated Developement Environments with debuggers:

http://winpdb.org
http://winpdb.org
http://code.google.com/p/pydbgr/
http://code.google.com/p/pydbgr/
http://pydev.org
http://pydev.org
http://www.activestate.com/komodo/features/
http://www.activestate.com/komodo/features/

Debuggers for C, C++, Fortran...

gdb (http://www.gnu.org/software/gdb/)

ddd (http://www.gnu.org/software/ddd/), a GUI for gdb and
other debuggers

Compiler-specific debuggers

Emacs (http://www.gnu.org/software/emacs/)

Eclipse (http://www.eclipse.org/)

KDevelop (http://www.kdevelop.org/)

OS-specific: XCode (Apple), VisualStudio (Microsoft)

Integrated Development Environments with debuggers:

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://www.eclipse.org
http://www.eclipse.org
http://www.kdevelop.org
http://www.kdevelop.org

Post-mortem analysis

Frequent situation: your program crashes because of an uncaught
exception and you want to understand the cause.

Either...

- run your program under debugger control and wait for the exception

- or run your program interactively (python -i, or inside IDLE) and
launch pdb after the exception:

import pdb
pdb.pm()

Running under debugger control with pdb:

python -m pdb my_script.py

Instant PDB

def info(type, value, tb):
 import sys
 if hasattr(sys, 'ps1') or not sys.stderr.isatty():
 sys.__excepthook__(type, value, tb)
 else:
 import traceback, pdb
 traceback.print_exception(type, value, tb)
 print
 pdb.pm()

import sys
sys.excepthook = info
del info
del sys

Create the file $HOME/.local/lib/python2.6/site-packages/sitecustomize.py
with the following content:

This makes Python enter pdb whenever an exception is encountered.

Note: This doesn’t work under Ubuntu !!!
You need to modify /usr/lib/python2.6/sitecustomize.py

Breakpoints and single-stepping

Frequent situation: your program doesn’t crash, but produces wrong
results.

- Start your program under debugger control

- Set a breakpoint (pdb: b) before the point where the error occurs

- Run to the breakpoint (pdb: c) and single-step from there on

Single-stepping modes:

- Step into (pdb: s) stops at the next possible location, usually at the
beginning of a function being called.

- Step over (pdb: n) stops after the next statement, executing it with all
its function calls.

- Step out (pdb: r) stops when the current function ends.

Conditional breakpoints

Frequent situation: a breakpoint needs to be passed hundreds of times
before something interesting happens. But you don’t want to type “c”
hundreds of times!

Conditional breakpoints in pdb:

	

 condition <number> <condition>

	

 When the condition is not fulfilled, execution resumes immediately.

Passage counter:

	

 ignore <number> <n>

	

 The breakpoint is ignored n times before becoming active.

Analyzing the program state

Location in source code:

- (w)here prints a stack trace (as for an exception)

- (l)ist shows 11 lines around the current one

- (u)p and (d)own move up and down in the stack trace

Current variable values:

- (p)rint prints the value of an arbitrary Python expression

Tracing expressions at breakpoints:

- command <number>
 print <expression>
 end

Profiling

Principles of Profiling

Measure execution time per function

Count how often a function is called

Follow memory allocation and deallocation

Observe the behaviour of a program while it is running:

Profiling steps

1) Run the program under profiler control

- Execution statistics are collected

- Program is slowed down!

2) Analyze the statistics

- Identify the functions that use most of the CPU time

- Check memory allocations

- ...

Some popular profiling tools

1) Python: module cProfile

2) gprof

- Unix (including MacOS)

- works with GNU compilers and most others

2) Valgrind

- Linux (others in preparation)

- works with GNU compilers and others

- best known for memory profiling

3) VTune (Intel)

- selected Intel processors

- works with all compilers

4) Shark (Apple)

- MacOS X only

- very easy to use and provides excellent analysis

Using Python’s cProfile module

- Basic use: python -m cProfile my_script.py

- Keeping the execution statistics in a file for later analysis:

python -m cProfile -o my_script.profile my_script.py

- Profiling part of a program:

import cProfile
cProfile.run(“my_function()”)

- Inspecting the statistics:

import pstats
p = pstats.Stats(“my_script.profile”)
p.print_stats(“time”)

How it works:

- Modifies the interpreter to call a bookkeeping routine when a function is

 called and when it returns.

- Use this to measure the execution time of each function.

Using gprof

1) Recompile program adding the option -pg (gcc, gfortran, ...)

2) Run the program normally.

3) Run “gprof” to analyze the execution statistics.

How it works:

- Recompilation with -pg inserts calls to gprof’s profiling library.

- This library runs a second execution thread that observes the main thread’s
behaviour at regular intervals (statistical sampling).

- The execution statistics are written to the file gmon.out.

- gprof analyzes the data in gmon.out.

Using Shark

1) Run SHARK

2) Launch the program from SHARK.

3) Wait for the end of the program or press “STOP” at some time.

4) Look at the profiling data.

How it works:

- Uses special registers in the CPU designed for profiling.

- Uses statistical sampling of the program state.

Exercises

Trouvez les bogues !

Le script simulateur.py contient une version modifiée du simulateur du
système solaire. Un grand méchant y a introduit quatre erreurs.
Identifiez-les (et corrigez-les) en utilisant pdb !

Pour vérifier si votre simulateur fonctionne correctement, lancez-le avec
l’option ‘-v’ pour afficher une visualisation du mouvement des planètes.
Si la terre revient à sa position d’origine au bout d’un an, tout va bien.

Profilage

Après avoir corrigé les bogues du simulateur du système solaire,
analysez sa performance avec cProfile.

