Groupe calcul — 2017

«O>» «Fr <= «

fHac




Need for massively parallel computing
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Since year 2004 :

@ CPU frequency stalls at 3 GHz due to the heat dissipation
wall. The only way to improve the performance of computer
is to go parallel
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Parallel Software tools : HPDDM and FreeFem++

FIGURE — Antennas and mesh — interior diameter 28,5 cm

Two in-house open source libraries (LGPL) linked to many
third-party libraries :
@ HPDDM (High Performance Domain Decomposition
Methods) for massively parallel computing
@ FreeFem++(-mpi) for the parallel simulation of equations
from physics by the finite element method (FEM).
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Au = f? Panorama of parallel linear solvers

Multi-frontal sparse direct solver (I. Duff et al.)

MUMPS (J.Y. LExcellent), SuperLU (Demmel, ...), PastiX,
UMFPACK, PARDISO (O. Schenk),

lterative Methods
@ Fixed point iteration : Jacobi, Gauss-Seidel, SSOR

@ Krylov type methods : Conjuguate Gradient
(Stiefel-Hestenes), GMRES (Y. Saad), QMR (R. Freund),
MinRes, BICGSTAB (van der Vorst)

A

"Hybrid Methods"

@ Multigrid (A. Brandt, Ruge-Stiben, Falgout, McCormick, A.
Ruhe, Y. Notay, .. .)

@ Domain decomposition methods (O. Widlund, C. Farhat, J.
Mandel, P.L. Lions, ) are a naturally parallel compromise
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Why iterative solvers ?

Limitations of direct solvers

In practice all direct solvers work well until a certain barrier :
@ two-dimensional problems (108 unknowns)
@ three-dimensional problems (10° unknowns).

Beyond, the factorization cannot be stored in memory any
more.
To summarize :

@ below a certain size, direct solvers are chosen.
@ beyond the critical size, iterative solvers are needed.
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Linear Algebra from the End User point of view

Direct DDM Iterative
Cons : Memory Pro : Flexible Pros : Memory
Difficult to || Naurally || Easy to ||
Pros : Robustness Cons : Robustness

solve(MAT,RHS,SOL) | Some black box routines | solve(MAT,RHS,SOL)
Some implementations
of efficient DDM

Multigrid methods : very efficient but may lack robustness, not
always applicable (Helmholtz type problems, complex systems)
and difficult to parallelize.
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The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

Qo
—A(u)=f inQ

u=0 onoQ.

Schwarz Method : (uf, uf) — (uf™", ugt") with

—AWTY=f in Q ~AUTY=f inQ
Uttt =00on oQ NoQ Ul = 00n 90 NN
urtt = ug  on 09y N Qy. Uttt =ut on 9 N Q.

Parallel algorithm, converges but very slowly, overlapping
subdomains only.
The parallel version is called Jacobi Schwarz method (JSM).
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An introduction to Additive Schwarz — Linear Algebra

Consider the discretized Poisson problem : Au = f € R”".
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An introduction to Additive Schwarz — Linear Algebra

Consider the discretized Poisson problem : Au = f € R”".
Given a decomposition of [1; n], (N1, N>), define :

@ the restriction operator R; from R into RV,
@ R/ as the extension by 0 from R/ into RI"7.

Q
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An introduction to Additive Schwarz — Linear Algebra

Consider the discretized Poisson problem : Au = f € R”".
Given a decomposition of [1; n], (N1, N>), define :

@ the restriction operator R; from R into RV,
@ R/ as the extension by 0 from R/ into RI"7.
u™ — u™+! by solving concurrently :

uMt =+ ATTRy(F — Au™)  ut = Ul + AT Ro(F - Au™)

where Ulm = R,'Um and A; .= R,ARIT Q4

Qp
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An introduction to Additive Schwarz Il — Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :

N
I=> R/DR;.
i=1

=
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An introduction to Additive Schwarz Il — Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :

N
I=> R/DR;.
i=1

=

N
Then, u™" =" BRI Du™".

i=1

9/23



An introduction to Additive Schwarz Il — Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :

N
I=> R/DR;.
i=1
;
1
2
N N
Then, u™" =" BRI Du™". Mgis=> R/DATR;

i=1 i=1
RAS algorithm (Cai & Sarkis, 1999). Weighted Overlapping

Block Jacobi method
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Algebraic formulation - RAS and ASM

Discrete Schwarz algorithm iterates on a pair of local functions
(upm, Uz
RAS algorithm iterates on the global function u™
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Algebraic formulation - RAS and ASM

Discrete Schwarz algorithm iterates on a pair of local functions
(upm, Uz
RAS algorithm iterates on the global function u™

Schwarz and RAS

Discretization of the classical Schwarz algorithm and the
iterative RAS algorithm :

+1 _ —1 ._
U™ =U"+ Mger", r" = F - AU".
are equivalent

U" = RI DyU! + R D, US .

(Efstathiou and Gander, 2002).

Operator Mg, is used as a preconditioner in Krylov methods
for non symmetric problems.
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Many cores : Strong and Weak scalability

How to evaluate the efficiency of a domain decomposition ?

Strong scalability (Amdahl)

"How the solution time varies with the number of processors for
a fixed total problem size"

Weak scalability (Gustafson)

"How the solution time varies with the number of processors for
a fixed problem size per processor."

Not achieved with the one level method

Number of subdomains | 8 | 16 | 32 | 64
ASM 18 | 35 | 66 | 128

The iteration number increases linearly with the number of
subdomains in one direction.
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Convergence curves- more subdomains

Plateaus appear in the convergence of the Krylov methods.

sssssssss

FIGURE — Decomposition into 64 subdomains and into m x m squares

Solution of a Poisson problem —Au = f

Number of subdomains | 2x2 | 4x4 | 8x8

Number of iterations 20 36 64

12/23



Adding a coarse space

One level methods are not scalable for steady state
problems.

We add a coarse space correction (aka second level)

Let Vi be the coarse space and Z be a basis, V = span Z,
writing Ry = Z" we define the two level preconditioner as :

N
— —1 _
MAS1M,2 = Ry (RoAR{) Ro+ Z RIA-'R;.
=1
The Nicolaides approach (1987) is to use the kernel of the

operator as a coarse space, this is the constant vectors, in local
form this writes :

Z .= (RT DiRN)1<i<n
where D; are chosen so that we have a partition of unity :

N
> R/DiR; =1d.
i=1
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Theoretical convergence result

Theorem (Widlund, Dryija)
Let M;S1M , be the two-level additive Schwarz method :

H
K(Mady2A) < C (1 + 5)

where ¢ is the size of the overlap between the subdomains and
H the subdomain size. )

This does indeed work very well

Number of subdomains | 8 | 16 | 32 | 64
ASM 18 | 35 | 66 | 128
ASM + Nicolaides 20 | 27 | 28 | 27

Fails for highly heterogeneous problems
You need a larger and adaptive coarse space, see later
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GenEO

Strategy

Define an appropriate coarse space Vy, = span(Z) and use
the framework previously introduced, writing Ry = ZzT the two
level preconditioner is :

N
— 1 _
PA;MZ = R (RoAR]) Ro + g R,-TA,- 'R,
i=1

The coarse space must be

@ Local (calculated on each subdomain) — parallel
@ Adaptive (calculated automatically)
@ Easy and cheap to compute

@ Robust (must lead to an algorithm whose convergence is
proven not to depend on the partition nor the jumps in
coefficients)
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GenEO

Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems :
Geneo .EVP per subdomain :

Find Vjx e RN and )\, >0

Dj RAR DV = N\ ANV

In the two-level ASM, let 7 be a user chosen parameter :
Choose eigenvectors )\ x > 7 per subdomain :

Z = (AT "

N k=T
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GenEO

Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems :
Geneo .EVP per subdomain :

Find Vjx e RN and )\, >0

Dj RAR DV = N\ ANV

In the two-level ASM, let 7 be a user chosen parameter :
Choose eigenvectors )\ x > 7 per subdomain :

Z = (AT "

N k=T
This automatically includes Nicolaides CS made of Zero

Energy Modes.
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Theory of GenEO

Two technical assumptions.

Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl

(Num. Math. 2013))
Ifforallj: 0<)\;

mj <00

MMz 2A) < (14 ko) [2 + ko (2ko + 1) (1 +7)}

Possible criterion for picking 7 : (used in our Numerics)

H; ... subdomain diameter, J; . .. overlap
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Numerical results (Darcy)

Channels and inclusions : 1 < a < 1.5 x 10°, the solution and
partitionings (Metis or not)
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Convergence
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HPDDM Library (P. Jolivet and N.)

An implementation of several Domain Decomposition Methods
and Multiple RHS solver
@ One-and two-level Schwarz methods
@ The Finite Element Tearing and Interconnecting (FETI)
method
@ Balancing Domain Decomposition (BDD) method
@ Implements parallel algorithms : Domain Decomposition
methods and Block solvers
@ 2 billions unknowns in three dimension solved in 210
seconds on 8100 cores
Library
@ Linked with graph partitioners (METIS & SCOTCH).
@ Linked with BLAS & LAPACK.
@ Linked with direct solvers (MUMPS, SuiteSparse, MKL
PARDISO, PASTIX).
@ Linked with eigenvalue solver (ARPACK).
@ Interfaced with discretisation kernel FreeFem++ & FEEL++
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Weak scalability for heterogeneous elasticity (with
FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition
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(a) Timings of various simulations

200 millions unknowns in 3D wall-clock time : 200. sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours
provided by an IDRIS-GENCI project.
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Strong scalability in two and three dimensions (with
FreeFem++ and HPDDM)

Stokes problem with automatic mesh partition. Driven cavity
problem

N Factorization Deflation Solution # of it. Total  # of d.o.f.

1024 79.2s 229.0s 76.3s 45 387.5s

2048 29.5s 76.5s 34.8s 42 143.9s 6
3D 4096 11.1s 45.8s 19.8s 42 80.9s 50-63 - 10

8192 4.7s 26.1s 14.9s 41 56.8s

Peak performance : 50 millions d.o.f’s in 3D in 57 sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours
provided by an IDRIS-GENCI project.

HPDDM https://github.com/hpddm/hpddm is a
framework in C++/MPI for high-performance domain
decomposition methods with a Plain Old Data (POD) interface
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https://github.com/hpddm/hpddm

Maxwell in the frequency domain

@ Mesh with 2.3M degrees of freedom;

@ Domain decomposition methods with impedance interface
conditions, twice as fast as Dirichlet interface conditions ;

@ Parallel computing on 64 cores on SGI UV2000 at UPMC :
3s per emitter, 5 mn as a whole.
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