
FreeFem++
and HPDDM

Groupe calcul – 2017

1 / 23

Need for massively parallel computing

1971
1975
1979
1983
1987
1991
1995
1999
2003
2007
2011
2015

103

105

107

109
of transistors
Frequency (Hz)

100

10 k

1G

100G

10 T

1 P

3 GHz

Credits: http://download.intel.com/
pressroom/kits/IntelProcessorHistory.pdf

Since year 2004 :
CPU frequency stalls at 3 GHz due to the heat dissipation
wall. The only way to improve the performance of computer
is to go parallel

2 / 23

Parallel Software tools : HPDDM and FreeFem++

FIGURE – Antennas and mesh – interior diameter 28,5 cm

Two in-house open source libraries (LGPL) linked to many
third-party libraries :

HPDDM (High Performance Domain Decomposition
Methods) for massively parallel computing
FreeFem++(-mpi) for the parallel simulation of equations
from physics by the finite element method (FEM).

3 / 23

A u = f ? Panorama of parallel linear solvers

Multi-frontal sparse direct solver (I. Duff et al.)
MUMPS (J.Y. L’Excellent), SuperLU (Demmel, . . .), PastiX,
UMFPACK, PARDISO (O. Schenk),

Iterative Methods
Fixed point iteration : Jacobi, Gauss-Seidel, SSOR
Krylov type methods : Conjuguate Gradient
(Stiefel-Hestenes), GMRES (Y. Saad), QMR (R. Freund),
MinRes, BiCGSTAB (van der Vorst)

"Hybrid Methods"
Multigrid (A. Brandt, Ruge-Stüben, Falgout, McCormick, A.
Ruhe, Y. Notay, . . .)
Domain decomposition methods (O. Widlund, C. Farhat, J.
Mandel, P.L. Lions,) are a naturally parallel compromise

4 / 23

Why iterative solvers?

Limitations of direct solvers
In practice all direct solvers work well until a certain barrier :

two-dimensional problems (106 unknowns)
three-dimensional problems (105 unknowns).

Beyond, the factorization cannot be stored in memory any
more.
To summarize :

below a certain size, direct solvers are chosen.
beyond the critical size, iterative solvers are needed.

5 / 23

Linear Algebra from the End User point of view

Direct DDM Iterative

Cons : Memory Pro : Flexible Pros : Memory

Difficult to || Naurally || Easy to ||
Pros : Robustness Cons : Robustness

solve(MAT,RHS,SOL) Some black box routines solve(MAT,RHS,SOL)

Some implementations

of efficient DDM

Multigrid methods : very efficient but may lack robustness, not
always applicable (Helmholtz type problems, complex systems)
and difficult to parallelize.

6 / 23

The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

−∆(u) = f in Ω
u = 0 on ∂Ω.

Ω1 Ω2

Schwarz Method : (un
1 ,u

n
2)→ (un+1

1 ,un+1
2) with

−∆(un+1
1) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un

2 on ∂Ω1 ∩ Ω2.

−∆(un+1
2) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on ∂Ω2 ∩ Ω1.

Parallel algorithm, converges but very slowly, overlapping
subdomains only.
The parallel version is called Jacobi Schwarz method (JSM).

7 / 23

An introduction to Additive Schwarz – Linear Algebra

Consider the discretized Poisson problem : Au = f ∈ Rn.
Given a decomposition of J1; nK, (N1,N2), define :

the restriction operator Ri from RJ1;nK into RNi ,
RT

i as the extension by 0 from RNi into RJ1;nK.
um −→ um+1 by solving concurrently :

um+1
1 = um

1 + A−1
1 R1(f − Aum) um+1

2 = um
2 + A−1

2 R2(f − Aum)

where um
i = Rium and Ai := RiART

i .

Ω

8 / 23

An introduction to Additive Schwarz – Linear Algebra

Consider the discretized Poisson problem : Au = f ∈ Rn.
Given a decomposition of J1; nK, (N1,N2), define :

the restriction operator Ri from RJ1;nK into RNi ,
RT

i as the extension by 0 from RNi into RJ1;nK.
um −→ um+1 by solving concurrently :

um+1
1 = um

1 + A−1
1 R1(f − Aum) um+1

2 = um
2 + A−1

2 R2(f − Aum)

where um
i = Rium and Ai := RiART

i .
Ω2

Ω1

8 / 23

An introduction to Additive Schwarz – Linear Algebra

Consider the discretized Poisson problem : Au = f ∈ Rn.
Given a decomposition of J1; nK, (N1,N2), define :

the restriction operator Ri from RJ1;nK into RNi ,
RT

i as the extension by 0 from RNi into RJ1;nK.
um −→ um+1 by solving concurrently :

um+1
1 = um

1 + A−1
1 R1(f − Aum) um+1

2 = um
2 + A−1

2 R2(f − Aum)

where um
i = Rium and Ai := RiART

i .
Ω2

Ω1

8 / 23

An introduction to Additive Schwarz II – Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :

I =
N∑

i=1

RT
i DiRi .

Then, um+1 =
N∑

i=1

RT
i Dium+1

i . M−1
RAS =

N∑
i=1

RT
i DiA−1

i Ri .

RAS algorithm (Cai & Sarkis, 1999). Weighted Overlapping
Block Jacobi method

1
2

1

1
2 1

9 / 23

An introduction to Additive Schwarz II – Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :

I =
N∑

i=1

RT
i DiRi .

Then, um+1 =
N∑

i=1

RT
i Dium+1

i . M−1
RAS =

N∑
i=1

RT
i DiA−1

i Ri .

RAS algorithm (Cai & Sarkis, 1999). Weighted Overlapping
Block Jacobi method

1
2

1

1
2 1

9 / 23

An introduction to Additive Schwarz II – Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :

I =
N∑

i=1

RT
i DiRi .

Then, um+1 =
N∑

i=1

RT
i Dium+1

i . M−1
RAS =

N∑
i=1

RT
i DiA−1

i Ri .

RAS algorithm (Cai & Sarkis, 1999). Weighted Overlapping
Block Jacobi method

1
2

1

1
2 1

9 / 23

Algebraic formulation - RAS and ASM

Discrete Schwarz algorithm iterates on a pair of local functions
(u1

m,u2
m)

RAS algorithm iterates on the global function um

Schwarz and RAS
Discretization of the classical Schwarz algorithm and the
iterative RAS algorithm :

Un+1 = Un + M−1
RASrn , rn := F − A Un.

are equivalent

Un = RT
1 D1Un

1 + RT
2 D2Un

2 .

(Efstathiou and Gander, 2002).

Operator M−1
RAS is used as a preconditioner in Krylov methods

for non symmetric problems.

10 / 23

Algebraic formulation - RAS and ASM

Discrete Schwarz algorithm iterates on a pair of local functions
(u1

m,u2
m)

RAS algorithm iterates on the global function um

Schwarz and RAS
Discretization of the classical Schwarz algorithm and the
iterative RAS algorithm :

Un+1 = Un + M−1
RASrn , rn := F − A Un.

are equivalent

Un = RT
1 D1Un

1 + RT
2 D2Un

2 .

(Efstathiou and Gander, 2002).

Operator M−1
RAS is used as a preconditioner in Krylov methods

for non symmetric problems.

10 / 23

Many cores : Strong and Weak scalability
How to evaluate the efficiency of a domain decomposition?

Strong scalability (Amdahl)

"How the solution time varies with the number of processors for
a fixed total problem size"

Weak scalability (Gustafson)
"How the solution time varies with the number of processors for
a fixed problem size per processor."

Not achieved with the one level method

Number of subdomains 8 16 32 64
ASM 18 35 66 128

The iteration number increases linearly with the number of
subdomains in one direction.

11 / 23

Convergence curves- more subdomains

Plateaus appear in the convergence of the Krylov methods.

0 50 100 150
10−8

10−6

10−4

10−2

100

102

104

X: 25
Y: 1.658e−08

SCHWARZ

additive Schwarz
with coarse gird acceleration

-7

-6

-5

-4

-3

-2

-1

0

0 10 20 30 40 50 60 70 80

Lo
g_

10
 (E

rro
r)

Number of iterations (GCR)

M2
2x2 2x2 M2

4x4
M2
8x8

4x4 8x8

FIGURE – Decomposition into 64 subdomains and into m×m squares

Solution of a Poisson problem −∆u = f

Number of subdomains 2x2 4x4 8x8
Number of iterations 20 36 64

12 / 23

Adding a coarse space

One level methods are not scalable for steady state
problems.
We add a coarse space correction (aka second level)
Let VH be the coarse space and Z be a basis, VH = span Z ,
writing R0 = Z T we define the two level preconditioner as :

M−1
ASM,2 := RT

0 (R0ART
0)
−1

R0 +
N∑

i=1

RT
i A−1

i Ri .

The Nicolaides approach (1987) is to use the kernel of the
operator as a coarse space, this is the constant vectors, in local
form this writes :

Z := (RT
i DiRi1)1≤i≤N

where Di are chosen so that we have a partition of unity :
N∑

i=1

RT
i DiRi = Id .

13 / 23

Theoretical convergence result

Theorem (Widlund, Dryija)

Let M−1
ASM,2 be the two-level additive Schwarz method :

κ(M−1
ASM,2 A) ≤ C

(
1 +

H
δ

)
where δ is the size of the overlap between the subdomains and
H the subdomain size.

This does indeed work very well

Number of subdomains 8 16 32 64
ASM 18 35 66 128

ASM + Nicolaides 20 27 28 27

Fails for highly heterogeneous problems
You need a larger and adaptive coarse space, see later

14 / 23

GenEO

Strategy

Define an appropriate coarse space VH 2 = span(Z2) and use
the framework previously introduced, writing R0 = Z T

2 the two
level preconditioner is :

P−1
ASM 2 := RT

0 (R0ART
0)
−1

R0 +
N∑

i=1

RT
i A−1

i Ri .

The coarse space must be
Local (calculated on each subdomain)→ parallel
Adaptive (calculated automatically)
Easy and cheap to compute
Robust (must lead to an algorithm whose convergence is
proven not to depend on the partition nor the jumps in
coefficients)

15 / 23

GenEO

Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems :
Geneo .EVP per subdomain :

Find Vj,k ∈ RNj and λj,k ≥ 0 :

Dj RjART
j DjVj,k = λj,k ANeu

j Vj,k

In the two-level ASM, let τ be a user chosen parameter :
Choose eigenvectors λj,k ≥ τ per subdomain :

Z :=
(
RT

j DjVj,k
)j=1,...,N
λj,k≥τ

This automatically includes Nicolaides CS made of Zero

Energy Modes.

16 / 23

GenEO

Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems :
Geneo .EVP per subdomain :

Find Vj,k ∈ RNj and λj,k ≥ 0 :

Dj RjART
j DjVj,k = λj,k ANeu

j Vj,k

In the two-level ASM, let τ be a user chosen parameter :
Choose eigenvectors λj,k ≥ τ per subdomain :

Z :=
(
RT

j DjVj,k
)j=1,...,N
λj,k≥τ

This automatically includes Nicolaides CS made of Zero

Energy Modes.

16 / 23

Theory of GenEO

Two technical assumptions.

Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl
(Num. Math. 2013))
If for all j : 0 < λj,mj+1 <∞ :

κ(M−1
ASM,2A) ≤ (1 + k0)

[
2 + k0 (2k0 + 1)

(
1 + τ

)]
Possible criterion for picking τ : (used in our Numerics)

τ := min
j=1,...,N

Hj

δj

Hj . . . subdomain diameter, δj . . . overlap

17 / 23

Numerical results (Darcy)

IsoValue
-78946.3
39474.7
118422
197369
276317
355264
434211
513159
592106
671053
750001
828948
907895
986842
1.06579e+06
1.14474e+06
1.22368e+06
1.30263e+06
1.38158e+06
1.57895e+06

IsoValue
-0.0079688
0.0039844
0.0119532
0.019922
0.0278908
0.0358596
0.0438284
0.0517972
0.059766
0.0677348
0.0757036
0.0836724
0.0916412
0.09961
0.107579
0.115548
0.123516
0.131485
0.139454
0.159376

Channels and inclusions : 1 ≤ α ≤ 1.5 × 106, the solution and
partitionings (Metis or not)

18 / 23

Convergence

0 100 200 300 400 500 600 700
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Iteration count

Er
ro

r

AS
PBNN : AS + ZNico
PBNN : AS + ZD2N
GMRES PBNN : AS + ZD2N

19 / 23

HPDDM Library (P. Jolivet and N.)

An implementation of several Domain Decomposition Methods
and Multiple RHS solver

One-and two-level Schwarz methods
The Finite Element Tearing and Interconnecting (FETI)
method
Balancing Domain Decomposition (BDD) method
Implements parallel algorithms : Domain Decomposition
methods and Block solvers
2 billions unknowns in three dimension solved in 210
seconds on 8100 cores

Library
Linked with graph partitioners (METIS & SCOTCH).
Linked with BLAS & LAPACK.
Linked with direct solvers (MUMPS, SuiteSparse, MKL
PARDISO, PASTIX).
Linked with eigenvalue solver (ARPACK).
Interfaced with discretisation kernel FreeFem++ & FEEL++
C++, C, Fortran and Python interface 20 / 23

Weak scalability for heterogeneous elasticity (with
FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition

N

. ·

. ·

. ·

. ·

. ·

. ·

. ·

. ·

. ·

. ·

. ·

. ·

200 millions unknowns in 3D wall-clock time : 200. sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours
provided by an IDRIS-GENCI project.

21 / 23

Strong scalability in two and three dimensions (with
FreeFem++ and HPDDM)

Stokes problem with automatic mesh partition. Driven cavity
problem

N

. ·

. ·

. ·

. ·

. ·

. ·

. ·

. ·

. ·

. ·

N

. . . .

. ·. . . .
. . . .
. . . .

. . . .

. ·. . . .
. . . .
. . . .

Peak performance : 50 millions d.o.f’s in 3D in 57 sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours

provided by an IDRIS-GENCI project.

HPDDM https://github.com/hpddm/hpddm is a
framework in C++/MPI for high-performance domain
decomposition methods with a Plain Old Data (POD) interface

22 / 23

https://github.com/hpddm/hpddm

Maxwell in the frequency domain

Mesh with 2.3M degrees of freedom;
Domain decomposition methods with impedance interface
conditions, twice as fast as Dirichlet interface conditions ;
Parallel computing on 64 cores on SGI UV2000 at UPMC :
3s per emitter, 5 mn as a whole.

23 / 23

	Schwarz algorithms essentials
	Algebraic Schwarz Methods
	Coarse Space correction

