FreeFem++ and HPDDM

Groupe calcul - 2017

Since year 2004 :

- CPU frequency stalls at 3 GHz due to the heat dissipation wall. The only way to improve the performance of computer is to go parallel

Figure - Antennas and mesh - interior diameter 28,5 cm

Two in-house open source libraries (LGPL) linked to many third-party libraries:

- HPDDM (High Performance Domain Decomposition Methods) for massively parallel computing
- FreeFem++(-mpi) for the parallel simulation of equations from physics by the finite element method (FEM).

$A u=f$? Panorama of parallel linear solvers

Multi-frontal sparse direct solver (I. Duff et al.)

MUMPS (J.Y. L’Excellent), SuperLU (Demmel, . . .), PastiX, UMFPACK, PARDISO (O. Schenk),

Iterative Methods

- Fixed point iteration : Jacobi, Gauss-Seidel, SSOR
- Krylov type methods : Conjuguate Gradient (Stiefel-Hestenes), GMRES (Y. Saad), QMR (R. Freund), MinRes, BiCGSTAB (van der Vorst)

"Hybrid Methods"

- Multigrid (A. Brandt, Ruge-Stüben, Falgout, McCormick, A. Ruhe, Y. Notay, ...)
- Domain decomposition methods (O. Widlund, C. Farhat, J. Mandel, P.L. Lions,) are a naturally parallel compromise

Limitations of direct solvers
In practice all direct solvers work well until a certain barrier :

- two-dimensional problems (10^{6} unknowns)
- three-dimensional problems (10^{5} unknowns).

Beyond, the factorization cannot be stored in memory any more.
To summarize :

- below a certain size, direct solvers are chosen.
- beyond the critical size, iterative solvers are needed.

Linear Algebra from the End User point of view

Direct	DDM	Iterative			
Cons : Memory	Pro : Flexible	Pros : Memory			
Difficult to \\|	Naurally \\|	Easy to \\|			
Pros : Robustness		Cons : Robustness			
solve(MAT,RHS,SOL)	Some black box routines Some implementations of efficient DDM	solve(MAT,RHS,SOL)			

Multigrid methods : very efficient but may lack robustness, not always applicable (Helmholtz type problems, complex systems) and difficult to parallelize.

The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

$$
\begin{aligned}
& -\Delta(u)=f \quad \text { in } \Omega \\
& u=0 \quad \text { on } \partial \Omega .
\end{aligned}
$$

Schwarz Method : $\left(u_{1}^{n}, u_{2}^{n}\right) \rightarrow\left(u_{1}^{n+1}, u_{2}^{n+1}\right)$ with

$$
\begin{array}{ll}
-\Delta\left(u_{1}^{n+1}\right)=f \quad \text { in } \Omega_{1} & -\Delta\left(u_{2}^{n+1}\right)=f \quad \text { in } \Omega_{2} \\
u_{1}^{n+1}=0 \text { on } \partial \Omega_{1} \cap \partial \Omega & u_{2}^{n+1}=0 \text { on } \partial \Omega_{2} \cap \partial \Omega \\
u_{1}^{n+1}=u_{2}^{n} \quad \text { on } \partial \Omega_{1} \cap \overline{\Omega_{2}} . & u_{2}^{n+1}=u_{1}^{n+1} \quad \text { on } \partial \Omega_{2} \cap \overline{\Omega_{1}} .
\end{array}
$$

Parallel algorithm, converges but very slowly, overlapping subdomains only.
The parallel version is called Jacobi Schwarz method (JSM).

An introduction to Additive Schwarz - Linear Algebra

Consider the discretized Poisson problem : $A u=f \in \mathbb{R}^{n}$.

Consider the discretized Poisson problem : $A u=f \in \mathbb{R}^{n}$. Given a decomposition of $\llbracket 1 ; n \rrbracket,\left(\mathcal{N}_{1}, \mathcal{N}_{2}\right)$, define :

- the restriction operator R_{i} from $\mathbb{R}^{[1 ; n]}$ into $\mathbb{R}^{N_{i}}$,
- R_{i}^{T} as the extension by 0 from $\mathbb{R}^{\mathcal{N}_{i}}$ into $\mathbb{R}^{[1 ; n]}$.

Consider the discretized Poisson problem : $A u=f \in \mathbb{R}^{n}$. Given a decomposition of $\llbracket 1 ; n \rrbracket,\left(\mathcal{N}_{1}, \mathcal{N}_{2}\right)$, define :

- the restriction operator R_{i} from $\mathbb{R}^{\llbracket 1 ; n \rrbracket}$ into $\mathbb{R}^{\mathcal{N}_{i}}$,
- R_{i}^{T} as the extension by 0 from $\mathbb{R}^{\mathcal{N}_{i}}$ into $\mathbb{R}^{\llbracket 1 ; n \rrbracket}$.
$u^{m} \longrightarrow u^{m+1}$ by solving concurrently :
$u_{1}^{m+1}=u_{1}^{m}+A_{1}^{-1} R_{1}\left(f-A u^{m}\right) \quad u_{2}^{m+1}=u_{2}^{m}+A_{2}^{-1} R_{2}\left(f-A u^{m}\right)$
where $u_{i}^{m}=R_{i} u^{m}$ and $A_{i}:=R_{i} A R_{i}^{T}$.

An introduction to Additive Schwarz II - Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :

$$
I=\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i}
$$

RAS algorithm (Cai \& Sarkis, 1999). Weighted Overlapping Block Jacobi method

An introduction to Additive Schwarz II - Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :

$$
I=\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i} .
$$

Then, $u^{m+1}=\sum_{i=1}^{N} R_{i}^{T} D_{i} u_{i}^{m+1}$.

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :

$$
I=\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i} .
$$

Then, $u^{m+1}=\sum_{i=1}^{N} R_{i}^{T} D_{i} u_{i}^{m+1}$.

RAS algorithm (Cai \& Sarkis, 1999). Weighted Overlapping Block Jacobi method

Algebraic formulation - RAS and ASM

Discrete Schwarz algorithm iterates on a pair of local functions
$\left(u_{m}^{1}, u_{m}^{2}\right)$
RAS algorithm iterates on the global function u^{m}

Schwarz and RAS
 Discretization of the classical Schwarz algorithm and the iterative RAS algorithm

are equivalent

(Efstathiou and Gander, 2002)

Algebraic formulation - RAS and ASM

Discrete Schwarz algorithm iterates on a pair of local functions $\left(u_{m}^{1}, u_{m}^{2}\right)$
RAS algorithm iterates on the global function u^{m}

Schwarz and RAS

Discretization of the classical Schwarz algorithm and the iterative RAS algorithm :

$$
U^{n+1}=U^{n}+M_{R A S}^{-1} r^{n}, r^{n}:=F-A U^{n} .
$$

are equivalent

$$
U^{n}=R_{1}^{T} D_{1} U_{1}^{n}+R_{2}^{T} D_{2} U_{2}^{n} .
$$

(Efstathiou and Gander, 2002).
Operator $M_{R A S}^{-1}$ is used as a preconditioner in Krylov methods for non symmetric problems.

Strong scalability (Amdahl)

"How the solution time varies with the number of processors for a fixed total problem size"

Weak scalability (Gustafson)

"How the solution time varies with the number of processors for a fixed problem size per processor."

Not achieved with the one level method

Number of subdomains	8	16	32	64
ASM	18	35	66	128

The iteration number increases linearly with the number of subdomains in one direction.

Convergence curves- more subdomains

Plateaus appear in the convergence of the Krylov methods.

FIGURE - Decomposition into 64 subdomains and into $m \times m$ squares

Solution of a Poisson problem $-\Delta u=f$

Number of subdomains	2×2	4×4	$8 x 8$
Number of iterations	20	36	64

Adding a coarse space

One level methods are not scalable for steady state problems.
We add a coarse space correction (aka second level)
Let V_{H} be the coarse space and Z be a basis, $V_{H}=\operatorname{span} Z$, writing $R_{0}=Z^{\top}$ we define the two level preconditioner as:

$$
M_{A S M, 2}^{-1}:=R_{0}^{T}\left(R_{0} A R_{0}^{T}\right)^{-1} R_{0}+\sum_{i=1}^{N} R_{i}^{T} A_{i}^{-1} R_{i}
$$

The Nicolaides approach (1987) is to use the kernel of the operator as a coarse space, this is the constant vectors, in local form this writes :

$$
Z:=\left(R_{i}^{T} D_{i} R_{i} \mathbf{1}\right)_{1 \leq i \leq N}
$$

where D_{i} are chosen so that we have a partition of unity :

$$
\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i}=I d
$$

Theorem (Widlund, Dryija)

Let $M_{A S M, 2}^{-1}$ be the two-level additive Schwarz method :

$$
\kappa\left(M_{A S M, 2}^{-1} A\right) \leq C\left(1+\frac{H}{\delta}\right)
$$

where δ is the size of the overlap between the subdomains and H the subdomain size.

This does indeed work very well

Number of subdomains	8	16	32	64
ASM	18	35	66	128
ASM + Nicolaides	20	27	28	27

Fails for highly heterogeneous problems
You need a larger and adaptive coarse space, see later

GenEO

Strategy

Define an appropriate coarse space $V_{H 2}=\operatorname{span}\left(Z_{2}\right)$ and use the framework previously introduced, writing $R_{0}=Z_{2}^{T}$ the two level preconditioner is :

$$
P_{A S M 2}^{-1}:=R_{0}^{T}\left(R_{0} A R_{0}^{T}\right)^{-1} R_{0}+\sum_{i=1}^{N} R_{i}^{T} A_{i}^{-1} R_{i}
$$

The coarse space must be

- Local (calculated on each subdomain) \rightarrow parallel
- Adaptive (calculated automatically)
- Easy and cheap to compute
- Robust (must lead to an algorithm whose convergence is proven not to depend on the partition nor the jumps in coefficients)

GenEO

Adaptive Coarse space for highly heterogeneous Darcy and (compressible) elasticity problems :
Geneo .EVP per subdomain :
Find $V_{j, k} \in \mathbb{R}^{\mathcal{N}_{j}}$ and $\lambda_{j, k} \geq 0$:

$$
D_{j} R_{j} A R_{j}^{T} D_{j} V_{j, k}=\lambda_{j, k} A_{j}^{\text {Neu }} V_{j, k}
$$

In the two-level ASM, let τ be a user chosen parameter : Choose eigenvectors $\lambda_{j, k} \geq \tau$ per subdomain :

$$
Z:=\left(R_{j}^{T} D_{j} V_{j, k}\right)_{\lambda_{j, k} \geq \tau}^{j=1, \ldots, N}
$$

This automatically includes Nicolaides CS made of Zero

Adaptive Coarse space for highly heterogeneous Darcy and (compressible) elasticity problems :
Geneo .EVP per subdomain:
Find $V_{j, k} \in \mathbb{R}^{\mathcal{N}_{j}}$ and $\lambda_{j, k} \geq 0$:

$$
D_{j} R_{j} A R_{j}^{\top} D_{j} V_{j, k}=\lambda_{j, k} A_{j}^{N e u} V_{j, k}
$$

In the two-level ASM, let τ be a user chosen parameter : Choose eigenvectors $\lambda_{j, k} \geq \tau$ per subdomain :

$$
Z:=\left(R_{j}^{T} D_{j} V_{j, k}\right)_{\lambda_{j, k} \geq \tau}^{j=1, \ldots, N}
$$

This automatically includes Nicolaides CS made of Zero
Energy Modes.

Theory of GenEO

Two technical assumptions.
Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl
(Num. Math. 2013))
If for all $j: \quad 0<\lambda_{j, m_{j+1}}<\infty$:

$$
\kappa\left(M_{A S M, 2}^{-1} A\right) \leq\left(1+k_{0}\right)\left[2+k_{0}\left(2 k_{0}+1\right)(1+\tau)\right]
$$

Possible criterion for picking τ :
(used in our Numerics)

$$
\tau:=\min _{j=1, \ldots, N} \frac{H_{j}}{\delta_{j}}
$$

$H_{j} \ldots$ subdomain diameter, $\delta_{j} \ldots$ overlap

Channels and inclusions : $1 \leq \alpha \leq 1.5 \times 10^{6}$, the solution and partitionings (Metis or not)

Convergence

HPDDM Library (P. Jolivet and N.)

An implementation of several Domain Decomposition Methods and Multiple RHS solver

- One-and two-level Schwarz methods
- The Finite Element Tearing and Interconnecting (FETI) method
- Balancing Domain Decomposition (BDD) method
- Implements parallel algorithms : Domain Decomposition methods and Block solvers
- 2 billions unknowns in three dimension solved in 210 seconds on 8100 cores

Library

- Linked with graph partitioners (METIS \& SCOTCH).
- Linked with BLAS \& LAPACK.
- Linked with direct solvers (MUMPS, SuiteSparse, MKL PARDISO, PASTIX).
- Linked with eigenvalue solver (ARPACK).
- Interfaced with discretisation kernel FreeFem++ \& FEEL++

Weak scalability for heterogeneous elasticity (with FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition

(a) Timings of various simulations

200 millions unknowns in 3D wall-clock time : 200. sec. IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours provided by an IDRIS-GENCI project.

Strong scalability in two and three dimensions (with FreeFem++ and HPDDM)

Stokes problem with automatic mesh partition. Driven cavity problem

			Factorization	Deflation	Solution	\# of it.	Total
\# of d.o.f.							
3D	1024	79.2 s	229.0 s	76.3 s	45	387.5 s	
	29.5 s	76.5 s	34.8 s	42	143.9 s	$50.63 \cdot 10^{6}$	
	4096	11.1 s	45.8 s	19.8 s	42	80.9 s	
	8192	4.7 s	26.1 s	14.9 s	41	56.8 s	

Peak performance : 50 millions d.o.f's in 3D in 57 sec. IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours provided by an IDRIS-GENCI project.

HPDDM https://github.com/hpddm/hpddm is a framework in C++/MPI for high-performance domain decomposition methods with a Plain Old Data (POD) interface

Maxwell in the frequency domain

- Mesh with 2.3M degrees of freedom;
- Domain decomposition methods with impedance interface conditions, twice as fast as Dirichlet interface conditions;
- Parallel computing on 64 cores on SGI UV2000 at UPMC : 3s per emitter, 5 mn as a whole.

