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Need for massively parallel computing
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Credits: http://download.intel.com/
pressroom/kits/IntelProcessorHistory.pdf

Since year 2004 :
CPU frequency stalls at 3 GHz due to the heat dissipation
wall. The only way to improve the performance of computer
is to go parallel
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Parallel Software tools : HPDDM and FreeFem++

FIGURE – Antennas and mesh – interior diameter 28,5 cm

Two in-house open source libraries (LGPL) linked to many
third-party libraries :

HPDDM (High Performance Domain Decomposition
Methods) for massively parallel computing
FreeFem++(-mpi) for the parallel simulation of equations
from physics by the finite element method (FEM).
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A u = f ? Panorama of parallel linear solvers

Multi-frontal sparse direct solver (I. Duff et al.)
MUMPS (J.Y. L’Excellent), SuperLU (Demmel, . . . ), PastiX,
UMFPACK, PARDISO (O. Schenk),

Iterative Methods
Fixed point iteration : Jacobi, Gauss-Seidel, SSOR
Krylov type methods : Conjuguate Gradient
(Stiefel-Hestenes), GMRES (Y. Saad), QMR (R. Freund),
MinRes, BiCGSTAB (van der Vorst)

"Hybrid Methods"
Multigrid (A. Brandt, Ruge-Stüben, Falgout, McCormick, A.
Ruhe, Y. Notay, . . .)
Domain decomposition methods (O. Widlund, C. Farhat, J.
Mandel, P.L. Lions, ) are a naturally parallel compromise
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Why iterative solvers?

Limitations of direct solvers
In practice all direct solvers work well until a certain barrier :

two-dimensional problems (106 unknowns)
three-dimensional problems (105 unknowns).

Beyond, the factorization cannot be stored in memory any
more.
To summarize :

below a certain size, direct solvers are chosen.
beyond the critical size, iterative solvers are needed.
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Linear Algebra from the End User point of view

Direct DDM Iterative

Cons : Memory Pro : Flexible Pros : Memory

Difficult to || Naurally || Easy to ||
Pros : Robustness Cons : Robustness

solve(MAT,RHS,SOL) Some black box routines solve(MAT,RHS,SOL)

Some implementations

of efficient DDM

Multigrid methods : very efficient but may lack robustness, not
always applicable (Helmholtz type problems, complex systems)
and difficult to parallelize.
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The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

−∆(u) = f in Ω
u = 0 on ∂Ω.

Ω1 Ω2

Schwarz Method : (un
1 ,u

n
2)→ (un+1

1 ,un+1
2 ) with

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un

2 on ∂Ω1 ∩ Ω2.

−∆(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on ∂Ω2 ∩ Ω1.

Parallel algorithm, converges but very slowly, overlapping
subdomains only.
The parallel version is called Jacobi Schwarz method (JSM).
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An introduction to Additive Schwarz – Linear Algebra

Consider the discretized Poisson problem : Au = f ∈ Rn.
Given a decomposition of J1; nK, (N1,N2), define :

the restriction operator Ri from RJ1;nK into RNi ,
RT

i as the extension by 0 from RNi into RJ1;nK.
um −→ um+1 by solving concurrently :

um+1
1 = um

1 + A−1
1 R1(f − Aum) um+1

2 = um
2 + A−1

2 R2(f − Aum)

where um
i = Rium and Ai := RiART

i .

Ω
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An introduction to Additive Schwarz II – Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :

I =
N∑

i=1

RT
i DiRi .

Then, um+1 =
N∑

i=1

RT
i Dium+1

i . M−1
RAS =

N∑
i=1

RT
i DiA−1

i Ri .

RAS algorithm (Cai & Sarkis, 1999). Weighted Overlapping
Block Jacobi method

1
2

1

1
2 1
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Algebraic formulation - RAS and ASM

Discrete Schwarz algorithm iterates on a pair of local functions
(u1

m,u2
m)

RAS algorithm iterates on the global function um

Schwarz and RAS
Discretization of the classical Schwarz algorithm and the
iterative RAS algorithm :

Un+1 = Un + M−1
RASrn , rn := F − A Un.

are equivalent

Un = RT
1 D1Un

1 + RT
2 D2Un

2 .

(Efstathiou and Gander, 2002).

Operator M−1
RAS is used as a preconditioner in Krylov methods

for non symmetric problems.
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Many cores : Strong and Weak scalability
How to evaluate the efficiency of a domain decomposition?

Strong scalability (Amdahl)

"How the solution time varies with the number of processors for
a fixed total problem size"

Weak scalability (Gustafson)
"How the solution time varies with the number of processors for
a fixed problem size per processor."

Not achieved with the one level method

Number of subdomains 8 16 32 64
ASM 18 35 66 128

The iteration number increases linearly with the number of
subdomains in one direction.
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Convergence curves- more subdomains

Plateaus appear in the convergence of the Krylov methods.
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FIGURE – Decomposition into 64 subdomains and into m×m squares

Solution of a Poisson problem −∆u = f

Number of subdomains 2x2 4x4 8x8
Number of iterations 20 36 64
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Adding a coarse space

One level methods are not scalable for steady state
problems.
We add a coarse space correction (aka second level)
Let VH be the coarse space and Z be a basis, VH = span Z ,
writing R0 = Z T we define the two level preconditioner as :

M−1
ASM,2 := RT

0 (R0ART
0 )
−1

R0 +
N∑

i=1

RT
i A−1

i Ri .

The Nicolaides approach (1987) is to use the kernel of the
operator as a coarse space, this is the constant vectors, in local
form this writes :

Z := (RT
i DiRi1)1≤i≤N

where Di are chosen so that we have a partition of unity :
N∑

i=1

RT
i DiRi = Id .
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Theoretical convergence result

Theorem (Widlund, Dryija)

Let M−1
ASM,2 be the two-level additive Schwarz method :

κ(M−1
ASM,2 A) ≤ C

(
1 +

H
δ

)
where δ is the size of the overlap between the subdomains and
H the subdomain size.

This does indeed work very well

Number of subdomains 8 16 32 64
ASM 18 35 66 128

ASM + Nicolaides 20 27 28 27

Fails for highly heterogeneous problems
You need a larger and adaptive coarse space, see later
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GenEO

Strategy

Define an appropriate coarse space VH 2 = span(Z2) and use
the framework previously introduced, writing R0 = Z T

2 the two
level preconditioner is :

P−1
ASM 2 := RT

0 (R0ART
0 )
−1

R0 +
N∑

i=1

RT
i A−1

i Ri .

The coarse space must be
Local (calculated on each subdomain)→ parallel
Adaptive (calculated automatically)
Easy and cheap to compute
Robust (must lead to an algorithm whose convergence is
proven not to depend on the partition nor the jumps in
coefficients)
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GenEO

Adaptive Coarse space for highly heterogeneous Darcy and
(compressible) elasticity problems :
Geneo .EVP per subdomain :

Find Vj,k ∈ RNj and λj,k ≥ 0 :

Dj RjART
j DjVj,k = λj,k ANeu

j Vj,k

In the two-level ASM, let τ be a user chosen parameter :
Choose eigenvectors λj,k ≥ τ per subdomain :

Z :=
(
RT

j DjVj,k
)j=1,...,N
λj,k≥τ

This automatically includes Nicolaides CS made of Zero

Energy Modes.
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Theory of GenEO

Two technical assumptions.

Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl
(Num. Math. 2013))
If for all j : 0 < λj,mj+1 <∞ :

κ(M−1
ASM,2A) ≤ (1 + k0)

[
2 + k0 (2k0 + 1)

(
1 + τ

)]
Possible criterion for picking τ : (used in our Numerics)

τ := min
j=1,...,N

Hj

δj

Hj . . . subdomain diameter, δj . . . overlap
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Numerical results (Darcy)

IsoValue
-78946.3
39474.7
118422
197369
276317
355264
434211
513159
592106
671053
750001
828948
907895
986842
1.06579e+06
1.14474e+06
1.22368e+06
1.30263e+06
1.38158e+06
1.57895e+06

IsoValue
-0.0079688
0.0039844
0.0119532
0.019922
0.0278908
0.0358596
0.0438284
0.0517972
0.059766
0.0677348
0.0757036
0.0836724
0.0916412
0.09961
0.107579
0.115548
0.123516
0.131485
0.139454
0.159376

Channels and inclusions : 1 ≤ α ≤ 1.5 × 106, the solution and
partitionings (Metis or not)
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Convergence
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AS
PBNN : AS + ZNico
PBNN : AS + ZD2N
GMRES PBNN : AS + ZD2N
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HPDDM Library (P. Jolivet and N.)

An implementation of several Domain Decomposition Methods
and Multiple RHS solver

One-and two-level Schwarz methods
The Finite Element Tearing and Interconnecting (FETI)
method
Balancing Domain Decomposition (BDD) method
Implements parallel algorithms : Domain Decomposition
methods and Block solvers
2 billions unknowns in three dimension solved in 210
seconds on 8100 cores

Library
Linked with graph partitioners (METIS & SCOTCH).
Linked with BLAS & LAPACK.
Linked with direct solvers (MUMPS, SuiteSparse, MKL
PARDISO, PASTIX).
Linked with eigenvalue solver (ARPACK).
Interfaced with discretisation kernel FreeFem++ & FEEL++
C++, C, Fortran and Python interface 20 / 23



Weak scalability for heterogeneous elasticity (with
FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition

N

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

200 millions unknowns in 3D wall-clock time : 200. sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours
provided by an IDRIS-GENCI project.
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Strong scalability in two and three dimensions (with
FreeFem++ and HPDDM)

Stokes problem with automatic mesh partition. Driven cavity
problem

N

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

. . . . . ·

N

. . . .

. ·. . . .
. . . .
. . . .

. . . .

. ·. . . .
. . . .
. . . .

Peak performance : 50 millions d.o.f’s in 3D in 57 sec.
IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours

provided by an IDRIS-GENCI project.

HPDDM https://github.com/hpddm/hpddm is a
framework in C++/MPI for high-performance domain
decomposition methods with a Plain Old Data (POD) interface
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Maxwell in the frequency domain

Mesh with 2.3M degrees of freedom;
Domain decomposition methods with impedance interface
conditions, twice as fast as Dirichlet interface conditions ;
Parallel computing on 64 cores on SGI UV2000 at UPMC :
3s per emitter, 5 mn as a whole.
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