FreeFem++ and HPDDM

Groupe calcul - 2017

★ロト★個と★注と★注と、注

## Need for massively parallel computing



Since year 2004 :

• CPU frequency stalls at 3 GHz due to the heat dissipation wall. The only way to improve the performance of computer is to go parallel

## Parallel Software tools : HPDDM and FreeFem++



FIGURE – Antennas and mesh – interior diameter 28,5 cm

Two in-house open source libraries (LGPL) linked to many third-party libraries :

- HPDDM (High Performance Domain Decomposition Methods) for massively parallel computing
- FreeFem++(-mpi) for the parallel simulation of equations from physics by the finite element method (FEM).

## Au = f? Panorama of parallel linear solvers

Multi-frontal sparse direct solver (I. Duff et al.)

MUMPS (J.Y. L'Excellent), SuperLU (Demmel, ...), PastiX, UMFPACK, PARDISO (O. Schenk),

#### **Iterative Methods**

- Fixed point iteration : Jacobi, Gauss-Seidel, SSOR
- Krylov type methods : Conjuguate Gradient (Stiefel-Hestenes), GMRES (Y. Saad), QMR (R. Freund), MinRes, BiCGSTAB (van der Vorst)

#### "Hybrid Methods"

- Multigrid (A. Brandt, Ruge-Stüben, Falgout, McCormick, A. Ruhe, Y. Notay, ...)
- Domain decomposition methods (O. Widlund, C. Farhat, J. Mandel, P.L. Lions, ) are a naturally parallel compromise

#### Limitations of direct solvers

In practice all direct solvers work well until a certain barrier :

- two-dimensional problems (10<sup>6</sup> unknowns)
- three-dimensional problems (10<sup>5</sup> unknowns).

Beyond, the factorization cannot be stored in memory any more.

To summarize :

- below a certain size, direct solvers are chosen.
- beyond the critical size, iterative solvers are needed.

## Linear Algebra from the End User point of view

| Direct             | DDM                     | Iterative          |  |
|--------------------|-------------------------|--------------------|--|
| Cons : Memory      | Pro : Flexible          | Pros : Memory      |  |
| Difficult to       | Naurally                | Easy to            |  |
| Pros : Robustness  |                         | Cons : Robustness  |  |
| solve(MAT,RHS,SOL) | Some black box routines | solve(MAT,RHS,SOL) |  |
|                    | Some implementations    |                    |  |
|                    | of efficient DDM        |                    |  |

Multigrid methods : very efficient but may lack robustness, not always applicable (Helmholtz type problems, complex systems) and difficult to parallelize.

ヘロン ヘアン ヘビン ヘビン

## The First Domain Decomposition Method

### The original Schwarz Method (H.A. Schwarz, 1870)



Schwarz Method :  $(u_1^n, u_2^n) \rightarrow (u_1^{n+1}, u_2^{n+1})$  with

$$\begin{aligned} -\Delta(u_1^{n+1}) &= f \quad \text{in } \Omega_1 & -\Delta(u_2^{n+1}) &= f \quad \text{in } \Omega_2 \\ u_1^{n+1} &= 0 \text{ on } \partial\Omega_1 \cap \partial\Omega & u_2^{n+1} &= 0 \text{ on } \partial\Omega_2 \cap \partial\Omega \\ u_1^{n+1} &= u_2^n & \text{on } \partial\Omega_1 \cap \overline{\Omega_2}. & u_2^{n+1} &= u_1^{n+1} & \text{on } \partial\Omega_2 \cap \overline{\Omega_1}. \end{aligned}$$

Parallel algorithm, converges but very slowly, overlapping subdomains only.

The parallel version is called **Jacobi Schwarz method (JSM)**.

イロン 不良 とくほう 不良 とうほ

## An introduction to Additive Schwarz – Linear Algebra

Consider the discretized Poisson problem :  $Au = f \in \mathbb{R}^n$ .

Given a decomposition of [1; n],  $(\mathcal{N}_1, \mathcal{N}_2)$ , define :

• the restriction operator  $R_i$  from  $\mathbb{R}^{[1;n]}$  into  $\mathbb{R}^{\mathcal{N}_i}$ ,

•  $R_i^T$  as the extension by 0 from  $\mathbb{R}^{\mathcal{N}_i}$  into  $\mathbb{R}^{[1;n]}$ .

 $u^m \longrightarrow u^{m+1}$  by solving concurrently :

$$u_1^{m+1} = u_1^m + A_1^{-1}R_1(f - Au^m)$$
  $u_2^{m+1} = u_2^m + A_2^{-1}R_2(f - Au^m)$ 

where  $u_i^m = R_i u^m$  and  $A_i := R_i A R_i^T$ .



ヘロン 人間 とくほとくほとう

Consider the discretized Poisson problem :  $Au = f \in \mathbb{R}^n$ . Given a decomposition of [[1; n]],  $(\mathcal{N}_1, \mathcal{N}_2)$ , define :

- the restriction operator  $R_i$  from  $\mathbb{R}^{[1;n]}$  into  $\mathbb{R}^{\mathcal{N}_i}$ ,
- $R_i^T$  as the extension by 0 from  $\mathbb{R}^{\mathcal{N}_i}$  into  $\mathbb{R}^{[1;n]}$ .

 $u^m \longrightarrow u^{m+1}$  by solving concurrently :

$$u_1^{m+1} = u_1^m + A_1^{-1}R_1(f - Au^m)$$
  $u_2^{m+1} = u_2^m + A_2^{-1}R_2(f - Au^m)$ 

where  $u_i^m = R_i u^m$  and  $A_i := R_i A R_i^T$ .



<ロ> (四) (四) (三) (三) (三)

Consider the discretized Poisson problem :  $Au = f \in \mathbb{R}^n$ . Given a decomposition of [[1; n]],  $(\mathcal{N}_1, \mathcal{N}_2)$ , define :

- the restriction operator  $R_i$  from  $\mathbb{R}^{[1;n]}$  into  $\mathbb{R}^{\mathcal{N}_i}$ ,
- $R_i^T$  as the extension by 0 from  $\mathbb{R}^{\mathcal{N}_i}$  into  $\mathbb{R}^{[1;n]}$ .

 $u^m \longrightarrow u^{m+1}$  by solving concurrently :

 $u_1^{m+1} = u_1^m + A_1^{-1}R_1(f - Au^m)$   $u_2^{m+1} = u_2^m + A_2^{-1}R_2(f - Au^m)$ 

where  $u_i^m = R_i u^m$  and  $A_i := R_i A R_i^T$ .



・ロト ・回 ト ・ヨト ・ヨト ・ヨ

## An introduction to Additive Schwarz II – Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :



## An introduction to Additive Schwarz II – Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :



## An introduction to Additive Schwarz II – Linear Algebra

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity :

 $I = \sum_{i=1}^{N} R_i^T D_i R_i.$  $\frac{1}{2}$ Then,  $u^{m+1} = \sum_{i=1}^{N} R_i^T D_i u_i^{m+1}$ .  $M_{RAS}^{-1} = \sum_{i=1}^{N} R_i^T D_i A_i^{-1} R_i$ . RAS algorithm (Cai & Sarkis, 1999). Weighted Overlapping Block Jacobi method

## Algebraic formulation - RAS and ASM

## Discrete Schwarz algorithm iterates on a pair of local functions $(u_m^1, u_m^2)$ RAS algorithm iterates on the global function $u^m$

#### Schwarz and RAS

Discretization of the classical Schwarz algorithm and the iterative RAS algorithm :

$$U^{n+1} = U^n + M_{BAS}^{-1} r^n, r^n := F - A U^n.$$

are equivalent

 $U^n = R_1^T D_1 U_1^n + R_2^T D_2 U_2^n$ .

(Efstathiou and Gander, 2002).

Operator  $M_{RAS}^{-1}$  is used as a preconditioner in Krylov methods for non symmetric problems.

## Algebraic formulation - RAS and ASM

Discrete Schwarz algorithm iterates on a pair of local functions  $(u_m^1, u_m^2)$ RAS algorithm iterates on the global function  $u^m$ 

#### Schwarz and RAS

Discretization of the classical Schwarz algorithm and the iterative RAS algorithm :

$$U^{n+1} = U^n + M_{RAS}^{-1} r^n, r^n := F - A U^n.$$

are equivalent

 $U^n = R_1^T D_1 U_1^n + R_2^T D_2 U_2^n$ .

(Efstathiou and Gander, 2002).

Operator  $M_{RAS}^{-1}$  is used as a preconditioner in Krylov methods for non symmetric problems.

## Many cores : Strong and Weak scalability

How to evaluate the efficiency of a domain decomposition?

#### Strong scalability (Amdahl)

"How the solution time varies with the number of processors for a fixed *total* problem size"

#### Weak scalability (Gustafson)

"How the solution time varies with the number of processors for a fixed problem size *per processor*."

#### Not achieved with the one level method

| Number of subdomains | 8  | 16 | 32 | 64  |
|----------------------|----|----|----|-----|
| ASM                  | 18 | 35 | 66 | 128 |

The iteration number increases linearly with the number of subdomains in one direction.

・ロト ・回ト ・ヨト ・ヨト

## Convergence curves- more subdomains

Plateaus appear in the convergence of the Krylov methods.



FIGURE – Decomposition into 64 subdomains and into  $m \times m$  squares

| Solution of a Poisson problem $-\Delta u = f$ |                      |              |              |              |  |
|-----------------------------------------------|----------------------|--------------|--------------|--------------|--|
|                                               | Number of subdomains | 2 <i>x</i> 2 | 4 <i>x</i> 4 | 8 <i>x</i> 8 |  |
|                                               | Number of iterations | 20           | 36           | 64           |  |

## Adding a coarse space

## One level methods are not scalable for steady state problems.

We add a coarse space correction (*aka* second level) Let  $V_H$  be the coarse space and Z be a basis,  $V_H = \operatorname{span} Z$ , writing  $R_0 = Z^T$  we define the two level preconditioner as :

$$M_{ASM,2}^{-1} := R_0^T (R_0 A R_0^T)^{-1} R_0 + \sum_{i=1}^N R_i^T A_i^{-1} R_i.$$

The Nicolaides approach (1987) is to use the kernel of the operator as a coarse space, this is the constant vectors, in local form this writes :

$$Z := (R_i^T D_i R_i \mathbf{1})_{1 \le i \le N}$$

where  $D_i$  are chosen so that we have a partition of unity :

$$\sum_{i=1}^{N} R_i^T D_i R_i = Id.$$

#### Theorem (Widlund, Dryija)

Let  $M_{ASM,2}^{-1}$  be the two-level additive Schwarz method :

$$\kappa(M_{ASM,2}^{-1}A) \leq C\left(1+rac{H}{\delta}
ight)$$

where  $\delta$  is the size of the overlap between the subdomains and H the subdomain size.

#### This does indeed work very well

| Number of subdomains | 8  | 16 | 32 | 64  |
|----------------------|----|----|----|-----|
| ASM                  | 18 | 35 | 66 | 128 |
| ASM + Nicolaides     | 20 | 27 | 28 | 27  |

Fails for highly heterogeneous problems You need a larger and adaptive coarse space, see later

## GenEO

#### Strategy

Define an appropriate coarse space  $V_{H2} = \text{span}(Z_2)$  and use the framework previously introduced, writing  $R_0 = Z_2^T$  the two level preconditioner is :

$$P_{ASM2}^{-1} := R_0^T (R_0 A R_0^T)^{-1} R_0 + \sum_{i=1}^N R_i^T A_i^{-1} R_i.$$

#### The coarse space must be

- Local (calculated on each subdomain)  $\rightarrow$  parallel
- Adaptive (calculated automatically)
- Easy and cheap to compute
- Robust (must lead to an algorithm whose convergence is proven not to depend on the partition nor the jumps in coefficients)

## GenEO

Adaptive Coarse space for highly heterogeneous Darcy and (compressible) elasticity problems : **Geneo .EVP** per subdomain :

Find 
$$V_{j,k} \in \mathbb{R}^{N_j}$$
 and  $\lambda_{j,k} \ge 0$ :  
 $D_j R_j A R_j^T D_j V_{j,k} = \lambda_{j,k} A_j^{Neu} V_{j,k}$ 

In the two-level ASM, let  $\tau$  be a user chosen parameter : Choose eigenvectors  $\lambda_{j,k} \ge \tau$  per subdomain :

$$Z := (R_j^T D_j V_{j,k})_{\substack{j=1,\ldots,N\\\lambda_{j,k} \geq \tau}}^{j=1,\ldots,N}$$

This automatically includes Nicolaides CS made of Zero

Energy Modes.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

## GenEO

Adaptive Coarse space for highly heterogeneous Darcy and (compressible) elasticity problems : **Geneo .EVP** per subdomain :

Find 
$$V_{j,k} \in \mathbb{R}^{N_j}$$
 and  $\lambda_{j,k} \ge 0$ :  
 $D_j R_j A R_j^T D_j V_{j,k} = \lambda_{j,k} A_j^{Neu} V_{j,k}$ 

In the two-level ASM, let  $\tau$  be a user chosen parameter : Choose eigenvectors  $\lambda_{j,k} \ge \tau$  per subdomain :

$$Z := \left( R_j^T D_j V_{j,k} \right)_{\substack{j=1,\ldots,N\\\lambda_{j,k} \geq \tau}}^{j=1,\ldots,N}$$

This automatically includes Nicolaides CS made of Zero

Energy Modes.

・ロト ・ 理 ト ・ ヨ ト ・

## Theory of GenEO

Two technical assumptions.

Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl (Num. Math. 2013))

If for all  $j: 0 < \lambda_{j,m_{j+1}} < \infty$  :

$$\kappa(M_{ASM,2}^{-1}A) \leq (1+k_0) \Big[ 2+k_0 (2k_0+1) (1+\tau) \Big]$$

Possible criterion for picking  $\tau$ : (used in our Numerics)

$$\tau := \min_{j=1,\dots,N} \frac{H_j}{\delta_j}$$

 $H_j \ldots$  subdomain diameter,  $\delta_j \ldots$  overlap

イロン 不良 とくほう 不良 とうほ

## Numerical results (Darcy)



Channels and inclusions : 1  $\leq \alpha \leq$  1.5  $\times$  10<sup>6</sup>, the solution and partitionings (Metis or not)

ヘロト ヘアト ヘヨト ヘ

## Convergence



## HPDDM Library (P. Jolivet and N.)

## An implementation of several Domain Decomposition Methods and Multiple RHS solver

- One-and two-level Schwarz methods
- The Finite Element Tearing and Interconnecting (FETI) method
- Balancing Domain Decomposition (BDD) method
- Implements parallel algorithms : Domain Decomposition methods and Block solvers
- 2 billions unknowns in three dimension solved in 210 seconds on 8100 cores

Library

- Linked with graph partitioners (METIS & SCOTCH).
- Linked with BLAS & LAPACK.
- Linked with direct solvers (MUMPS, SuiteSparse, MKL PARDISO, PASTIX).
- Linked with eigenvalue solver (ARPACK).
- Interfaced with discretisation kernel FreeFem++ & FEEL++

# Weak scalability for heterogeneous elasticity (with FreeFem++ and HPDDM)

Rubber Steel sandwich with automatic mesh partition



(a) Timings of various simulations

200 millions unknowns in 3D wall-clock time : 200. sec. IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours provided by an IDRIS-GENCI project.

# Strong scalability in two and three dimensions (with FreeFem++ and HPDDM)

Stokes problem with automatic mesh partition. Driven cavity problem

|    | N    | Factorization    | Deflation         | Solution         | # of it. | Total             | # of d.o.f.          |
|----|------|------------------|-------------------|------------------|----------|-------------------|----------------------|
| 3D | 1024 | $79.2\mathrm{s}$ | $229.0\mathrm{s}$ | $76.3\mathrm{s}$ | 45       | $387.5\mathrm{s}$ |                      |
|    | 2048 | $29.5\mathrm{s}$ | $76.5\mathrm{s}$  | $34.8\mathrm{s}$ | 42       | $143.9\mathrm{s}$ | $50.63 \cdot 10^{6}$ |
|    | 4096 | $11.1\mathrm{s}$ | $45.8\mathrm{s}$  | $19.8\mathrm{s}$ | 42       | $80.9\mathrm{s}$  | 50.05 • 10           |
|    | 8192 | $4.7\mathrm{s}$  | $26.1\mathrm{s}$  | $14.9\mathrm{s}$ | 41       | $56.8\mathrm{s}$  |                      |

Peak performance : 50 millions d.o.f's in 3D in 57 sec. IBM/Blue Gene Q machine with 1.6 GHz Power A2 processors. Hours provided by an IDRIS-GENCI project.

HPDDM https://github.com/hpddm/hpddm is a framework in C++/MPI for high-performance domain decomposition methods with a Plain Old Data (POD) interface

・ロト ・ 理 ト ・ ヨ ト ・

## Maxwell in the frequency domain

- Mesh with 2.3M degrees of freedom;
- Domain decomposition methods with impedance interface conditions, twice as fast as Dirichlet interface conditions;
- Parallel computing on 64 cores on SGI UV2000 at UPMC : 3s per emitter, 5 mn as a whole.

