Discontinuous Galerkin Methods Part 1: Discretisation and efficient implementation

K.Hillewaert

Cemracs Summer School, Marseille, July 20th 2012

Outline

1 DGM/IP methods

- Framework
- Convective terms
- Functional analysis
- Interior penalty methods
- Interpolation and quadrature

2 Practical implementation

- Computational kernels
- Practical quadrature
- Implicit solver
- Efficient Jacobian assembly

3 hp-multigrid

- Basics
- Transfer operators
- Performance for convective problems
- Concluding remarks

< 17 >

- ₹ 🖹 🕨

-∢ ⊒ →

э

通 と く ヨ と く ヨ と

э

DGM/IP methods Framework : governing equations

Consider a generic set of N convection-diffusion-reaction equations

$$\mathcal{L}_m(\tilde{u}) = \frac{\partial \tilde{u}_m}{\partial t} + \nabla \cdot \vec{f}_m(\tilde{u}) + \nabla \cdot \vec{d}_m(\tilde{u}, \nabla \tilde{u}) + S_m(\tilde{u}, \nabla \tilde{u}) = 0$$

where

- $\tilde{u} \in (\mathbb{R}(\Omega))^N$ the state vector
- \vec{f} the convective flux vector
- \vec{d} the diffusive flux vector
- S the source term

with the first order expansion of \vec{d}

$$\vec{d}_m^k = \mathbf{D}_{mn}^{kl} \frac{\partial \tilde{u}_n}{\partial x^l} + \mathcal{O}((\nabla \tilde{u})^2)$$

< 回 > < 三 > < 三 >

3

DGM/IP methods Framework : basic ingredients

Approximation
$$u \approx \tilde{u}$$
 on $\mathcal{E} = \cup e \approx \Omega$ is

• regular (polynomial, harmonic functions, waves, ...) on each element

$$u|_e \in \left(\mathcal{P}(e)\right)^N$$

• not C_0 continuous \leftrightarrow standard FEM

$$u \in (\Phi(\mathcal{E}))^N = \cup (\mathcal{P}(e))^N$$

Galerkin formulation

$$a(u,v) = \int_{\Omega} v_m \cdot \mathcal{L}_m(u) dV = 0, \forall v \in \Phi$$

DGM/IP methods Framework : Galerkin variational formulation

Take generic conservation equation

$$\frac{\partial \tilde{u}_m}{\partial t} + \nabla \cdot \vec{g}_m = 0$$

Naive Galerkin :

$$\begin{split} &\int_{\Omega} \mathsf{v}_m \frac{\partial u_m}{\partial t} \, dV + \int_{\Omega} \mathsf{v}_m \nabla \cdot \vec{g}_m \, dV = 0 \ , \ \forall \, \mathsf{v} \in \Phi \\ &= \sum_e \int_e \mathsf{v}_m \frac{\partial u_m}{\partial t} \, dV + \sum_e \left(-\int_e \nabla \mathsf{v}_m \cdot \vec{g}_m \, dV + \oint_{\partial e} \mathsf{v}_m \vec{g}_m \cdot \vec{n} dS \right) \end{split}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

DGM/IP methods Framework : Galerkin variational formulation

Take generic conservation equation

$$\frac{\partial \tilde{u}_m}{\partial t} + \nabla \cdot \vec{g}_m = 0$$

Naive Galerkin :

$$\begin{split} &\int_{\Omega} \mathsf{v}_m \frac{\partial u_m}{\partial t} dV + \int_{\Omega} \mathsf{v}_m \nabla \cdot \vec{g}_m dV = 0 \ , \ \forall v \in \Phi \\ &= \sum_e \int_e \mathsf{v}_m \frac{\partial u_m}{\partial t} dV + \sum_e \left(-\int_e \nabla \mathsf{v}_m \cdot \vec{g}_m dV + \oint_{\partial e} \mathsf{v}_m \vec{g}_m \cdot \vec{n} dS \right) \end{split}$$

イロン 不同 とくほう イヨン

3

Define operators on boundary (trace) wrt normal $\vec{n}^+ = \vec{n} = -\vec{n}^-$

$$\begin{bmatrix} a \end{bmatrix} = a^{+} \vec{n}^{+} + a^{-} \vec{n}^{-}$$
$$\begin{bmatrix} \vec{g} \end{bmatrix} = \vec{g}^{+} \cdot \vec{n}^{+} + \vec{g}^{-} \cdot \vec{n}^{-}$$
$$\{ a \} = (a^{+} + a^{-})/2$$

Then we continue

$$\sum_{e} \int_{e} v_m \frac{\partial u_m}{\partial t} dV - \sum_{e} \int_{e} \nabla v_m \cdot \vec{g}_m dV + \sum_{f} \int_{f} \left[\left[v_m \right] \right] \left\{ \left[\vec{g}_m \right] \right\} + \left[\left[\vec{g}_m \right] \right] \left\{ v_m \right\} \right\} dS$$

イロン 不同 とくほう イヨン

3

DGM/IP methods Framework : interface fluxes

The DGM discretisation is then defined as

$$\sum_{e} v_m \frac{\partial u_m}{\partial t} - \sum_{e} \int_{e} \nabla v_m \cdot \tilde{g}_m dV + \sum_{f} \int_{f} \gamma_m (\tilde{u}^+, \tilde{u}^-, v^+, v^-, \tilde{n}) dS = 0 \ , \ \forall v \in \Phi$$

Requirements for γ

- stability
- consistent as $u^+ = u^- = \tilde{u}$

$$\lim_{h \to 0} \int_{f} \vec{g}_{m}^{*} dS = \int_{f} \left[\left[v_{m} \vec{g}_{m}(\tilde{u}) \right] \right]_{.} dS$$
$$= \int_{f} \left[\left[v_{m} \right] \left\{ \left\{ \vec{g}_{m}(\tilde{u}) \right\} \right\} + \left\{ \left\{ v_{m} \right\} \right\} \left[\left[\vec{g}_{m}(\tilde{u}) \right] \right] dS$$
$$= \int_{f} \left[\left[v_{m} \right] \right] \vec{g}_{m}(\tilde{u}) dS$$

• conservative : let $W_m = 1 \quad \forall x \in e$, $W_m = 0 \quad \forall x \notin e$

$$a(W_m, u_m) = -\oint_e \gamma_m(u^+, u^-, 1, 0, \vec{n}) dS \Rightarrow \gamma_m(u^+, u^-, 1, 0, \vec{n}) = -\gamma_m(u^-, u^+, 1, 0, -\vec{n})$$

ヘロア 人間 ア ヘヨア ヘヨア

3

DGM/IP methods Framework : local reinterpretation

Global formulation

$$\sum_{e} \int_{e} v_{m} \frac{\partial u_{m}}{\partial t} dV - \sum_{e} \int_{e} \nabla v_{m} \cdot \vec{g}_{m} dV + \sum_{f} \int_{f} \gamma_{m} (\vec{u}^{+}, \vec{u}^{-}, v^{+}, v^{-}, \vec{n}) dS = 0 \ , \ \forall v \in \Phi$$

Choose basis for Φ composed of locally supported v^e and expand

$$u = \sum_{e} u^{e}$$

then the formulation reduces to elementwise FEM problems coupled by internal bc

$$\int_{e} v_{m}^{e} \frac{\partial u_{m}^{e}}{\partial t} dV - \int_{e} \nabla v_{m}^{e} \cdot \vec{g}_{m} dV + \int_{\partial e} \gamma_{m} (\vec{u}^{e}, \vec{u}^{*}, v^{\dagger}, 0, \vec{n}) dS = 0 , \forall v^{e} \in (\Phi)_{e}$$

- internal bc provide guiding principle for choosing γ
- Iocally structured problem
- no global operations needed (in particular inversion of mass matrix)
- highly dense blocked matrix structure

< 同 > < 三 > < 三 >

3

DGM/IP methods Convective terms : finite volume methods

Godunov scheme

- solution constant per element
- elementwise flux balance ۰

$$V^{e}\frac{\partial u^{e}}{\partial t}+\oint_{\partial e}\mathcal{H}(u^{e},u^{*},\vec{n})dS$$

- interface flux ~ local Riemann problem

 - consistency : $\mathcal{H}(u, u, n) = \vec{f}(u) \cdot \vec{n}$ conservation : $\mathcal{H}(u^-, u^+, -\vec{n}) = -\mathcal{H}(u^+, u^-, \vec{n})$
 - ۲ stability
 - entropy satisfying solutions ۲

3

DGM/IP methods Convective terms :

Unstructured maximum principle : Local Extrema Diminishing / positivity

Scalar problem

E-flux

$$\frac{\mathcal{H}(u^+, u^-, \vec{n}) - \vec{f}(u) \cdot \vec{n}}{u^- - u^+} \leq 0 \ , \ \forall u \in \left[u^+, u^-\right]$$

monotone fluxes

$$\frac{\partial \mathcal{H}}{\partial u^+} \geq 0 \qquad \frac{\partial \mathcal{H}}{\partial u^-} \leq 0 \forall u \in [u^+, u^-]$$

upwind fluxes

$$\mathcal{H}(u^+, u^-, \vec{n}) = \max(0, (\vec{f} \cdot \vec{n})_u)u^+ + \min(0, (\vec{f} \cdot \vec{n})_u)u^- +$$

System of equations

- (approximate) Riemann solvers
- monotone fluxes

DGM/IP methods Convective terms : Local Extrema Diminishing (LED)

If we can rewrite the FVM scheme as

$$\frac{du^e}{dt} = \sum_{ef} C_e (u_f - u_e)$$

with all $C_{ef} \ge 0$ then we can choose Δt such that the following is a convex combination

$$\begin{aligned} \frac{du^e}{dt} &= \frac{1}{V^e} \sum_f \mathcal{H}(u^e, u^f, \vec{n}) \\ &= \frac{1}{V^e} \sum_f \mathcal{H}(u^e, u^f, \vec{n}) - \vec{f}(u) \cdot \vec{n} \\ &= \frac{1}{V^e} \sum_f \frac{\mathcal{H}(u^e, u^f, \vec{n}) - \vec{f}(u) \cdot \vec{n}}{u^f - u^e} (u^f - u^e) \\ &= \frac{1}{V^e} \sum_f \frac{\partial \mathcal{H}}{\partial u^-} (u^f - u^e) \end{aligned}$$

and hence the scheme is local extrema diminishing (LED)

・ 同 ト ・ ヨ ト ・ ヨ ト

3

DGM/IP methods Convective terms : finite volume reinterpreted as DGM

DGM formulation

$$\sum_{e} \int_{e} v_{m} \frac{\partial u_{m}}{\partial t} dV - \sum_{e} \int_{e} \nabla v_{m} \cdot \vec{g}_{m} dV + \sum_{f} \int_{f} \gamma_{m} (\vec{u}^{+}, \vec{u}^{-}, v^{+}, v^{-}, \vec{n}) dS = 0$$

Choose piecewise constant function space

$$v^e = 1 \quad \forall x \in e$$

 $v^e = 0 \quad \forall x \notin e$

Then

$$\begin{split} &V^{e}\frac{du^{e}}{dt}+\oint_{\partial e}\gamma(u^{e},u^{*},1,0,\vec{n})dS=0\ ,\ \forall e\\ &V^{e}\frac{du^{e}}{dt}+\oint_{\partial e}\mathcal{H}(u^{e},u^{*},\vec{n})dS=0 \end{split}$$

Generalisation

$$\sum_{e} \int_{e} v_{m} \cdot \frac{\partial u_{m}}{\partial t} dV - \sum_{e} \int_{e} \nabla v_{m} \cdot \vec{f}_{m} dV + \sum_{f} \int_{f} \left[\left[v_{m} \right] \right] \vec{n} \mathcal{H}_{m}(u^{+}, u^{-}, \vec{n}) dS = 0 \ , \ \forall v \in \Phi$$

▲□→ ▲ □→ ▲ □→

≡ nar

DGM/IP methods Convective terms : energy stability of HO version

LED in FVM is weakened to energy stability for DGM

Plug in v = u

$$\begin{split} \sum_{e} \int_{e} u \frac{\partial u}{\partial t} dV &= \sum_{e} \int_{e} \nabla u \cdot \vec{f}(u) dV - \sum_{f} \int_{f} \left[\left[u \right] \right] \cdot \vec{n} \mathcal{H}(u^{+}, u^{-}, \vec{n}) dS \\ &\downarrow \vec{g}(u) = \int^{u} \vec{f}(u) du \\ \frac{\partial}{\partial t} \sum_{e} \int_{e} \frac{u^{2}}{2} dV &= \sum_{e} \int_{e} \nabla \cdot \vec{g}(u) dV - \sum_{f} \int_{f} \left[\left[u \right] \right] \cdot \vec{n} \mathcal{H}(u^{+}, u^{-}, \vec{n}) dS \\ &= -\sum_{f} \int_{f} \left(\left[\left[u \right] \right] \cdot \vec{n} \mathcal{H}(u^{+}, u^{-}, \vec{n}) - \left[\left[\vec{g}(u) \right] \right] \right) dS \\ &\downarrow \text{ midpoint rule} \\ &= -\sum_{f} \int_{f} \left(u^{+} - u^{-} \right) \left(\mathcal{H}(u^{+}, u^{-}, \vec{n}) - \vec{f}(u^{*}) \cdot \vec{n} \right) dS , \ u^{*} \in [u^{+}, u^{-}] \\ &\downarrow \text{ E-flux}(\mathcal{H}(u^{+}, u^{-}, \vec{n}) - \vec{f}(u) \cdot \vec{n})(u^{-} - u^{+}) \leq 0 \\ &\leq 0 \end{split}$$

and a local elementwise entropy inequality (Jiang [JS94])

DGM/IP methods Convective terms : local FEM reinterpretation

For each element e find $u^e \in \Phi(e)$

$$\int_{e} v_m^e \frac{\partial u_m^e}{\partial t} dV - \int_{e} \nabla v_m^e \cdot f_m(u^e) dV + \sum_{f \in e} \int_{f} v_m^e \mathcal{H}_m(u, u^*, \vec{n}) dS = 0 \ , \ \forall v_m^e \in \Phi(e)$$

then we find

- Galerkin FEM problem for each element e
- flux boundary conditions ensure "Dirichlet"-like coupling to the neighbours
- choice of \mathcal{H} ensures stability of the bc
- if H is upwind flux imposes correct characteristics to/from external state u^{*} = u⁻.

伺 と く ヨ と く ヨ と

DGM/IP methods

Functional analysis : Lax-Milgram theorem

V is a Hilbert space Complete vector space • $x, y \in V \Rightarrow x + y \in V$ • $x \in V \Rightarrow \alpha x \in V$ any Cauchy sequence converges in V Inner product (.,.) • (u, v) = (v, u)• (u + w, v) = (u, v) + (w, v)(u, u) > 0a(.,.) is a continuous and coercive bilinear form $V \times V \rightarrow \mathbb{R}$ • $\exists c_1 > 0 : |a(u, v)| \le c_1 ||u|| \cdot ||v|| \quad \forall u, v \in V$ • $\exists c_2 > 0 : a(u, u) \ge c_2 ||u||^2 \quad \forall u \in V$ • a(u + v, w) = a(u, w) + a(v, w), a(u, v + w) = a(u, v) + a(u, w) $\langle f, . \rangle$ is a continuous linear form $V \to \mathbb{R}$ $\exists c > 0 : | < f, u > | < c ||u||$ Then the problem

$$a(u, v) = \langle f, v \rangle, \forall v \in V$$

has a unique solution $u \in V$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ● ● ●

DGM/IP methods Functional analysis : Lax-Milgram - illlustration for \mathbb{R}^n

Lax-Milgram is sufficient but not necessary condition for solvability (not applicable to convective DGM) $% \left(\mathcal{A}_{n}^{(1)}\right) =0$

- Eg. apply Lax-Milgram to solve for Ax = b, $A \in \mathbb{R}^{n \times n}$, $x, b \in \mathbb{R}^{n}$
 - define inner product $(\mathbf{x}, \mathbf{y}) = \mathbf{y}^T \mathbf{x}$
 - define bilinear form $a(\mathbf{x}, \mathbf{y}) = \mathbf{y}^T \mathbf{A} \mathbf{x}$
 - continuity implies A is bounded

$$|\mathbf{y}^{T}\mathbf{A}\mathbf{x}| = |\sum_{i} y_{i}^{I} \lambda_{i} \mathbf{I}_{i}^{T} \cdot \mathbf{x}| \leq \sum_{i} |\lambda_{i} y_{i}^{I} x_{i}^{r}| \leq |\lambda|_{max} ||\mathbf{x}||||\mathbf{y}||$$

coercivity implies A is positive definite

$$\mathbf{x}^{T}\mathbf{A}\mathbf{x} = \sum_{i} x_{i}^{I} \lambda_{i} \mathbf{r}_{i} \cdot \mathbf{x} = \sum_{i} \lambda_{i} x_{i}^{I} x_{i}^{r} \ge \lambda_{min} ||\mathbf{x}||^{2}$$

define a linear form f(x) = x^T ⋅ a, continuity implies a is finite : |f(x)| ≤ ||a||||x||
hence y^TAx = y^T ⋅ a ∀y ∈ ℝⁿ has a unique solution

・ 同 ト ・ ヨ ト ・ ヨ ト

3

DGM/IP methods Functional analysis : Broken Sobolev spaces

The broken Sobolev space $H^{s}(\mathcal{E})$ defined by its

elements

$$H^{s}(\mathcal{E}) = \{ v \in L^{2}(\Omega) : v|_{e} \in H^{s}(E) , \forall E \in \mathcal{E} \}$$

broken norm

$$\|u\|_{H^{s}(\mathcal{E})} = \sum_{E \in \mathcal{E}} \|u\|_{H^{s}(E)}$$

broken inner product

$$(u,v)_{H^{s}(\mathcal{E})} = \sum_{E \in \mathcal{E}} (u,v)_{H^{s}(E)}$$

2nd order PDE : use $H^1(\mathcal{E})$

natural norm :

$$||u||_{H^{1}()} = \sum_{e} ||u||_{H^{1}(e)} = \sum_{e} (|u|_{0,e}^{2} + |u|_{1,e}^{2})$$

• DG energy norm :

$$||u||_{DG} = \sum_{e} |\nabla u|_{e}^{2} + \sum_{f} |[[u]]|_{0,f}^{2}$$

э

DGM/IP methods Interior penalty methods : Naive Galerkin for elliptic/parabolic equations

Elliptic problem

$$\nabla \cdot \mu \nabla \tilde{u} = f$$
$$u = u^* \ \forall x \in \Gamma_L$$
$$\partial_n u = g \ \forall x \in \Gamma_N$$

Naive DG approach $\forall v \in \Phi$

$$\begin{split} a\left(u,v\right) &= \sum_{e} \int_{e} \nabla v \cdot \mu \nabla u \, dV - \sum_{f} \int_{f} \left[\left[v \mu \nabla u \right] \right] \, dS \\ &= \sum_{e} \int_{e} \nabla v \cdot \mu \nabla u \, dV - \sum_{f} \int_{f} \left[\left[v \right] \right] \cdot \left\{ \left[\nabla u \right\} \right\} + \underbrace{\left[\mu \nabla u \right] \right]}_{f} \cdot \left\{ \left[\nabla v \right\} \right\} \, dS \\ &= \sum_{e} \int_{e} \nabla v \cdot \mu \nabla u \, dV - \sum_{f} \int_{f} \left[\left[v \right] \right] \cdot \left\{ \left[\nabla u \right\} \right\} \, dS \, \forall v \in \Phi \end{split}$$

$$\Rightarrow \exists v \in \Phi : a(v, v) \neq 0$$

Conclusions :

- is not coercive and hence unique solution is not guaranteed
- + however DG allows consistent stabilisation using solution jumps

伺 ト イヨト イヨト

э

DGM/IP methods Interior penalty methods : Baumann-Oden (BO)

Bilinear form compensates consistent interface term

$$a(u,v) = \sum_{e} \int_{e} \nabla v \cdot \nabla u \, dV - \sum_{f} \int_{f} \left(\llbracket v \rrbracket \cdot \{ \nabla u \} - \llbracket u \rrbracket \cdot \{ \{ \nabla v \} \} \right) \, dS \ , \ u,v \in V_{h}$$

Coercivity?

$$a(v,v) = \sum_{e} \int_{e} |\nabla v|^{2} dV - \sum_{f} \int_{f} \left([[v]] \cdot \{ \{ \nabla v \} \} - [[v]] \cdot \{ \{ \nabla v \} \} \right) dS = \sum_{e} \int_{e} |\nabla v|^{2} dV , \forall u, v \in V_{h}$$

Conclusions

- + very natural way for stabilisation
- not stable for pure diffusion (constant functions) since only larger than seminorm
- formulation is not symmetric
 - non-symmetric Krylov iterator (BiCG/GMRES) instead of CG
 - convergence of stationary methods (Jacobi/GS/SOR/...)

DGM/IP methods Interior penalty methods : boundary penalty methods

Nitsche 71

Elliptic problem with rough Dirichlet bc

$$\nabla \cdot \mu \nabla u = 0 \quad \forall x \in \Omega$$
$$u = g \quad \forall x \in \partial \Omega$$

伺 ト イヨト イヨト

3

DGM/IP methods Interior penalty methods : boundary penalty methods

Nitsche 71

Elliptic problem with rough Dirichlet bc

$$\nabla \cdot \mu \nabla u = 0 \quad \forall x \in \Omega$$
$$\mu = \sigma \quad \forall x \in \partial \Omega$$

▲□ → ▲ 三 → ▲ 三 →

э

Nitsche 71

DGM/IP methods Interior penalty methods : boundary penalty methods

Elliptic problem with rough Dirichlet bc

$$\nabla \cdot \mu \nabla u = 0 \quad \forall x \in \Omega$$
$$u = g \quad \forall x \in \partial \Omega$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Penalty bc

+ consistency term - conditional stability ifo $\sigma \sim \mu C/h$

$$\int_{\Omega} \nabla u \cdot \mu \nabla v dV + \int_{\partial \Omega} \sigma(u - g) v dS - \int_{\partial \Omega} v \mu \nabla u \cdot \vec{n} dS = 0$$

Nitsche 71

DGM/IP methods Interior penalty methods : boundary penalty methods

Elliptic problem with rough Dirichlet bc

$$\nabla \cdot \mu \nabla u = 0 \quad \forall x \in \Omega$$
$$u = g \quad \forall x \in \partial \Omega$$

Penalty bc + consistency term - conditional stability ifo $\sigma \sim \mu C/h$

$$\int_{\Omega} \nabla u \cdot \mu \nabla v dV + \int_{\partial \Omega} \sigma(u - g) v dS - \int_{\partial \Omega} v \mu \nabla u \cdot \vec{n} dS = 0$$

Symmetrizing variant - conditional stability ifo $\sigma \sim C/h$

$$\int_{\Omega} \nabla u \cdot \mu \nabla v dV + \int_{\partial \Omega} \sigma(u - g) v dS - \int_{\partial \Omega} (v \mu \nabla u + (u - g) \mu \nabla v) \cdot \vec{n} dS = 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

DGM/IP methods Interior penalty methods : boundary penalty methods

Elliptic problem with rough Dirichlet bc

$$\nabla \cdot \mu \nabla u = 0 \quad \forall x \in \Omega$$
$$u = g \quad \forall x \in \partial \Omega$$

Penalty bc + consistency term - conditional stability ifo $\sigma \sim \mu C/h$

$$\int_{\Omega} \nabla u \cdot \mu \nabla v dV + \int_{\partial \Omega} \sigma(u - g) v dS - \int_{\partial \Omega} v \mu \nabla u \cdot \vec{n} dS = 0$$

Symmetrizing variant - conditional stability ifo $\sigma \sim C/h$

$$\int_{\Omega} \nabla u \cdot \mu \nabla v dV + \int_{\partial \Omega} \sigma(u - g) v dS - \int_{\partial \Omega} (v \mu \nabla u + (u - g) \mu \nabla v) \cdot \vec{n} dS = 0$$

Antisymmetric variant - stability for all $\sigma > 0$

$$\int_{\Omega} \nabla u \mu \cdot \nabla v dV + \int_{\partial \Omega} \sigma(u - g) v dS - \int_{\partial \Omega} (v \mu \nabla u - \mu(u - g) \nabla v) \cdot n dS = 0$$

通 と く ヨ と く ヨ と

э

Nitsche 71

DGM/IP methods

Interior penalty methods : Interior Penalty Method - local view point

Local problem : for each element e find $u^e \in \Phi(e)$

$$\int_{e} \nabla v^{e} \cdot \nabla u^{e} dV + \int_{\partial e} \sigma v^{e} (u^{e} - u^{o}) dS$$
$$- \int_{\partial e} v^{e} \nabla u^{e} + \theta (u^{e} - u^{*}) \nabla v^{e} \vec{n} dS = 0 , \quad \forall v^{e} \in \Phi$$

with Nitsche penalties for coupling boundary conditions Global problem : find $u \in \Phi$

$$\sum_{e} \int_{e} \nabla \mathbf{v} \cdot \mu \nabla u dV + \sum_{f} \sigma \int_{f} \llbracket u \rrbracket \llbracket \mathbf{v} \rrbracket dS$$
$$- \sum_{f} \int_{f} \llbracket v \rrbracket \left\{ \mu \nabla u \right\} + \llbracket \mu \nabla u \rrbracket \left\{ \nabla \right\} dS$$
$$- \theta \sum_{f} \int_{f} \llbracket u \rrbracket \left\{ \mu \nabla v \right\} dS$$

<回> < 回> < 回> < 回> -

3

< 回 > < 三 > < 三 >

3

DGM/IP methods Interior penalty methods : properties

$$\sum_{e} \int_{e} \nabla \mathbf{v} \cdot \mu \nabla u d\mathbf{V} + \sum_{f} \sigma \int_{f} \llbracket u \rrbracket \llbracket \mathbf{v} \rrbracket dS$$
$$- \sum_{f} \int_{f} \llbracket v \rrbracket \left\{ \mu \nabla u \right\} + \llbracket \mu \nabla u \rrbracket \left\{ \nabla \mathbf{v} \right\} dS$$
$$- \theta \sum_{f} \int_{f} \llbracket u \rrbracket \left\{ \mu \nabla v \right\} dS$$

- theta = 1 Non-Symmetric Interior Penalty (SIP) symmetric, conditionnally stable ($\sigma > \sigma_c$)
- theta = -1 Incomplete Interior Penalty (NIP) antisymmetric, marginally stable ($\sigma > 0$)

Description Rivière [Riv08] Relation to lifting based methods Arnold et al. [ABCM02] Question : how do we choose σ for SIP

▲□ → ▲ 三 → ▲ 三 →

2

DGM/IP methods Interior penalty methods : Coercivity of SIP

а

[Sha05]

$$\begin{split} (v,v) &= \sum_{e} \int_{e} \left| \nabla v \right|^{2} dV - 2 \sum_{f} \int_{f} \left\{ \left\{ \nabla v \right\} \right\} \left[\left[v \right] \right] dS + \sum_{f} \sigma_{f} \int_{f} \left[\left[v \right] \right]^{2} dS > C_{1} \left\| v \right\|^{2} ? \\ &\geq \sum_{e} \int_{e} \left| \nabla v \right|^{2} dV - \sum_{f} \frac{1}{\epsilon_{F}} \int_{f} \left\{ \left\{ \nabla v \right\} \right\}^{2} dS + \sum_{f} (\sigma_{f} - \epsilon_{f}) \int_{f} \left[\left[v \right] \right]^{2} dS \\ &\geq \sum_{e} \int_{e} \left| \nabla v \right|^{2} dV - \sum_{f} \frac{1}{4\epsilon_{F}} \int_{f} \left| \nabla v^{+} \right|^{2} + \left| \nabla v^{-} \right|^{2} + 2\nabla v^{-} \cdot \nabla v^{+} dS + \dots \\ &\geq \sum_{e} \int_{e} \left| \nabla v \right|^{2} dV - \sum_{f} \frac{1}{2\epsilon_{F}} \int_{f} \left| \nabla v^{+} \right|^{2} + \left| \nabla v^{-} \right|^{2} dS - \sum_{f \in f} \frac{1}{\epsilon_{F}} \int_{f} \left| \nabla v^{-} \right|^{2} dS + \dots \\ &\geq \sum_{e} \left(1 - \sum_{f \in e} \frac{c_{f,e}^{*}}{\epsilon_{f}} \right) \int_{e} \left| \nabla v \right|^{2} dV + \sum_{f} \int_{f} (\sigma_{f} - \epsilon_{f}) \left[v \right]^{2} dS \end{split}$$

$$\begin{split} c_{f,e}^{*} &= c_{\mathfrak{f},e} \, \frac{\mathcal{A}(f)}{\mathcal{V}(e)} \, , \, \, \forall f \in \Gamma \\ &= \frac{c_{\mathfrak{f},e}}{2} \, \frac{\mathcal{A}(f)}{\mathcal{V}(e)} \, , \, \, \forall f \notin \Gamma \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

DGM/IP methods Interior penalty methods : Trace inequality constants

e/ f	edge	triangle	quadrilateral
triangle*	(p+1)(p+2)/2	-	-
$tetrahedron^*$	-	(p+1)(p+3)/3	-
quadrilateral [†]	$(p+1)^2$	-	-
hexahedron [†]	-	-	$(p+1)^2$
wedge [†]	-	$(p+1)^2$	(p+1)(p+2)/2
pyramid [†]	-	1.05(p+1)(2p+3)/3	(p+1)(p+3)/3

$$\int_{f} u^{2} dS \leq c_{\mathfrak{e},\mathfrak{f}}(p) \cdot \frac{\mathcal{A}(f)}{\mathcal{V}(e)} \int_{e} u^{2} dV , \ \forall u \in \Phi_{p}$$

Hillewaert & Remacle, submitted to Sinum

▲□→ ▲目→ ▲目→

Ξ.

DGM/IP methods Interior penalty methods : Coercivity of SIP - alternatives for σ

Choose ϵ_f and σ_f such that

$$a(v,v) \geq \sum_{e} \left(1 - \sum_{f \in e} \frac{c_{f,e}^*}{\epsilon_f} \right) \int_{e} |\nabla v|^2 dV + \sum_{f} \int_{f} (\sigma_f - \epsilon_f) [v]^2 dS$$

DGM/IP methods Interior penalty methods : Coercivity of SIP - alternatives for σ

Choose ϵ_f and σ_f such that

$$a(v,v) \geq \sum_{e} \left(1 - \sum_{f \in e} \frac{c_{f,e}^*}{\epsilon_f} \right) \int_{e} |\nabla v|^2 dV + \sum_{f} \int_{f} (\sigma_f - \epsilon_f) [v]^2 dS$$

Generalisation of Shahbazi (05)

$$\sigma_{f} > \epsilon_{f}$$

$$\epsilon_{f} > \max_{e \ni f} \left(\sum_{f' \in e} c_{f',e}^{*} \right) = \max_{e \ni f} \left(\frac{1}{\mathcal{V}(e)} \sum_{f \in e} c_{f',e} \mathcal{A}(f') \right)$$

< 回 > < 三 > < 三 >

3

DGM/IP methods Interior penalty methods : Coercivity of SIP - alternatives for σ

Choose ϵ_f and σ_f such that

$$a(v,v) \geq \sum_{e} \left(1 - \sum_{f \in e} \frac{c_{f,e}^*}{\epsilon_f} \right) \int_{e} |\nabla v|^2 dV + \sum_{f} \int_{f} (\sigma_f - \epsilon_f) [v]^2 dS$$

Generalisation of Shahbazi (05)

$$\sigma_{f} > \epsilon_{f}$$

$$\epsilon_{f} > \max_{e \ni f} \left(\sum_{f' \in e} c_{f',e}^{*} \right) = \max_{e \ni f} \left(\frac{1}{\mathcal{V}(e)} \sum_{f \in e} c_{f',e} \mathcal{A}(f') \right)$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Anisotropic definition

$$\sigma_{f} > \varepsilon_{f}$$

$$\epsilon_{f} > \max_{e \neq f} \left(nc_{f,e}^{*} \right) = \max_{e \neq f} \left(nc_{f,e} \frac{\mathcal{A}(f)}{\mathcal{V}(e)} \right)$$

DGM/IP methods

Interior penalty methods : verification

manufactured solution

$$\Delta u = -\Delta f , \quad \forall x \in \Omega$$
$$u = f , \quad \forall x \in \Gamma$$
$$f = \prod_{i=1}^{d} e^{x_i}$$

define

$$\sigma_f = \alpha \sigma_f^*$$

plot

 L_2 -norm of the error as a function of α

 single-precision direct solver ← conditioning

・ロン ・回と ・ヨン ・ ヨン

3

・ 同 ト ・ ヨ ト ・ ヨ ト

э

DGM/IP methods Interior penalty methods : verification

▲□ → ▲ 三 → ▲ 三 →

э

DGM/IP methods Interior penalty methods : extension to systems

Scalar penalty

$$\sum_{e} \int_{e} \frac{\partial \mathbf{v}_{m}}{\partial \mathbf{x}_{k}} \cdot \mathbf{D}_{mn}^{kl} \frac{\partial u_{n}}{\partial \mathbf{x}_{l}} \, d\mathbf{V} - \sum_{f} \int_{f} \left[\left[\mathbf{v}_{m} \right] \right]^{k} \left\{ \left\{ \mathbf{D}_{mn}^{kl} \cdot \frac{\partial u_{n}}{\partial \mathbf{x}^{l}} \right\} \right\} dS$$
$$- \theta \sum_{f} \int_{f} \left[\left[u_{n} \right] \right]^{k} \left\{ \left\{ \mathbf{D}_{nm}^{kl} \cdot \frac{\partial \mathbf{v}_{m}}{\partial \mathbf{x}^{l}} \right\} \right\} dS$$
$$+ \sum_{f} \sigma \int_{f} \left[\left[u_{m} \right] \right] \cdot \left[\left[\mathbf{v}_{m} \right] \right] dS = 0$$

Matrix penalty

$$\begin{split} \sum_{e} \int_{e} \frac{\partial \mathbf{v}_{m}}{\partial \mathbf{x}_{k}} \cdot \mathbf{D}_{mn}^{kl} \frac{\partial u_{n}}{\partial \mathbf{x}_{l}} \ dV &- \sum_{f} \int_{f} \left[\left[\mathbf{v}_{m} \right] \right]^{k} \left\{ \left\{ \mathbf{D}_{mn}^{kl} \cdot \frac{\partial u_{n}}{\partial \mathbf{x}^{l}} \right\} \right\} dS \\ &- \theta \sum_{f} \int_{f} \left[\left[u_{n} \right] \right]^{k} \left\{ \left\{ \mathbf{D}_{nm}^{kl} \cdot \frac{\partial \mathbf{v}_{m}}{\partial \mathbf{x}^{l}} \right\} \right\} dS \\ &+ \sum_{f} \frac{\sigma^{*}}{2} \int_{f} \left(\left[\left[\mathbf{v}_{m} \right] \right]^{l} \left(\mathbf{D}_{mn}^{kl} + \mathbf{D}_{nm}^{kl} \right) \left[\left[u_{n} \right] \right]^{k} \right) dS = 0 \end{split}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

э

DGM/IP methods

Interpolation and quadrature : need for curved meshes and mappings

Example : von Karman street from cylinder Re=100, DGM(4)

3

DGM/IP methods

Interpolation and quadrature : need for curved meshes and mappings

Example : von Karman street from cylinder Re=100, DGM(4)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

DGM/IP methods

Interpolation and quadrature : need for curved meshes and mappings

Example : von Karman street from cylinder Re=100, DGM(4)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

DGM/IP methods

Interpolation and quadrature : need for curved meshes and mappings

Example : von Karman street from cylinder Re=100, DGM(4)

<回><モン</td>

э

DGM/IP methods

Interpolation and quadrature : need for curved meshes and mappings

Example : von Karman street from cylinder Re=100, DGM(4)

Pre- and postprocessing tools are (not enough) subject of research Gmsh (http://www.geuz.org/gmsh)

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

3

DGM/IP methods

Interpolation and quadrature : Taxonomy of base functions

DGM : basis ϕ_i for Φ is supported on a single element \rightarrow total freedom

modal : easy/well-conditioned base irrespective of geometry

- monomials 1, ξ, ξ²,...
- orthogonal polynomials, eg. Legendre in 1D $\mathcal{P}^{n}(\xi)$
- fundamental solutions : eg. plane waves
- ...
- nodal : control points associated to the geometry
 - Lagrangian (equidistant, optimised, spectral elements)
 - Splines

Coordinate system

- Parametric
- Cartesian

DGM/IP methods

Interpolation and quadrature : Standard choice : parametric Lagrangian interpolation

Solutions and coordinates expanded in parametric coordinates $\pmb{\xi}$

$$u_m = \sum_{i=1}^{N_{\phi}} \mathbf{u}_{im} \phi_i(\boldsymbol{\xi}) \qquad \qquad x^k = \sum_{i=1}^{N_{\psi}} \mathbf{x}_i^k \psi_i(\boldsymbol{\xi})$$

Jacobian **J** of **x** wrt $\boldsymbol{\xi}$

$$\mathbf{J}_{kl} = \frac{\partial \mathbf{x}^{k}}{\partial \xi^{l}} = \sum_{i=1}^{N_{c}} \frac{\partial \psi_{i}}{\partial \xi^{l}} \qquad \qquad \left(\mathbf{J}^{-1}\right)_{kl} = \frac{\partial \xi^{k}}{\partial x^{l}}$$

Classical Gauss-Legendre quadrature O(2p+1)

$$\int_{V} \nabla \phi_{i} (\mathbf{f}_{c}(u) + \mathbf{f}_{d}(u, \nabla u)) dV \approx \sum_{q=1}^{N_{q}} w_{q} \left(\frac{\partial \phi_{i}}{\partial \xi^{k}} \mathbf{J}_{kl}^{-1} \left(f_{c}^{l}(u) + f_{d}^{l}(u, \nabla u) \right) |\mathbf{J}| \right)_{\xi_{q}}$$

DGM/IP methods

Interpolation and quadrature : Lagrangian boundary closures

Suppose
•
$$\Lambda(\psi_i, \xi_i) = \{\lambda_i\}$$

• suppose $span\{\psi_k\}_f = span\{\psi_k^f\}$
• \mathbf{V}^f is invertible, with $\mathbf{V}_{ij}^f = \psi_i^f(\xi_j^f)$

For any λ_i

$$\begin{split} \lambda_i \Big|_f &= \sum_j \beta_{ij} \psi_j^f = \sum_{j \in \Xi^f} \beta_{ij} \lambda_j^f \\ \lambda_i \left(\xi_k \right) &= 0 \\ &= \sum_j \beta_{ij} \lambda_j^f \left(\xi_k \right) = \beta_{ik} \ , \ \forall \xi_k \in \Xi^f \end{split}$$

() <) <)
 () <)
 () <)
</p>

3

and hence

$$\lambda_k |_f = 0 , \forall \xi_k \notin f$$

 \Rightarrow whatever the basis ψ_i , Lagrangian elements with complete boundary spaces will result interpolations on the boundary that only depend on the interpolation nodes on that same boundary

- C^0 continuity (mesh generation)
- efficient assembly

DGM/IP methods Interpolation and quadrature : computation

Lagrangian interpolants λ_i based on points ξ_i and whatever set of basis functions $\psi_i : \Phi = \operatorname{span}(\psi_i)$

 $\lambda_i \in \Phi : \lambda_i (\xi_j) = \delta_{ij}$

伺 ト イヨト イヨト

э

$$\lambda_{i} = \sum_{j} \mathbf{A}_{ij} \psi_{j}$$

$$\underbrace{\begin{bmatrix} \lambda_{1}(\xi_{1}) & \lambda_{1}(\xi_{2}) & \dots & \lambda_{1}(\xi_{n}) \\ \lambda_{2}(\xi_{1}) & \lambda_{2}(\xi_{2}) & \dots & \lambda_{2}(\xi_{n}) \\ \vdots \\ \lambda_{n}(\xi_{1}) & \lambda_{n}(\xi_{2}) & \dots & \lambda_{n}(\xi_{n}) \end{bmatrix}_{l} = \mathbf{A} \cdot \underbrace{\begin{bmatrix} \psi_{1}(\xi_{1}) & \psi_{1}(\xi_{2}) & \dots & \psi_{1}(\xi_{n}) \\ \psi_{2}(\xi_{1}) & \psi_{2}(\xi_{2}) & \dots & \psi_{2}(\xi_{n}) \\ \vdots \\ \psi_{n}(\xi_{1}) & \psi_{n}(\xi_{2}) & \dots & \psi_{n}(\xi_{n}) \end{bmatrix}}_{\mathbf{V}}$$

$$\Rightarrow \mathbf{A} = \mathbf{V}^{-1}$$

同 とう モン・ く ヨ と

3

DGM/IP methods Interpolation and quadrature : simplex templates

Functional space $\mathbb{P}_p^d = \operatorname{span}\{\prod_{i=1}^d \xi_i^{p_i} : 0 \le \sum_{i=1}^p p_i \le p\}$

Compendium of quadrature rules in Solin 2004 [SSD04]

▲注入 ★注入

э

DGM/IP methods

Interpolation and quadrature :tensor product element templates

Functional space $\mathbb{Q}_p^d = \operatorname{span}\{\prod_{i=1}^d \xi_i^{p_i} : 0 \le p_i \le p\}$

Quadrature rules : tensor product of 1D Gauss-Legendre

Caveat : optimised quadrature rules (Solin) often apply to Pascal space

(4回) (4回) (4回)

э

DGM/IP methods Interpolation and quadrature : prisms

Functional space and quadrature : Tensor product of triangle and lines

э

DGM/IP methods

Interpolation and quadrature :transition element templates

Bergot et al. [BCD10] boundary compliant functional space

$$\begin{split} \Phi^{e} &= \operatorname{span} \left\{ \psi_{ijk}, 0 \le i, j \le p \ , \ 0 \le k \le p - \mu_{ij} \right\} \\ \psi_{ijk} &= \mathcal{P}_i \left(\frac{\xi_1}{1 - \xi_3} \right) \ \mathcal{P}_j \left(\frac{\xi_2}{1 - \xi_3} \right) \ (1 - \xi_3)^{\mu_{ij}} \ \mathcal{P}_k^{2\mu_{ij} + 2, 0} \ (2\xi_3 - 1) \\ \mu_{ij} &= \max \left(i, j \right) \end{split}$$

Quadrature rules based on degenerated hex

Outline

DGM/IP methods

- Framework
- Convective terms
- Functional analysis
- Interior penalty methods
- Interpolation and quadrature

2 Practical implementation

- Computational kernels
- Practical quadrature
- Implicit solver
- Efficient Jacobian assembly

3 hp-multigrid

- Basics
- Transfer operators
- Performance for convective problems
- Concluding remarks

< 17 ▶

- ₹ 🖹 🕨

- ∢ ≣ →

э

A B F A B F

A >

э

Practical implementation Computational kernels : matrix and vector proxies

$$\mathbf{A} \in \mathbb{R}^{m \times n} = (\mathbf{a}, n, m, lda)$$
$$\mathbf{A}_{ij} = * (\mathbf{a} + i * n + j)$$
$$\mathbf{A}_{ij} = * (\mathbf{a} + i * lda + j)$$

A B F A B F

A >

э

Practical implementation Computational kernels : matrix and vector proxies

$$\begin{split} \mathbf{B} &\in \mathbb{R}^{p \times q} = (\mathbf{b}, p, q, lda) \\ \mathbf{b} &= \mathbf{a} + i_b * lda + j_b \\ \mathbf{B}_{ij} &= * (\mathbf{b} + i * lda + j) = * (\mathbf{a} + (i + i_b) * n + (j + j_b)) \end{split}$$

() <) <)
 () <)
 () <)
 () <)
</p>

3

Practical implementation Computational kernels : matrix and vector proxies

$$\mathbf{b} \in \mathbb{R}^{p} = (\mathbf{b}, p, Ida)$$
$$\mathbf{b} = \mathbf{a} + i_{b} * Ida$$
$$\mathbf{b}_{i} = *(\mathbf{b} + i * Ida) = *(\mathbf{a} + (i + i_{b}) * n)$$

Practical implementation Computational kernels : BLAS GEMM

Practical implementation Computational kernels : BLAS GEMM

Practical implementation Computational kernels : BLAS GEMV

Practical implementation Computational kernels : BLAS GEMV

Practical implementation Computational kernels : BLAS AXPY

Practical implementation Computational kernels : BLAS AXPY

ヨッ イヨッ イヨッ

Practical implementation Practical implementation : lessons

- peak flop rate : multiple of clock-speed due to inherent vectorisation (SIMD)
 - AMD, Intel < Harpertown : SSE4 4 double, 8 single
 - Intel Sandy Bridge : AVC 8 double, 16 single
 - BG/P 4 double (fma)
 - BG/Q 8 double (fma)

requires efficient pipelining (data alignment and cache)

- efficiency increases with BLAS level ~ cache effects and pipelining effects work to memory ~ n^l/n
- data packing effects clearly visible in efficiency \rightarrow interest for padding
- efficiency depends very much on library

伺 ト イヨト イヨト

3

Practical quadrature

eg. volume terms

Classical Gauss-Legendre quadrature $\mathcal{O}(2p+1)$

$$\mathbf{r}_{im} \leftarrow \mathbf{r}_{im} + \int_{V} \nabla \phi_{im} (\vec{f}_{m}(u) + \vec{d}_{m}(u, \nabla u)) dV \approx \mathbf{r}_{im} + \sum_{q=1}^{N_{q}} w_{q} \left(\frac{\partial \phi_{i}}{\partial \xi^{k}} \mathbf{J}_{kl}^{-1} \left(f_{c}^{l}(u) + f_{d}^{l}(u, \nabla u) \right) |\mathbf{J}| \right)_{\xi_{q}}$$

efficient implementation : split up in parametric and physical steps :

Collocation

$$u_m(\xi_q) = \sum_{i=1}^{N_{\phi}} \phi_i(\xi_q) \mathbf{u}_{im}$$
$$\left(\frac{\partial u_m}{\partial \xi^i}\right)_{\xi_q} = \sum_{i=1}^{N_{\phi}} \mathbf{u}_{im} \left(\frac{\partial \phi_i}{\partial \xi^i}\right)_{\xi_q}$$

2 Evaluation of geometry and physics

$$\begin{pmatrix} \frac{\partial u_m}{\partial x^k} \end{pmatrix}_{\xi_q} = \sum_{l=1}^d \left(\mathbf{J}_{lk}^{-1} \frac{\partial u_m}{\partial \xi^l} \right)_{\xi_q}$$
$$\mathbf{f}_{qm}^k = |\mathbf{J}| \mathbf{J}_{kl}^{-1} \left(f_{c,m}^k(u) + f_{d,m}^k(u, \nabla u) \right)_{\xi_q}$$

Ilux redistribution

$$\mathbf{r}_{im} \leftarrow \mathbf{r}_{im} + \sum_{q=1}^{N_q} w_q \left(\frac{\partial \phi_i}{\partial \xi^k}\right)_{\xi q} \mathbf{f}_{qm}^k$$

K.Hillewaert Discontinuous Galerkin Methods

Practical implementation Practical quadrature :Matrix operations in parametric

Solution collocation

$$u_m(\xi_q) = \sum_{i=1}^{N_{\phi}} \phi_i(\xi_q) \mathbf{u}_{im} \qquad \qquad \mathbf{u}_{qm} = \sum_{i=1}^{N_{\phi}} \mathbf{C}_{qi} \mathbf{u}_{im}$$

Gradient collocation

$$\left(\frac{\partial u_m}{\partial \xi^l}\right)_{\xi_q} = \sum_{i=1}^{N_\phi} \mathbf{u}_{im} \left(\frac{\partial \phi_i}{\partial \xi^l}\right)_{\xi_q} \qquad \qquad \mathbf{g}'_{qm} = \sum_{i=1}^{N_\phi} \mathbf{\mathfrak{G}}'_{qi} \mathbf{u}_{im}$$

Flux redistribution

$$\mathbf{r}_{im} + = \sum_{q=1}^{N_q} w_q \left(\frac{\partial \phi_i}{\partial \xi^k}\right)_{\xi_q} \mathfrak{f}_{qm}^k \qquad \qquad \mathbf{r}_{im} + = \sum_k \sum_q \mathfrak{R}_{iq}^k \mathfrak{f}_{qm}^k$$

Premultiplication with the mass matrix

伺 と く ヨ と く ヨ と

3

Practical implementation Implicit solver : Damped inexact Newton

Backward-Euler with one Newton solve

$$\mathbf{r}_{im}^{\star} = \left(\phi_{i}, \frac{u_{m}^{n} - u_{m}^{n-1}}{\Delta \tau^{n}} + \mathcal{L}_{m}\left(u^{n}\right)\right) = 0 , \quad \forall m, \quad \forall \phi_{i} \in \Phi$$

$$\mathbf{A}^{\star} \cdot \Delta \mathbf{u}^{n} = -\mathbf{r}^{\star}$$

$$\mathbf{A}^{\star} = \frac{\partial \mathbf{r}^{\star}}{\partial \mathbf{u}} = \frac{\mathbf{M}}{\Delta \tau^{n}} + \mathbf{A}$$

Strategy for global CFL

$$\Delta \tau^{n} = CFL^{n} \frac{\Delta x}{u \cdot (2p+1)}$$
$$CFL^{n} = CFL^{0} \cdot \left(\frac{||\mathbf{r}^{\circ}||_{2}}{||\mathbf{r}^{n-1}||_{2}}\right)^{\alpha}$$

Options

- direct solvers (Gauss)
- Matrix iterative solvers Krylov subspace

(日) (同) (目) (日)

э

block CSR structure

- + very low indexing overhead allowing simple and flexible datastructure
- $+ \,$ computations recastable in dense gemm, inversion and gemv
 - datastructure can be deallocated/allocated on the fly
 - internal renumbering independent of the mesh
- large block size $N_{\phi}N_{v} \sim p^{3}N_{v}$ (eg. DGM(4) hex, Navier-Stokes : 625) \rightarrow memory bottle-neck

(人間) (人) (人) (人) (人) (人)

æ

Implicit solver Matrix operations efficiency

inversion

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Implicit solver Matrix operations efficiency

inversion

- 4 回 ト - 4 回 ト

æ

Implicit solver Matrix operations efficiency

matrix-vector product

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Implicit solver Matrix operations efficiency

matrix-vector product

3

Practical implementation Implicit solver : Krylov subspace methods (see Saad00 [Saa00])

Look for correction $\Delta u^n \in \mathcal{K}_n(\mathbf{A}^*, \mathbf{r}^*)$

$$\mathcal{K}_{n}\left(\boldsymbol{\mathsf{A}}^{\star},\boldsymbol{\mathsf{r}}^{\star}\right)=\operatorname{span}\{\boldsymbol{\mathsf{r}}^{\star},\boldsymbol{\mathsf{A}}^{\star}\cdot\boldsymbol{\mathsf{r}}^{\star},...,\left(\boldsymbol{\mathsf{A}}^{\star}\right)^{n}\cdot\boldsymbol{\mathsf{r}}^{\star}\}$$

Needs

• operator to provide $\mathbf{A}^* \cdot p$ for generic p matrix-free Krylov

$$\mathbf{A}^{\star} \cdot \mathbf{p} \approx \frac{\mathbf{r}^{\star}(\mathbf{u}^{n} + \epsilon \mathbf{p}) - \mathbf{r}^{\star}(\mathbf{u}^{n})}{\epsilon}$$
$$\epsilon = \sqrt{\mu} \frac{||\boldsymbol{u}||}{||\boldsymbol{p}||}$$

- vector internal product (parallellisation) (Gramm-Schmidt)
- preconditioning : pick iterative method P ~ A⁻¹

$$\mathbf{A}^* \cdot \mathbf{P} \cdot \mathbf{x} = -\mathbf{r}^*$$
$$\Delta \mathbf{u}^n = \mathbf{P} \cdot \mathbf{x} \sim \left(\mathbf{A}^*\right)^{-1} \cdot \mathbf{x}$$

matrix preconditioners (BILU, BJacobi), hp-multigrid

< ∃ >

____ ▶

-∢ ⊒ →

э

Practical implementation Implicit solver : single precision preconditioner

- still solve a double precision problem
- preconditioning only requires approximate solution
- halves the memory
- up to twice as efficient

3 x 3

∃ >

Practical implementation

Efficient Jacobian assembly : volume Jacobian assembly (naive)

$$\mathbf{r}_{im} = \int_{V} \nabla \phi \vec{f}_{c} dV = \sum_{q} w_{q} \left(|\mathbf{J}| \frac{\partial \phi_{i}}{\partial \xi^{k}} \mathbf{J}_{kl}^{-1} f_{m}^{l}(u) \right)_{\xi_{q}} \Rightarrow \frac{\partial \mathbf{r}_{im}}{\partial \mathbf{u}_{jn}} = \sum_{q} \left(w_{q} \frac{\partial \phi_{i}}{\partial \xi^{k}} \phi_{j} \right)_{\xi_{q}} \left(|\mathbf{J}| \mathbf{J}_{kl}^{-1} \frac{\partial f_{m}^{l}}{\partial u_{n}}(u) \right)_{\xi_{q}}$$

3

・同 ・ ・ ヨ ・ ・ ヨ ・ …

Practical implementation

Efficient Jacobian assembly : volume Jacobian assembly (contiguous)

$$\mathbf{r}_{im} = \int_{V} \nabla \phi \vec{f}_{c} dV = \sum_{q} w_{q} \left(|\mathbf{J}| \frac{\partial \phi_{i}}{\partial \xi^{k}} \mathbf{J}_{kl}^{-1} f_{m}^{\prime}(u) \right)_{\xi_{q}} \Rightarrow \frac{\partial \mathbf{r}_{im}}{\partial \mathbf{u}_{jn}} = \sum_{q} \left(w_{q} \frac{\partial \phi_{i}}{\partial \xi^{k}} \phi_{j} \right)_{\xi_{q}} \left(|\mathbf{J}| \mathbf{J}_{kl}^{-1} \frac{\partial f_{m}^{\prime}}{\partial u_{n}}(u) \right)_{\xi_{q}}$$

• subblock (right) is proxy \rightarrow not contiguous in memory \rightarrow addition is done row per row

< 同 > < 三 > < 三 >

3

Practical implementation

Efficient Jacobian assembly : volume Jacobian assembly (optimized)

$$\mathbf{r}_{im} = \int_{V} \nabla \phi \vec{f}_{c} dV = \sum_{q} w_{q} \left(|\mathbf{J}| \frac{\partial \phi_{i}}{\partial \xi^{k}} \mathbf{J}_{kl}^{-1} \vec{f}_{m}^{\prime}(u) \right)_{\xi q} \Rightarrow \frac{\partial \mathbf{r}_{im}}{\partial \mathbf{u}_{jn}} = \sum_{q} \left(w_{q} \frac{\partial \phi_{i}}{\partial \xi^{k}} \phi_{j} \right)_{\xi q} \left(|\mathbf{J}| \mathbf{J}_{kl}^{-1} \frac{\partial f_{m}^{\prime}}{\partial u_{n}}(u) \right)_{\xi q}$$

- subblock (right) is proxy \rightarrow not contiguous in memory
- intermediate blocks contiguous \rightarrow single contiguous sum for N_q assembly steps (blue) + single copy (green)

э

Practical implementation

Efficient Jacobian assembly : volume Jacobian assembly

$$\mathbf{r}_{im} = \int_{V} \nabla \phi \vec{f}_{c} dV = \sum_{q} w_{q} \left(|\mathbf{J}| \frac{\partial \phi_{i}}{\partial \xi^{k}} \mathbf{J}_{kl}^{-1} f_{m}^{l}(u) \right)_{\xi_{q}} \Rightarrow \frac{\partial \mathbf{r}_{im}}{\partial \mathbf{u}_{jn}} = \sum_{q} \left(w_{q} \frac{\partial \phi_{i}}{\partial \xi^{k}} \phi_{j} \right)_{\xi_{q}} \left(|\mathbf{J}| \mathbf{J}_{kl}^{-1} \frac{\partial f_{m}^{l}}{\partial u_{n}}(u) \right)_{\xi_{q}}$$

- subblock (right) is proxy \rightarrow not contiguous in memory
- intermediate blocks contiguous \rightarrow single contiguous sum for N_q assembly steps (blue) + single copy (green)
- padding increases flop efficiency in the assembly sums (blue)

Similar optimisations for interface terms etc. See [Hil10] for details.
→ □ → → モ → → モ →

2

Efficient Jacobian assembly Evolution of assembly cost

・日・ ・ヨ・ ・ヨ・

Ξ.

Efficient Jacobian assembly Evolution of assembly cost

MKL - contiguous

3

A ►

Efficient Jacobian assembly Evolution of assembly cost

MKL - optimized

Computational complexity \neq computational effort

Outline

DGM/IP methods

- Framework
- Convective terms
- Functional analysis
- Interior penalty methods
- Interpolation and quadrature

2 Practical implementation

- Computational kernels
- Practical quadrature
- Implicit solver
- Efficient Jacobian assembly

3 hp-multigrid

- Basics
- Transfer operators
- Performance for convective problems
- Concluding remarks

< 17 ▶

- ₹ 🖹 🕨

-∢ ⊒ →

э

▲□ → ▲ 三 → ▲ 三 →

2

hp-multigrid Basics : multilevel methods

- pre-smoothing
- post-smoothing

→ @ → → 注 → → 注 →

æ

hp-multigrid Basics : h-Multigrid → element size coarsening

hp-multigrid Basics : p-Multigrid → element order coarsening

▲□ → ▲ 三 → ▲ 三 → ● < ●

hp-multigrid Basics : p-Multigrid → element order coarsening

▲□ → ▲ 三 → ▲ 三 → ● < ●

$\begin{array}{l} hp-multigrid\\ \text{Basics}: p-Multigrid} \rightarrow \text{element order coarsening} \end{array}$

▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▲□ → ▲ 三 → ▲ 三 → ---

э.

hp-multigrid Basics : p-Multigrid → element order coarsening

◆□ > ◆□ > ◆ □ > ◆ □ > ─ □ = □

[HCGR06, HRC+06]

hp-multigrid Basics : DGM - variational FAS

Define fine (p) and coarse level (q) by either grid- or order-coarsening

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

hp-multigrid Transfer operators : Solution transfer between levels a and b

Both restriction and prolongation : use Galerkin projection

 $u^a \in \Phi^a \to u^b \in \Phi^b$

$$\begin{split} u_m^a &= \mathbf{u}_{im}^a \phi_i^a \ , \ \phi_i^a \in \Phi^a \\ \mathcal{T}^{ba} u_m^a &= u_m^b = \mathbf{u}_{jm}^b \phi_j^b \ , \ \phi_j^b \in \Phi^b \end{split}$$

 L_2 projection $\Phi^a \rightarrow \Phi^b$

$$\left(\phi_{k}^{b},\phi_{j}^{b}\right)\mathbf{u}_{jm}^{b}=\left(\phi_{k}^{b},\phi_{i}^{a}\right)\mathbf{u}_{im}^{a}, \ \forall \phi_{k}^{b} \in \Phi^{b}$$

Solution transfer matrix \mathbf{T}^{ba}

$$\mathbf{u}^{b} = \mathbf{T}^{ba} \cdot \mathbf{u}^{a} = \left(\mathbf{M}^{bb}\right)^{-1} \cdot \mathbf{M}^{ba} \cdot \mathbf{u}^{a}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

hp-multigrid Transfer operators : Residual transfer

Expand $\mathcal{L}(u^p)$ in Φ^p using L_2 projection

$$\mathcal{L}_{m}(u^{p}) \approx \sum_{i} \mathbf{I}_{im}^{p} \phi_{i}^{p}$$
$$\sum_{i} \mathbf{I}_{im}^{p} \left(\phi_{i}^{p}, \phi_{j}^{p}\right) \approx \left(\phi_{j}^{p}, \mathcal{L}(u^{p})\right) = \mathbf{r}_{jm}^{p}$$

then weigh with ϕ_i^q

$$\mathbf{r}_{im}^{q\prime} = \left(\phi_i^q, \mathcal{L}_m(u^p)\right) \approx \left(\phi_i^q, \sum \mathbf{I}_{im}^p \phi_i^p\right)$$

residual transfer matrix $\tilde{\mathbf{T}}^{\textit{qp}}$

$$\mathbf{r}^{q\prime} = \mathbf{M}^{q\rho} \cdot \left(\mathbf{M}^{\rho\rho}\right)^{-1} \mathbf{r}^{\rho}$$
$$= \widetilde{\mathbf{T}}^{q\rho} \mathbf{r}^{\rho} = \left(\mathbf{T}^{\rho q}\right)^{T} \mathbf{r}^{\rho}$$

[HCGR06, HRC⁺06]

[HCGR06, HRC⁺06]

hp-multigrid Transfer operators : equivalence of DCGA and GCGA

 ${\cal L}$ is linear :

$$\mathbf{A}^{p} \cdot \mathbf{u}^{p} = \mathbf{s}^{p}$$
$$\mathbf{A}_{ij}^{p} = \left(\phi_{i}^{p}, \mathcal{L}\left(\phi_{j}^{p}\right)\right)$$

 $\Phi^q \in \Phi^p$

$$\begin{split} \phi_i^q &= \alpha_{ij}^{qp} \cdot \phi_j^p \ , \ \forall \phi_i^q \in \Phi^q \\ \alpha^{qp} &= \mathsf{M}^{qp} \cdot \left(\mathsf{M}^{pp}\right)^{-1} = \tilde{\mathsf{T}}^{qp} = \left(\mathsf{T}^{pq}\right)^T \end{split}$$

then we can compute the Coarse Grid Approximation (CGA) of \mathbf{A}^{q}

$$\begin{split} \mathbf{A}_{ij}^{q} &= \left(\phi_{i}^{q}, \mathcal{L}\left(\phi_{j}^{q}\right)\right) = \alpha_{ik}^{qp} \cdot \left(\phi_{k}^{p}, \mathcal{L}(\phi_{l}^{p})\right) \cdot \alpha_{jl}^{qp} \\ \mathbf{A}^{q} &= \alpha^{qp} \mathbf{A} p \left(\alpha^{qp}\right)^{T} = \widetilde{\mathbf{T}}^{qp} \cdot \mathbf{A}^{p} \cdot \mathbf{T}^{pq} \end{split}$$

Using Galerkin projection and variational FAS, we get *optimal* Galerkin CGA from *simple/standard* discretisation CGA

・ 同 ト ・ ヨ ト ・ ヨ ト

≡ nar

hp-multigrid Transfer operators : Galerkin CGA and error propagation

restriction of residual after correction is exactly 0

$$\tilde{\textbf{T}}^{qp}\left(\textbf{A}^{p}\cdot\left(\textbf{u}^{p\prime}+\textbf{T}^{pq}\cdot\left(\textbf{u}^{q}-\textbf{u}^{q\prime}\right)\right)-\textbf{s}^{p}\right)=0$$

• the error after coarse grid correction depends only on the smooth part of the initial error

$$\begin{split} & \mathbf{A}^{p} \mathbf{e}^{p} = \mathbf{A}^{p} \mathbf{u}^{p} - \mathbf{s}^{p} = \mathbf{r}^{p} \\ & \mathbf{e}_{S}^{p'} = \left(\mathbf{T}^{pq} \cdot \left(\tilde{\mathbf{T}}^{qp} \mathbf{T}^{pq}\right)^{-1} \cdot \tilde{\mathbf{T}}^{qp}\right) \cdot \mathbf{e}^{p'} \in \operatorname{ran}\left(\mathbf{T}^{qp}\right) \\ & \mathbf{e}_{R}^{p'} = \left(\mathbf{I}p - \mathbf{T}^{pq} \cdot \left(\tilde{\mathbf{T}}^{qp} \mathbf{T}^{pq}\right)^{-1} \cdot \tilde{\mathbf{T}}^{qp}\right) \cdot \mathbf{e}^{p'} \in \operatorname{ker}\left(\tilde{\mathbf{T}}^{pq}\right) \end{split}$$

then

$$\mathbf{e}^{p} = \left(\mathbf{I}p - \mathbf{T}^{pq} \cdot \left(\mathbf{A}^{q}\right)^{-1} \cdot \tilde{\mathbf{T}}^{qp} \cdot \mathbf{A}^{p}\right) \cdot \mathbf{e}_{R}^{p\prime}$$

A ►

A B M A B M

3

hp-multigrid Performance for convective problems : Strategy

- pre-smoothing
- post-smoothing

Schemes

- 4step explicit Runge-Kutta on finest levels
- In pre- and postsmoothing steps
- hybrid cycles : Newton step at coarsest level

hp-multigrid : Performance for convective problems

3

個 と く ヨ と く ヨ と …

< 回 > < 三 > < 三 >

э

hp-multigrid : Performance for convective problems CPU comparison with Newton-Krylov - coarse mesh

・ 同 ト ・ ヨ ト ・ ヨ ト

э

hp-multigrid : Performance for convective problems CPU comparison with Newton-Krylov - fine mesh

イロン イロン イヨン イヨン

2

hp-multigrid Performance for convective problems : Cycling strategies - coarse mesh

イロン イロン イヨン イヨン

2

hp-multigrid Performance for convective problems : Cycling strategies - fine mesh

< 同 > < 三 > < 三 >

3

hp-multigrid : Concluding remarks

Conclusions

- easy multigrid implementation for DG
- optimal transfer operators
- hybrid p-multigrid approach promising for inviscid flows (hybrid cycle)
- very easy to use for nested initial iterations

Further work

- h-Multigrid implementations on unstructured meshes
 - agglomeration multigrid Tesini 2008 [Tes08]
 - nested meshes
 - independent meshes
 - directional coarsening
- design of smoothers for viscous flows VdVegt, JCP [vdVR12a, vdVR12b],?

< 回 > < 回 > < 回 >

э

References I

D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini.

Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems. *SIAM J. Num. Anal*, 39 :1749–1779, 2002.

M. Bergot, G. Cohen, and M. Duruflé.

High-Order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements. *Journal of Scientific Computing*, 42 :345–381, 2010.

K.J. Fidkowski, T.A. Oliver, J. Lu, and D.L. Darmofal.

p-Multigrid solution of high-order discontinuous Galerkin discretizations of the Navier-Stokes equations.

Journal of Computational Physics, 207 :92-113, 2005.

K. Hillewaert, N. Chevaugeon, P. Geuzaine, and J.-F. Remacle.

Hierarchic multigrid iteration strategy for the discontinuous Galerkin solution of the steady Euler equations.

International Journal for Numerical Methods in Fluids, 51(9-10) :1157 - 1176, 2006.

K. Hillewaert.

ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications - Results of a collaborative research project funded by the European Union, 2006-2009, volume 113 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, chapter Chapter 2 : Exploiting data locality in the DGM discretisation for optimal efficiency, pages 11–24. Springer, 2010.

()

э

References II

K. Hillewaert, J.-F. Remacle, N. Cheveaugeon, P.-E. Bernard, and P. Geuzaine.

Analysis of a hybrid p-multigrid method for the Discontinuous Galerkin Discretisation of the Euler Equations.

In P. Wesseling, E. Oñate, and J. Périaux, editors, ECCOMAS CFD Conference, 2006.

G. Jiang and C.-W. Shu.

On a cell entropy inequality for discontinuous Galerkin methods. *Mathematics anc Computation*, 62(206) :531–538, April 1994.

B. Rivière.

Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations - Theory and Implementation.

Frontiers in applied mechanics. SIAM, 2008.

Y. Saad.

Iterative methods for Sparse Linear Systems. 2nd edition, 2000. http://www.stanford.edu/class/cme324/saad.pdf.

K. Shahbazi.

An explicit expression for the penalty parameter of the interior penalty method (Short note). *Journal of Computational Physics*, 205 :401–407, 2005.

P. Solin, K. Segeth, and I. Dolezel.

Higher Order Finite Element Methods.

Studies in Advanced Mathematics. Chapman and Hall/CRC, 2004.

A B M A B M

< 6 >

References III

P. Tesini.

An h-Multigrid Approach for High-Order Discontinuous Galerkin Methods. PhD thesis, Universita degli studi di Bergamo - Dipartimento di Ingegneria Industriale, 2008.

J.J.W van der Vegt and S. Rhebergen.

hp-multigrid as smoother algorithm for higher order discontinuous galerkin discretizations of advection dominated flows. part i. multilevel analysis.

Journal of Computational Physics (in press), 2012.

J.J.W van der Vegt and S. Rhebergen.

hp-multigrid as smoother algorithm for higher order discontinuous galerkin discretizations of advection dominated flows. part ii. optimization of the runge-kutta smoother. *Journal of Computational Physics (in press)*, 2012.