Discontinuous Galerkin Methods Part 2: Application to turbulent flows

K.Hillewaert & C. Carton de Wiart

Cemracs Summer School, Marseille, July 20th 2012

Outline

- Modeling approaches
- Towards industrial LES

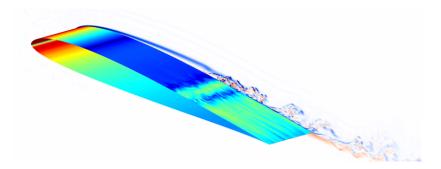
2 Validation

- DNS Taylor-Green
- Homogeneous isotropic turbulence
- LES of Homogeneous isotropic turbulence
- ILES of channel flow $Re_{\tau} = 395$

Towards real-life applications
 ILES of SD7003 airfoil

LP turbine blade

Concluding remarks

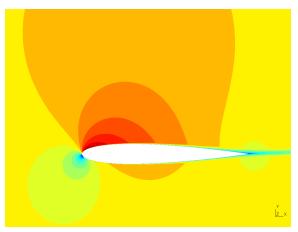

References

< 🗇 ▶

A B + A B +

э

HOM for industrial turbulence Modeling approaches : large scale turbulence and transition - SD7003, *Re* = 80.000

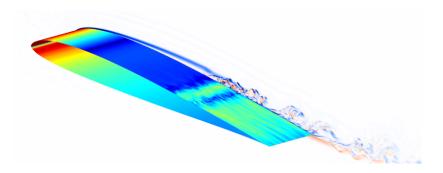


Direct Numerical Simulation

$$\frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot \mathbf{v} \otimes \mathbf{v} + \nabla p = \nabla \cdot \mu \nabla \mathbf{v}$$

() <) <)
 () <)
 () <)
</p>

HOM for industrial turbulence Modeling approaches : fully turbulent BL - NACA0012 airfoil, *Re* = 1.000,000



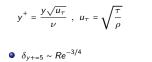
Reynolds Averaged Navier Stokes (RANS) : decompose $\mathbf{v} = \overline{\mathbf{v}} + \mathbf{v}'$, $p = \overline{p} + p'$ and average

$$\frac{\partial \overline{\mathbf{v}}}{\partial t} + \nabla \cdot \overline{\mathbf{v}} \otimes \overline{\mathbf{v}} + \nabla \cdot \overline{\mathbf{v}' \otimes \mathbf{v}'} + \nabla \overline{p} = \nabla \cdot \mu \nabla \overline{\mathbf{v}}$$

ヨッ イヨッ イヨッ

HOM for industrial turbulence Modeling approaches : large scale turbulence and transition - SD7003 *Re* = 80.000

Large Eddy Simulation : solve for low-pass filtered solution $\tilde{\mathbf{v}}$

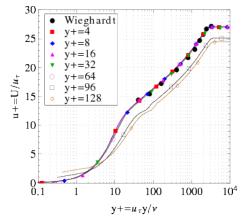

$$\frac{\partial \tilde{\mathbf{v}}}{\partial t} + \nabla \cdot \tilde{\mathbf{v}} \otimes \tilde{\mathbf{v}} + \nabla \cdot \underbrace{\left(\mathbf{v} \otimes \mathbf{v} - \tilde{\mathbf{v}} \otimes \tilde{\mathbf{v}} \right)}_{\tau_{SGS}} + \nabla \tilde{p} = \nabla \cdot \mu \nabla \tilde{\mathbf{v}}$$

A B + A B +

A >

HOM for industrial turbulence Modeling approaches : cost of turbulence modeling approaches

Equilibrium TBL



• $\delta \sim Re^{-0.2}$

RANS ~ $Re^{3/4}$, steady

Resolved turbulence

- DNS ~ Re^3
- LES ~ Re^{2.8}
- hybrid RANS-LES ~ Re^{0.8}
- wall-modeled LES ~ Re^{0.8}
- + statistical convergence to be reached

通 と く ヨ と く ヨ と

3

Drosson & Hillewaert 2012

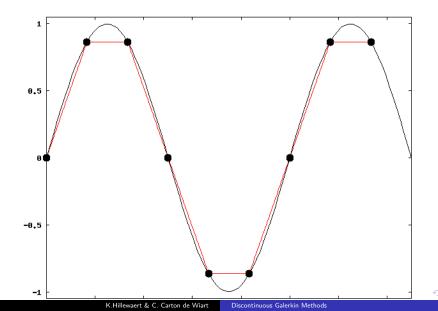
HOM for industrial turbulence

Modeling approaches : comparison

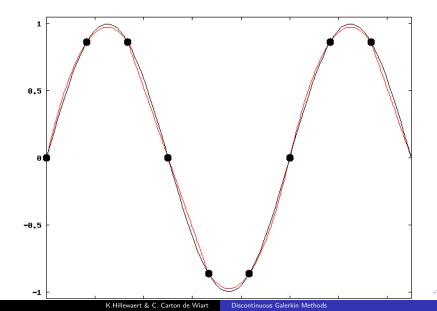
RANS

- need for a clear scale separation between geometry and turbulence (higher Re, aligned flow)
- model is much more global and hence needs tuning/calibration to specific flow situations
- + solve for average flow
- + low resolution since solving for smooth structures
- + industrial standard

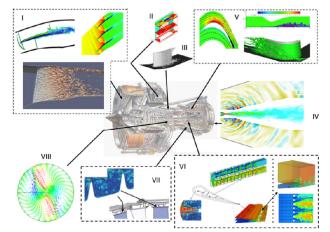
LES


- + resolve part of the turbulence, hence much smaller need for clear scale separation between geometry and turbulence
- + small SGS, hence model should have a more universal, scale independent behaviour
- + SGS time scales are small with respect to geometrically relevant timescales, hence the model should probably only be correct in the statistical average (?)
- need for unsteady computation and statistical convergence
- high resolution and accuracy required

DNS :


- + most universally applicable
- need for unsteady computation and statistical convergence
- extremely high resolution required (Re < 200.000)

通 と く ヨ と く ヨ と


HOM for industrial turbulence Modeling approaches : accuracy vs resolution

HOM for industrial turbulence Modeling approaches : accuracy vs resolution

HOM for industrial turbulence Towards industrial LES : turbulence in turbomachines

Tucker 2011 [Tuc11a, Tuc11b]

- higher Re
- no clear scale separation for many flow regimes
- however (U)RANS is still used due to cost issues
- advances in modeling required for truely predictive CFD

K.Hillewaert & C. Carton de Wiart

Discontinuous Galerkin Methods

HOM for industrial turbulence

Academic codes (PSP, FD, ...) are tuned to canonical testcases in simple geometry

- + high order of accuracy
- + low computational cost
- + optimized dissipation (and dispersion)
- no / small geometric flexibility allowed
- some models are tuned to case

Industrial codes (FVM, stabilised FEM) are tuned for robustness and complex geometry

- + geometric flexibility
- + high scalability and efficiency
- + robustness
- (formally) 2nd order of accuracy
- high dispersion error
- standard methods provide high dissipation (RANS/shocks)
- kinetic energy preserving methods degrade stability

 $\mathsf{Main}\xspace$ for tso far has been on modeling and fundamental turbulence. However, the discretisation is important. We need

- + high resolution \rightarrow HPC
- + no dissipation
- + low dispersion
- unstructured meshes complex geometry

DGM seems a good candidate

通 と く ヨ と く ヨ と

HOM for industrial turbulence Towards industrial LES : state of the art

v+>100 Total ---- LES of other workers 10⁹ More realistic scaling "Although 10⁸ LES is. obviously, much less model dependent than RANS, grids currently used 10⁷ for more practical simulations are clearly insufficiently fine for z the LES model and numerical 10 schemes not to be playing an excessively strong role." 10⁵ Fan - rig scale arge industrial F 10⁴ 10⁵ 10⁶ 10⁴

v+<100

Re

Tucker, Progress in Aerospace Sciences 2011 [Tuc11a, Tuc11b]

Fan - engine

107

ヨート

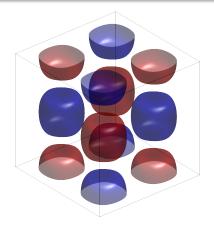
Outline

- HOM for industrial turbulence
 - Modeling approaches
 - Towards industrial LES
- 2 Validation
 - DNS Taylor-Green
 - Homogeneous isotropic turbulence
 - LES of Homogeneous isotropic turbulence
 - ILES of channel flow $Re_{\tau} = 395$

Towards real-life applications
 ILES of SD7003 airfoil

LP turbine blade

Concluding remarks

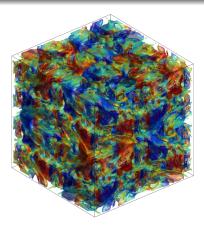

References

< ∃ >

____>

3 x 3

Validation DNS Taylor-Green : testcase description



4 3 b

Taylor-Green vortex Re = 1600

- analytical initial solution
- spectrally resolved for $L/\Delta x \approx 256$ (128th harmonic)
- reference pseudo-spectral computation up to 256th harmonic
- order (*p* = 2...5) and grid convergence (*p* = 3, *N* = 144, 192, 288, 384) study for DGM
- testcase C3.5 for the 1st Intl. Workshop for High Order Methods in CFD (AIAA ASM 2012) - paper submitted to IJNMF
- Carton & Hillewaert in preparation for JCP

Validation DNS Taylor-Green : testcase description

◆ 同 → ◆ 三 →

Taylor-Green vortex Re = 1600

- analytical initial solution
- spectrally resolved for $L/\Delta x \approx 256$ (128th harmonic)
- reference pseudo-spectral computation up to 256th harmonic
- order (*p* = 2...5) and grid convergence (*p* = 3, *N* = 144, 192, 288, 384) study for DGM
- testcase C3.5 for the 1st Intl. Workshop for High Order Methods in CFD (AIAA ASM 2012) - paper submitted to IJNMF
- Carton & Hillewaert in preparation for JCP

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

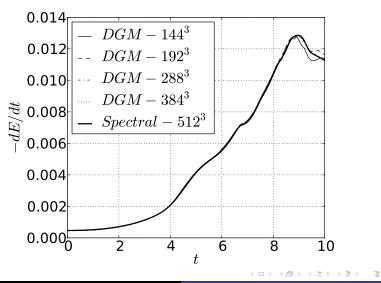
Validation DNS Taylor-Green : error criteria

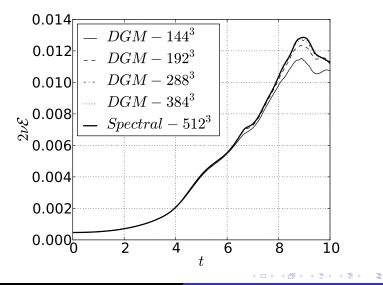
From the conservation of momentum, we find the following equation for the kinetic energy E_k for (nearly) incompressible flow

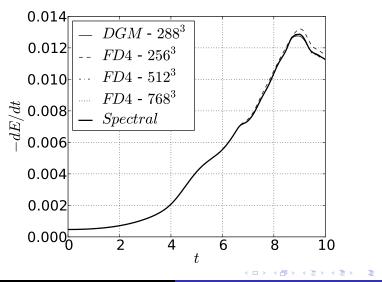
$$-\frac{\partial}{\partial t} \int_{V} \rho E_{k} \, dV = 2\mu \int_{V} \mathbf{S} : \mathbf{S} \, dV - \underbrace{\int_{V} p \nabla \cdot \mathbf{v} \, dV}_{\approx 0} + \mu_{v} \underbrace{\int_{V} \left(\nabla \cdot \mathbf{v} \right)^{2}}_{\approx 0} \, dV$$
$$\approx 2\mu \int_{V} \mathbf{S} : \mathbf{S} \, dV = 2\mu \mathcal{E}$$

with S the deviatoric part of the strain rate tensor

$$\mathbf{S} = \frac{\nabla \mathbf{v} + \nabla \mathbf{v}^{\mathsf{T}}}{2}$$

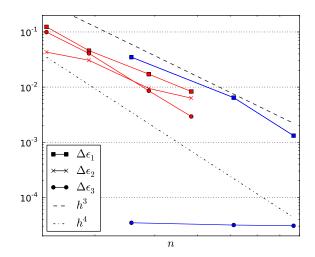

Three errors can be defined

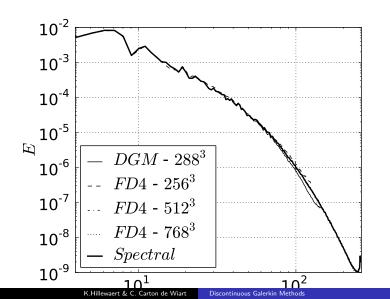

- $\Delta \epsilon_1 =$ error on theoretical dissipation based on the enstrophy integral \mathcal{E} ;
- $\Delta \epsilon_2 = \text{error on measured dissipation rate};$
- $\Delta \epsilon_3$ = difference between theoretical and measured dissipation rate


Resolution criteria in function of DGM as n = Np

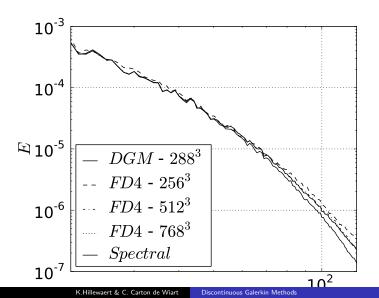
- counts # dofs
- Nyquist criterion refers to number of points (cfr. zeros)

Comparison of DGM(3) vs FD4

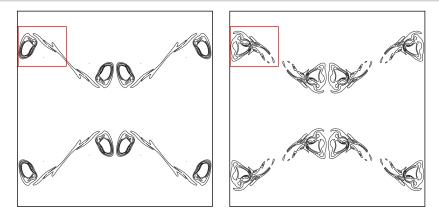




・日・ ・ヨ・ ・ヨ・


Э.

Validation DNS Taylor-Green : spectral distribution of kinetic energy


Validation DNS Taylor-Green : spectral distribution of kinetic energy

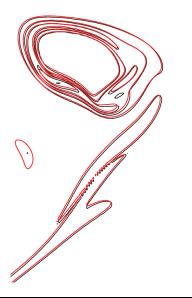
→ □ → → モ → → モ →

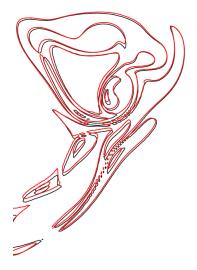
э

Validation DNS Taylor-Green : structures

Validation DNS Taylor-Green : structures DGM - 288³

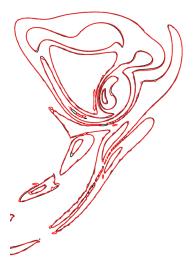
▲□→ ▲ □→ ▲ □→


Validation DNS Taylor-Green : structures FD4 - 256³

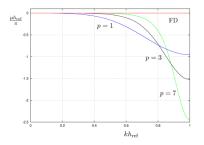


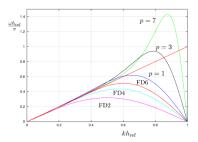
・ロト ・回ト ・ヨト ・ヨト

Validation DNS Taylor-Green : structures FD4 - 512³



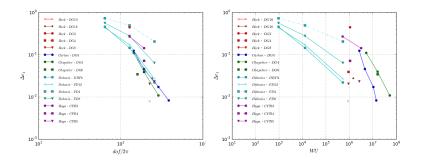
▲御▶ ★ 理▶ ★ 理▶


Validation DNS Taylor-Green : structures DGM - 384³

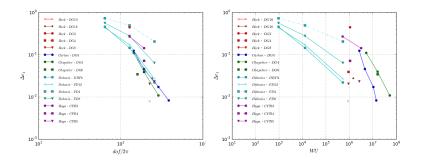


Э.

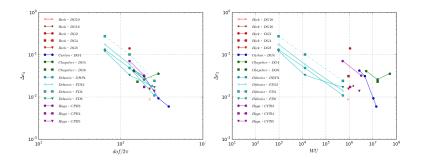
Validation DNS Taylor-Green : error properties of DGM



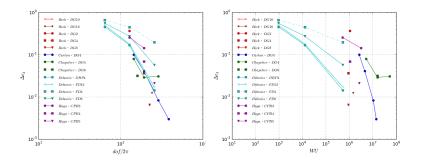
▲□ → ▲ 三 → ▲ 三 →


а.

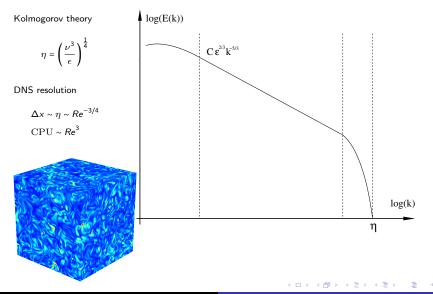
A >

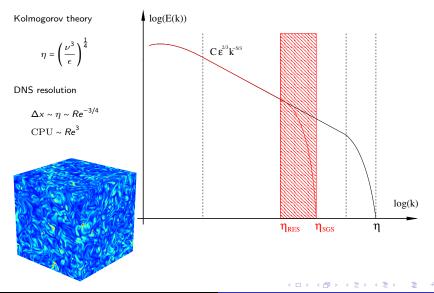


- unstructured methods competitive with finite differences in terms of resolution
- importance of the dispersion error
- unstructured methods are superior in terms of cpu if target error low enough


A >

- unstructured methods competitive with finite differences in terms of resolution
- importance of the dispersion error
- unstructured methods are superior in terms of cpu if target error low enough


- unstructured methods competitive with finite differences in terms of resolution
- importance of the dispersion error
- unstructured methods are superior in terms of cpu if target error low enough


- unstructured methods competitive with finite differences in terms of resolution
- importance of the dispersion error
- unstructured methods are superior in terms of cpu if target error low enough

Validation

Homogeneous isotropic turbulence : homogeneous isotropic turbulence (HIT)

Validation Homogeneous isotropic turbulence : homogeneous isotropic turbulence (HIT)

HOM for industrial turbulence Validation Towards real-life applications Cor DNS Taylor-Green Homogeneous isotropic turbulence LES of Homogeneous

Homogeneous isotropic turbulence : LES models

Local explicit eddy viscosity models

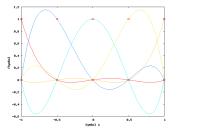
$$\begin{aligned} \tau &= \tau + \tau_{SGS} \\ \tau_{SGS} &= \mu_{SGS}(u) \mathbf{S} \\ S_{ij} &= \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) - \frac{1}{3} \frac{\partial v_k}{\partial x_k} \delta_{ij} \end{aligned}$$

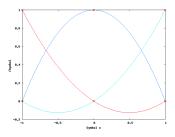
Smagorinsky - freestream turbulence

$$\nu_T = (C_s \Delta)^2 |S$$

WALE - wall-bounded flows

$$\begin{split} \nu_{T} &= \left(C_{w}\Delta\right)^{2} \frac{|S^{d}|^{3}}{|S|^{5} + |S^{d}|^{5/2}} \\ S_{ij}^{d} &= \frac{1}{2} \left(\left(\frac{\partial v_{i}}{\partial x_{j}}\right)^{2} + \left(\frac{\partial v_{j}}{\partial x_{i}}\right)^{2} \right) - \frac{1}{3} \frac{\partial v_{k}}{\partial x_{k}}^{2} \delta_{ij} \end{split}$$


• Variational multiscale model are based on high-pass filtered solutions


$$\tau = \tau + \tau_{SGS}$$
$$\tau_{SGS} = \mu^*_{SGS} \mathbf{S}^{**}$$

э

Implicit LES models (ILES, MILES, ...) rely on the discretisation

Validation Homogeneous isotropic turbulence : variational multiscale DG

回 と く ヨ と く ヨ と

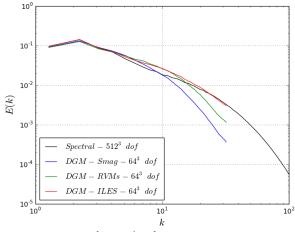
э

Low pass filtered solution ~ low order polynomial content

$$u_m = \sum_i \mathbf{u}_{im} \phi_i^p = u_m^* + \sum_i \mathbf{u}_{im}^q \phi_i^q$$

Use Galerkin projection to find u^q

$$\sum_{i} \mathbf{u}_{jm}^{q} \int_{V} \phi_{i}^{q} \phi_{j}^{q} = \sum_{i} \mathbf{u}_{km} \int_{V} \phi_{k}^{p} \phi_{i}^{q} \Rightarrow \mathbf{u}^{q} = (\mathbf{M}^{q})^{-1} \mathbf{M}^{qp}$$


Filtering = parametric operation, castable as matrix-matrix multiply

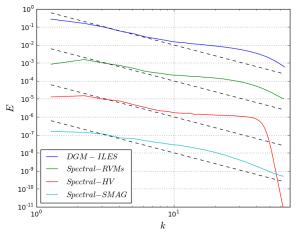
$$\mathbf{u}^{*} = \left(\mathbf{I} - \left(\mathbf{M}^{p}\right)^{-1}\mathbf{M}^{pq}\left(\mathbf{M}^{q}\right)^{-1}\mathbf{M}^{qp}\right)\mathbf{u}$$

通 と く ヨ と く ヨ と

э

Validation LES of Homogeneous isotropic turbulence : $Re_{\lambda} = 136$

Carton, Hillewaert et al. ETMM9 [CdWHG⁺12b]

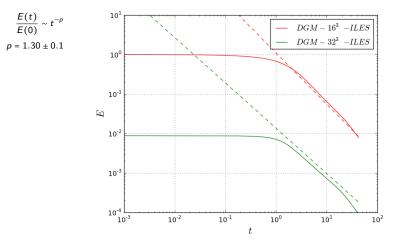

-∢ ≣ ▶

A >

-∢ ⊒ →

2

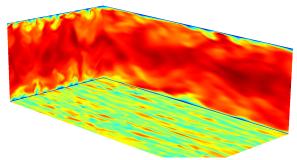
Validation LES of Homogeneous isotropic turbulence : Euler


Energy distribution has same quality as spectral code with optimised SGS *Cocle et al. 2009* [*CBW09*]

同 ト イ ヨ ト イ ヨ ト

э

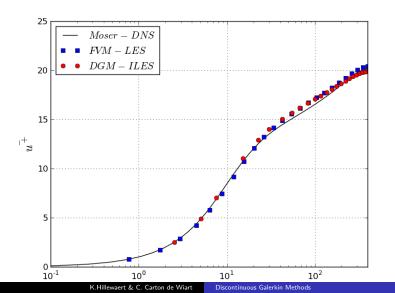
Validation LES of Homogeneous isotropic turbulence : Euler


DNS literature

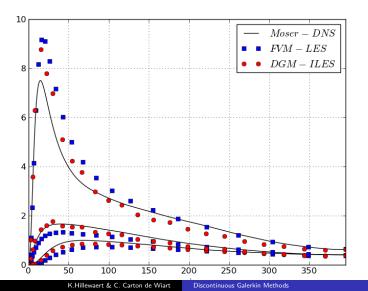
3 x 3

< ∃ >

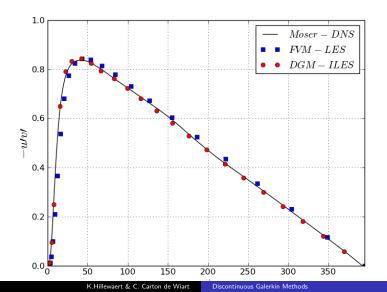
Validation ILES of channel flow Re_{τ} = 395 :setup



- developed flow in x-direction
- spanwise periodicity
- constant pressure gradient in x
- periodicity of the pressure perturbation p'


$$p = \frac{\partial \bar{p}}{\partial x} x + p'$$

Carton, Hillewaert et al. ETMM9 [CdWHG⁺12b]


Validation ILES of channel flow $Re_{\tau} = 395$: velocity correlations

Validation ILES of channel flow $Re_{\tau} = 395$: velocity correlations

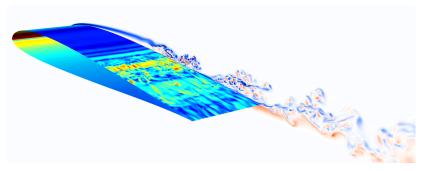
Validation ILES of channel flow $Re_{\tau} = 395$: velocity correlations

Outline

- Modeling approaches
- Towards industrial LES

2 Validatio

- DNS Taylor-Green
- Homogeneous isotropic turbulence
- LES of Homogeneous isotropic turbulence
- ILES of channel flow $Re_{\tau} = 395$

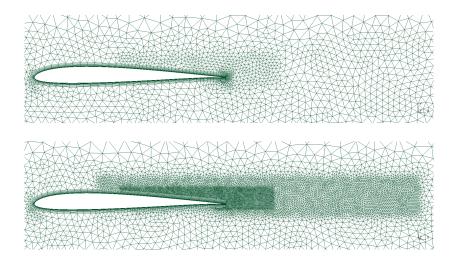

Concluding remarks

References

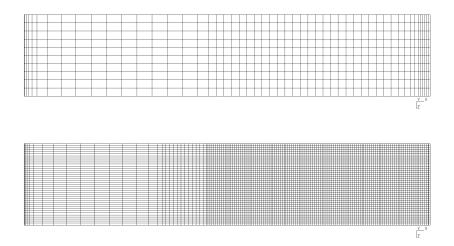
< 🗇 ▶

A B > A B >

Towards real-life applications ILES of SD7003 airfoil : Overview



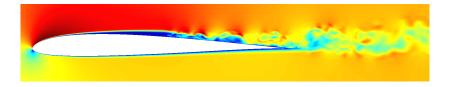
- transitional flow on a low Re airfoil $Re = 80.000, \alpha = 4^{\circ}$
- comparison between ILES and DNS
- scheme : DGM(3), Newton-Krylov-Jacobi, 3PtBDF

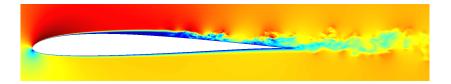

Carton & Hillewaert, ICCFD7 [CdWH12]

(*) *) *) *)

Towards real-life applications ILES of SD7003 airfoil : mesh resolution

Towards real-life applications ILES of SD7003 airfoil : mesh resolution

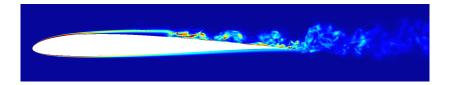

∃ >

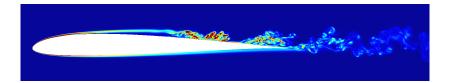

Towards real-life applications ILES of SD7003 airfoil : mesh characteristics

	DNS	LES
$\Delta y_0/c$ (wall-normal)	$3.33 \ 10^{-4}$	$3.33 \ 10^{-4}$
$\Delta x/c$ (box 1)	$1.67 \ 10^{-3}$	$6.67 \ 10^{-3}$
$\Delta x/c$ (box 2)	$3.33 \ 10^{-3}$	$1.33 \ 10^{-2}$
$\Delta z/c$ (spanwise)	$1.67 \ 10^{-3}$	$6.67 \ 10^{-3}$
y^{+} at $x/c = 0.8$	1.2	1.2
$x^+ = z^+$ at $x/c = 0.8$	6	24
Number of hexahedra (/1000)	84.7	8.7
Number of wedges (/1000)	646.1	47.9
Total number of dof per variable (at continuity) [k]	10934.3	874.5

通 と く ヨ と く ヨ と

Towards real-life applications ILES of SD7003 airfoil : velocity field

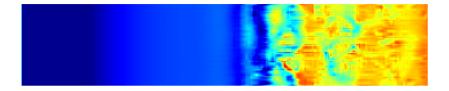

LES (top) vs DNS (bottom)

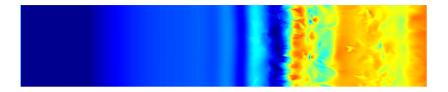

э

A .

- - E > - E >

Towards real-life applications ILES of SD7003 airfoil : vorticity field

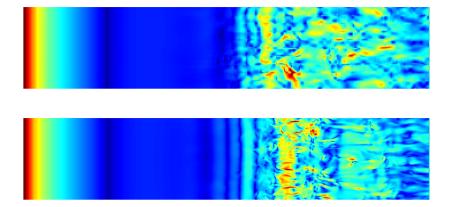




LES (top) vs DNS (bottom)

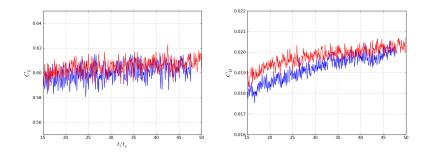
同 ト イ ヨ ト イ ヨ ト

Towards real-life applications ILES of SD7003 airfoil : wall pressure



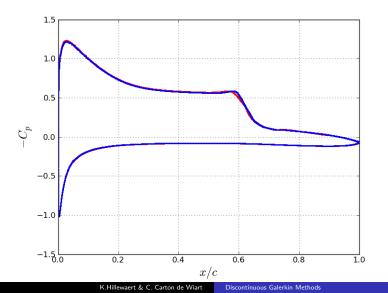
LES (top) vs DNS (bottom)

通 と く ヨ と く ヨ と

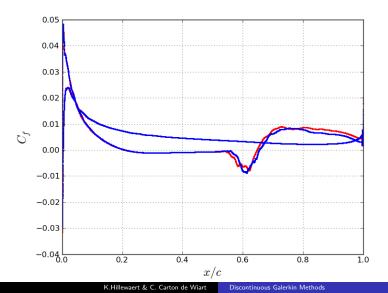

Towards real-life applications ILES of SD7003 airfoil : wall friction

LES (top) vs DNS (bottom)

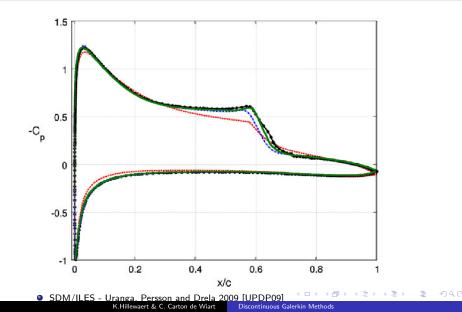
通 と く ヨ と く ヨ と


Towards real-life applications ILES of SD7003 airfoil : statistical convergence lift and drag

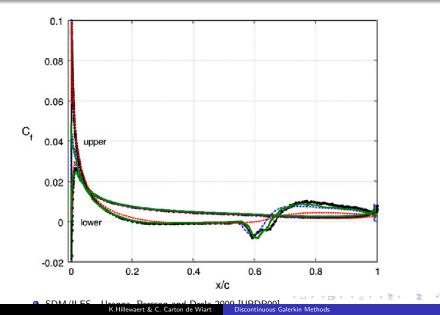
very slow convergence to statistically constant state


-

Towards real-life applications ILES of SD7003 airfoil : comparison DNS vs ILES of pressure coefficient distribution


æ

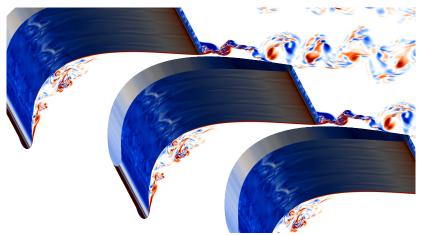
Towards real-life applications ILES of SD7003 airfoil : comparison DNS vs ILES of skin friction coefficient distribution



æ

Towards real-life applications ILES of SD7003 airfoil : comparison to literature (Uranga 2009 [UPDP09])

Towards real-life applications ILES of SD7003 airfoil : comparison to literature (Uranga 2009 [UPDP09])

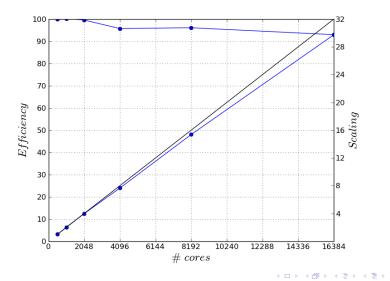


Towards real-life applications ILES of SD7003 airfoil : comparison to literature

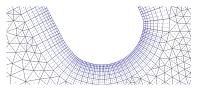
	DNS/DGM	ILES/DGM	Uranga [UPDP09]	Visbal [GV08]
$\overline{C_L}$	0.196	0.201	0.22	-
$\overline{C_D}$	0.602	0.607	0.603	-
Separation	0.209	0.207	0.21	0.23
Reattachment	0.654	0.647	0.65	0.67
Cost to compute one t_c [CPUh]	11001	415	-	-

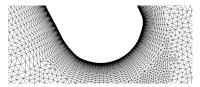
通 と く ヨ と く ヨ と

Towards real-life applications


PRACE industrial pilot project noFUDGE

- 2mio core hours on BlueGene/P
- code optimisation and weak scaling up to 16384 cores
- DNS of a LP turbine blade, Re = 85.000, M = 0.6 (engine conditions)
- DGM(3), Newton-GMRES-Jacobi, 3Pt BDF
- comparison to previous LES computations using FVM

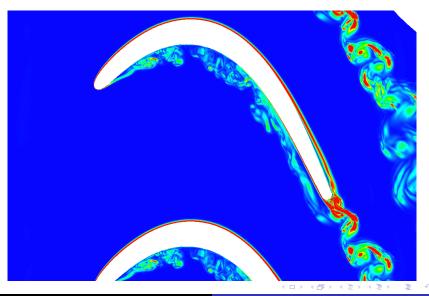

K.Hillewaert & C. Carton de Wiart


Discontinuous Galerkin Methods

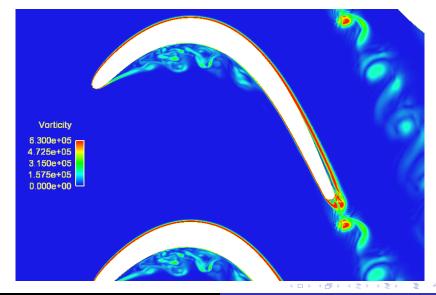
Towards real-life applications LP turbine blade : weak scaling

Towards real-life applications LP turbine blade : computational cost

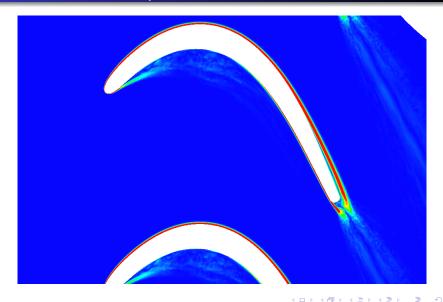
	FVM		DGM		
	$x^{+} = z^{+}$	y ⁺	x ⁺	<i>z</i> ⁺	y ⁺
Leading edge	35	0.5	15	30	3
Pressure side	5	0.1	3	3	0.3
Suction side	50	0.3	15	15	1.5
Trailing edge edge	10	0.3	2	10	1

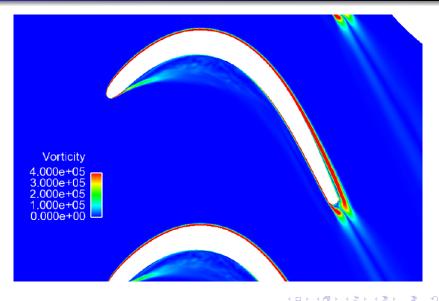

	FVM	DGM
Computer	Intel Cluster	BlueGene/P
Order of accuracy	2	4
Mesh (M nodes)	8.5	15
CPU time for one t_c (kCPUh)	11	112
Memory per core (MB)	700	500
Number of CPU	256	4096
CPU time / mesh size	0.0013	0.0019
Memory / mesh size	0.02	0.036

 $\label{eq:NB} NB: BG/P \ 3-4 \ times \ slower \ than \ intel \ cluster \ \rightarrow \ DGM \ is \ about \ 2 \ times \ more \ expensive \ but \ for \ far higher \ (almost \ DNS) \ accuracy \ (almost \ DNS) \ (almos$


K.Hillewaert & C. Carton de Wiart Discontinuous Galerkin Methods

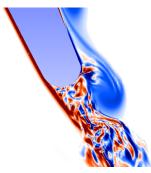
Towards real-life applications LP turbine blade : vorticity snapshot




Towards real-life applications LP turbine blade : vorticity snapshot

Towards real-life applications LP turbine blade : mean vorticity DGM

Towards real-life applications LP turbine blade : mean vorticity FVM



Towards real-life applications LP turbine blade : comparison of loss distribution

Normalized Pitch

Towards real-life applications LP turbine blade : further improving the results

- resolution at trailing edge → need for p-adaptation
- no inlet turbulence
- acoustic perturbations (periodicity, inlet and outlet) → absorbing boundary conditions for vortices and pressure waves
- Ioss computed based on averaged entropy
- statistical convergence reached (very different time-scales)

< 同 > < 三 > < 三 >

Outline

- Modeling approaches
- Towards industrial LES

2 Validatio

- DNS Taylor-Green
- Homogeneous isotropic turbulence
- LES of Homogeneous isotropic turbulence
- ILES of channel flow $Re_{\tau} = 395$

Towards real-life applications
 ILES of SD7003 airfoil

LP turbine blade

Concluding remarks

References

< 回 > < 三 > < 三 >

Concluding remarks

Main conclusion : DGM is a good candidate for industrial resolved turbulence

- high order obtained
- implicit way of checking for resolution
- ILES would remove need for model tuning
- efficient use of large scale HPC resources

通 と く ヨ と く ヨ と

Concluding remarks

Main conclusion : DGM is a good candidate for industrial resolved turbulence

- high order obtained
- implicit way of checking for resolution
- ILES would remove need for model tuning
- efficient use of large scale HPC resources

A lot of work should still be done on the solver side

- further assessment of LES approaches channel Re_τ = 590, 1000, 2000
- absorbing boundaries and synthetic turbulence
- development of hp-adaptive strategy
- shock capturing and interaction with LES modeling
- multigrid algorithms
- rotor-stator interaction
- speeding up transients

(*) *) *) *)

Concluding remarks

Main conclusion : DGM is a good candidate for industrial resolved turbulence

- high order obtained
- implicit way of checking for resolution
- ILES would remove need for model tuning
- efficient use of large scale HPC resources

A lot of work should still be done on the solver side

- further assessment of LES approaches channel Re_{τ} = 590, 1000, 2000
- absorbing boundaries and synthetic turbulence
- development of hp-adaptive strategy
- shock capturing and interaction with LES modeling
- multigrid algorithms
- rotor-stator interaction
- speeding up transients
- \ldots but also on the peripheral technology \rightarrow Gmsh
 - creation of the curvilinear mesh (splines on pyramids anyone?)
 - visualisation of large high-order data sets

通 と く ヨ と く ヨ と

Acknowledgements

Contributors and colleagues

- Philippe Geuzaine
- Corentin Carton de Wiart turbulence
- François Pochet free surface flows and viscoplasticity
- Bastien Gorissen mesh generation
- Guillaume Verheylewegen (UCL) shock capturing
- Marcus Drosson (ULg/Umicore) RANS models
- Pierre Schrooyen (UCL) interaction turbulence and ablation

Collaborators

- Jean-Franois Remacle (UCL) Gmsh and DGM
- Grgoire Winckelmancs (UCL) fundamental turbulence
- Laurent Bricteux (UMons) fundamental turbulence
- Christophe Geuzaine (ULg) Gmsh

Computational grants

- DEISA DECI project CoBaULD transition on E387 airfoil
- PRACE industrial pilot noFUDGE LP turbine

Funding projects

- ERDF funding (contract N° EP1A122030000102)
- ESF structural funding
- FP6 research project ADIGMA
- FP7 project IDIHOM

A B M A B M

Outline

- Modeling approaches
- Towards industrial LES

2 Validatio

- DNS Taylor-Green
- Homogeneous isotropic turbulence
- LES of Homogeneous isotropic turbulence
- ILES of channel flow $Re_{\tau} = 395$

Towards real-life applications
 ILES of SD7003 airfoil

LP turbine blade

Concluding remarks

5 References

< 回 > < 三 > < 三 >

References I

R. Cocle, L. Bricteux, and G. Winckelmans.

Scale dependence and asymptotic very high reynolds number spectral behavior of multiscale subgrid models.

Physics of Fluids, 2009.

C. Carton de Wiart and K. Hillewaert.

DNS and ILES of transitional flows around a SD7003 airfoil using a high order discontinuous Galerkin method (paper ICCFD7-2012-3604).

In Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Hawai, USA, 2012.

C. Carton De Wiart, K. Hillewaert, and P. Geuzaine.

DNS of a low pressure turbine blade computed with the discontinuous Galerkin method (ASME GT2012-68900).

In Proceedings of the ASME Turbo Expo 2012 Turbine Technical Conference and Exposition, Copenhagen, Denmark, 2012.

C. Carton de Wiart, K. Hillewaert, P. Geuzaine, R. Luccioni, L. Bricteux, G. Coussement, and G. Winckelmans.

Assessment of LES modeling within a high order discontinuous galerkin solver.

In 9th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM9), Thessaloniki, Greece, June 6-8 2012.

M. Galbraith and M. Visbal.

Implicit large-eddy simulation of low reynolds number flow past the SD7003 airfoil. In Forty-sixth AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2008.

< 同 > < 三 > < 三 >

References II

R.D. Moser, J. Kim, and Mansour. N.N.

Direct numerical simulation of turbulent channel flow up to Re_{τ} = 590. *Physics of Fluids*, 1999.

P. Tucker.

Computation of unsteady turbomachinery flows : Part 1 - progress and challenges. *Progress in Aerospace Sciences*, 47 :522–545, 2011.

P. Tucker.

Computation of unsteady turbomachinery flows : Part 2 - LES and hybrids. *Progress in Aerospace Sciences*, 47 :546–569, 2011.

A. Uranga, P.-O. Persson, M. Drela, and J. Peraire.

Implicit Large Eddy Simulation of Transitional Flows over Airfoils and Wings. In *Proceedings of the 19th AIAA Computational Fluid Dynamics*, number AIAA 2009-4131, San Antonio, Texas, June 2009.

A B M A B M

< 17 ▶