Skew-Symmetric Schemes for compressible and incompressible flows

Julius Reiss

Fachgebiet für Numerische Fluiddynamik TU Berlin

CEMRACS

Use Finite Difference or use Finite Volume?

イロト イヨト イヨト イヨト 二日

Use Finite Difference or use Finite Volume? \rightarrow skew symmetric, conservative FD

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

・ロト ・ 四ト ・ ヨト ・ ヨト

Overview

Burgers equation

- 2 Euler/Navier-Stokes Equations
 - 3 Time discretization
 - 4 Arbitrarily Transformed Grids
- 5 Fluxes & Boundary conditions
- 6 Incompressible flows

ъ

The concept

$$\partial_t u + \partial_x f(u) = 0$$

Discretised:

$$\partial_t u + D^u u = 0$$

• $\partial_t \int u \, \mathrm{d}x$

 $\mathbf{1}^T D^u = \mathbf{0}$ telescoping sum

• $\partial_t \int u^2 \, \mathrm{d}x$

 $(D^u)^T = -D^u$ skew symmetry

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

The concept

$$\partial_t u + \partial_x f(u) = 0$$

Discretised:

 $\partial_t u + D^u u = 0$

• $\partial_t \int u \, \mathrm{d}x$

 $\mathbf{1}^T D^u = \mathbf{0}$ telescoping sum \longrightarrow Momentum Conservation

• $\partial_t \int u^2 \, \mathrm{d}x$

 $(D^u)^T = -D^u$ skew symmetry \longrightarrow Kin. Energy Conservation

Literature: Skew Symmetry

- Feiereisen W.C.Reynolds J.H. Ferziger, Numerical simulation of a compressible homogeneous, turbulent shear flow, NASA-CR-164953; SU-TF-13
- E. Tadmor, *Skew-Selfadjoint Form for Systems of Conservation Laws*, J. Math. Ana. Appl. 103, p428, (1984)
- Y. Morinishi and T. S. Lund and O. V. Vasilyev and P. Moin, *Fully conservative higher order finite difference schemes for incompressible flow* JCP 143, p 90, (1998)
- R. W. C. P. Verstappen, A. E. P. Veldman. *Symmetry-preserving discretization of turbulent flow.* JCP 187, p343 , (2003)
- J.C. Kok, A high-order low-dispersion symmetry-preserving finite-volume method... JCP 228, p 6811, (2009)
- Y. Morinishi, *Skew-symmetric form of convective terms...*, JCP 229, p276 (2010)
- S. Pirozzoli, *Generalized conservative approximations of split convective derivative operators*, p7180 JCP 229, (2010)

Simple example: Burgers' equation

divergence and convection form

$$\partial_t u + \partial_x \left(\frac{u^2}{2} \right) = 0$$
 (D)
 $\partial_t u + u \partial_x u = 0$ (C)

by $(2 \cdot [D] + [C])/3$:

skew-symmetric form

$$\partial_t u + \frac{1}{3} [\partial_x u \cdot + u \partial_x \cdot] u = 0$$
 (S)

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

August 8th, 2012 6 / 46

Burgers' in skew-symmetric form

$$\partial_t u + \frac{1}{3} [\partial_x u \cdot + u \partial_x \cdot] u = 0$$

$$\partial_t \mathbf{u} + D^u \mathbf{u} = \mathbf{0}$$

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

August 8th, 2012 7 / 46

Kinetic Energy Conservation

 $\frac{1}{2}\mathbf{u}^T\mathbf{u} = \frac{1}{2}\sum_i u_i^2$

$$\partial_t \mathbf{u}^T \mathbf{u} = (\partial_t \mathbf{u})^T \mathbf{u} + \mathbf{u}^T \partial_t \mathbf{u}$$

= $-(D^u \mathbf{u})^T \mathbf{u} - \mathbf{u}^T D^u \mathbf{u}$
= $-\mathbf{u}^T [(D^u)^T + D^u] \mathbf{u}$

э

Kinetic Energy Conservation

 $\frac{1}{2}\mathbf{u}^T\mathbf{u} = \frac{1}{2}\sum_i u_i^2$

$$\partial_t \mathbf{u}^T \mathbf{u} = (\partial_t \mathbf{u})^T \mathbf{u} + \mathbf{u}^T \partial_t \mathbf{u}$$

= $-(D^u \mathbf{u})^T \mathbf{u} - \mathbf{u}^T D^u \mathbf{u}$
= $-\mathbf{u}^T [(D^u)^T + D^u] \mathbf{u}$

Symmetry of transport term D^u

$$(D^{u})^{T} = \frac{1}{3}(DU + UD)^{T} = \frac{1}{3}(U^{T}D^{T} + D^{T}U^{T}) = -D^{u}$$

 $U = \operatorname{diag}(u) = U^{T}, \quad D^{T} = -D$

Kinetic Energy Conservation

 $\frac{1}{2}\mathbf{u}^T\mathbf{u} = \frac{1}{2}\sum_i u_i^2$

$$\partial_t \mathbf{u}^T \mathbf{u} = (\partial_t \mathbf{u})^T \mathbf{u} + \mathbf{u}^T \partial_t \mathbf{u}$$

= $-(D^u \mathbf{u})^T \mathbf{u} - \mathbf{u}^T D^u \mathbf{u}$
= $-\mathbf{u}^T [(\underline{D^u})^T + \underline{D^u}] \mathbf{u} = 0$
= 0

Symmetry of transport term D^u

$$(D^{u})^{T} = \frac{1}{3}(DU + UD)^{T} = \frac{1}{3}(U^{T}D^{T} + D^{T}U^{T}) = -D^{u}$$

Skew symmetry implies conservation of Ekin

< ロ > < 同 > < 回 > < 回 >

Momentum Conservation

 $\mathbf{1}^T \mathbf{u} = \sum_i \mathbf{1} \cdot u_i$

$$\partial_t \mathbf{1}^T \mathbf{u} = \mathbf{1}^T \partial_t \mathbf{u}$$

= $-\mathbf{1}^T D^u \mathbf{u}$

Telescoping

$$\mathbf{1}^{T}D^{u}\mathbf{u} = \frac{1}{3}(\underbrace{\mathbf{1}^{T}D}_{=0}U + \mathbf{1}^{T}UD)\mathbf{u} = \frac{1}{3}\underbrace{\mathbf{u}^{T}D\mathbf{u}}_{=0} = 0$$

with $D^T = -D$

Momentum Conservation

 $\mathbf{1}^T \mathbf{u} = \sum_i \mathbf{1} \cdot u_i$

$$\partial_t \mathbf{1}^T \mathbf{u} = \mathbf{1}^T \partial_t \mathbf{u}$$

= $-\underbrace{\mathbf{1}^T D^u \mathbf{u}}_{=0} = 0$

Telescoping

$$\mathbf{1}^{T}D^{u}\mathbf{u} = \frac{1}{3}(\underbrace{\mathbf{1}^{T}D}_{=0}U + \mathbf{1}^{T}UD)\mathbf{u} = \frac{1}{3}\underbrace{\mathbf{u}^{T}D\mathbf{u}}_{=0} = 0$$

Telescoping sum property implies conservation of momentum

Time Integration Implicit midpoint rule¹

Fully discrete

with

$$\frac{u^{n+1} - u^n}{\Delta t} + \frac{1}{3}D^{u^{n+1/2}}u^{n+1/2} = 0$$
$$u^{n+1/2} = \frac{1}{2}(u^n + u^{n+1})$$

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

Time Integration Implicit midpoint rule¹

Fully discrete

with u^{n+1}

$$\frac{u^{n+1}-u^n}{\Delta t} + \frac{1}{3}D^{u^{n+1/2}}u^{n+1/2} = 0$$

$$u^{n+1/2} = \frac{1}{2}(u^n + u^{n+1})$$

Multiplying by $(u^{n+1/2})^T$ $(u^{n+1/2})^T(u^{n+1}-u^n) + \frac{1}{3}(u^{n+1/2})^T D^{u^{n+1/2}}u^{n+1/2}$

$$= \frac{1}{2}(u^{n} + u^{n+1})^{T}(u^{n+1} - u^{n})$$
$$= \frac{(u^{n+1})^{2}}{2} - \frac{(u^{n})^{2}}{2} = 0$$

¹Verstappen, Veldman, J. Com. Phys 187, p. 343 (2003)

J. Reiss (TU Berlin)

Numerical example: Burgers' Equation

 $\otimes \otimes$

J. Reiss (TU Berlin)

August 8th, 2012 11 / 46

э

< (⊐) >

Overview

Burgers equation

2 Euler/Navier-Stokes Equations

- 3 Time discretization
- 4 Arbitrarily Transformed Grids
- 5 Fluxes & Boundary conditions
- 6 Incompressible flows

The Sec. 74

< 🗇 🕨

Euler Momentum Equation

divergence and convection form

$$\partial_t(\varrho u) + \partial_x(\varrho u^2) + \partial_x p = 0 \quad (D) \varrho \partial_t(u) + \varrho u \partial_x(u) + \partial_x p = 0 \quad (C)$$

by ([D]+[C])/2

Skew symmetric form

$$\frac{1}{2} \left(\partial_t \varrho \cdot + \varrho \partial_t \cdot \right) u + \frac{1}{2} \left(\partial_x u \varrho \cdot + \varrho u \partial_x \cdot \right) u + \partial_x p = 0 \quad (S)$$

э

Skew Symmetric discretisation Euler Equations

$$\partial_t \varrho + \partial_x (u \varrho) = 0$$

$$\frac{1}{2} (\partial_t \varrho \cdot + \varrho \partial_t \cdot) u + \frac{1}{2} (\partial_x u \varrho \cdot + \varrho u \partial_x \cdot) u + \partial_x p = 0$$

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Skew Symmetric discretisation Euler Equations

$$\partial_{t}\varrho + \partial_{x}(u\varrho) = 0$$

$$\frac{1}{2}(\partial_{t}\varrho + \varrho\partial_{t})u + \frac{1}{2}(\partial_{x}u\varrho + \varrhou\partial_{x})u + \partial_{x}p = 0$$

$$\partial_{t}\left(\frac{p}{\gamma-1}\right) + \partial_{x}\left(u\left(\frac{p}{\gamma-1}+p\right)\right) + \frac{1}{2}\left(\frac{\rho}{\gamma-1}+\rho\right) + \frac{1}{2}\left(\frac{\rho}{\gamma-1}+\rho\right) = 0$$

2

Skew symmetric Euler Equations

$$\partial_{t}\varrho + \partial_{x}(u\varrho) = 0$$

$$\frac{1}{2} (\partial_{t}\varrho + \varrho\partial_{t}) u + \frac{1}{2} (\partial_{x}u\varrho + \varrhou\partial_{x}) u + \partial_{x}p = 0$$

$$\frac{1}{\gamma - 1} \partial_{t}p + \frac{\gamma}{\gamma - 1} \partial_{x}(up) - u\partial_{x}p = 0$$

э

Skew symmetric Euler Equations

$$\partial_{t}\varrho + \partial_{x}(u\varrho) = 0$$

$$\frac{1}{2} (\partial_{t}\varrho + \varrho\partial_{t}) u + \frac{1}{2} (\partial_{x}u\varrho + \varrhou\partial_{x}) u + \partial_{x}p = 0$$

$$\frac{1}{\gamma - 1} \partial_{t}p + \frac{\gamma}{\gamma - 1} \partial_{x}(up) - u\partial_{x}p = 0$$

Discretised

$$\partial_t \varrho + (DU)\varrho = 0$$

$$\frac{1}{2}(\partial_t \varrho + \varrho \partial_t)u + \frac{1}{2}(DUR + RUD)u + Dp = 0$$

$$\frac{1}{\gamma - 1}\partial_t p + \frac{\gamma}{\gamma - 1}(DU)p - (UD)p = 0$$

with U = diag(u), $R = diag(\varrho)$, Derivative $D = -D^{T}$

Skew symmetric Navier–Stokes Equations

$$\partial_{t}\varrho + \partial_{x}(u\varrho) = 0$$

$$\frac{1}{2} (\partial_{t}\varrho + \varrho\partial_{t}) u + \frac{1}{2} (\partial_{x}u\varrho + \varrhou\partial_{x}) u + \partial_{x}p = \partial_{x}\tau$$

$$\frac{1}{\gamma - 1} \partial_{t}p + \frac{\gamma}{\gamma - 1} \partial_{x}(up) - u\partial_{x}p = -u\partial_{x}\tau + \partial_{x}\tau$$

Discretised

$$\partial_{t}\varrho + (DU)\varrho = 0$$

$$\frac{1}{2}(\partial_{t}\varrho + \varrho\partial_{t})u + \frac{1}{2}(DUR + RUD)u + Dp = D\tau$$

$$\frac{1}{\gamma - 1}\partial_{t}p + \frac{\gamma}{\gamma - 1}(DU)p - (UD)p = -UD\tau + D\tau u$$

with $U = diag(u), R = diag(\varrho)$, Derivative $D = -D^T, \tau = \mu \partial_x u$

Conservation, time continuous

$$\partial_t \varrho + DU \varrho = 0$$

$$\frac{1}{2} (\partial_t \varrho + \varrho \partial_t) u + \frac{1}{2} \underbrace{(DUR + RUD)}_{D^{\mathbf{u}\varrho}} u + Dp = 0$$

$$\frac{1}{\gamma - 1} \partial_t p + \frac{\gamma}{\gamma - 1} DUp - UDp = 0$$

$$\mathbf{1}^{T}(mass) = \mathbf{0} \quad \rightarrow$$

$$1^{T}(mom) + u^{T}(mass)/2 = 0 \rightarrow$$

$$\mathbf{1}^{T}(innerE) + u^{T}(mom) = 0 \rightarrow 0$$

2

イロト イヨト イヨト イヨト

Conservation, time continuous

$$\partial_{t}\varrho + DU\varrho = 0$$

$$\frac{1}{2}(\partial_{t}\varrho + \varrho\partial_{t})u + \frac{1}{2}\underbrace{(DUR + RUD)}_{D^{u}\varrho}u + Dp = 0$$

$$\frac{1}{\gamma - 1}\partial_{t}p + \frac{\gamma}{\gamma - 1}DUp - UDp = 0$$

$$\begin{array}{rl} \mathbf{1}^{T}(\textit{mass}) = \mathbf{0} & \rightarrow \\ \mathbf{1}^{T}(\textit{mom}) + u^{T}(\textit{mass})/2 = \mathbf{0} & \rightarrow \\ \mathbf{1}^{T}(\textit{innerE}) + u^{T}(\textit{mom}) = \mathbf{0} & \rightarrow \end{array}$$

→ mass Conservation
 → Momentum Conservation

Energy Conservation

$$\frac{1}{\gamma - 1} \partial_t \mathbf{1}^T p + \frac{1}{2} u^T (\partial_t \varrho + \varrho \partial_t) u = \partial_t \left(\frac{1}{\gamma - 1} \mathbf{1}^T p + u^T (\varrho u) / 2 \right)$$
$$+ \frac{\gamma}{\gamma - 1} \mathbf{1}^T D U p + \frac{1}{2} u^T D^{\mathbf{u} \varrho} u = 0$$

э

・ロト ・四ト ・ヨト ・ヨト

Numerical example 1D

Time Integration: Leapfrog-like

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

$$\frac{1}{2} \left(\partial_t \varrho \cdot + \varrho \partial_t \cdot \right) u + \frac{1}{2} \left(\partial_x u \varrho \cdot + \varrho u \partial_x \cdot \right) u + \partial_x \rho = 0$$

One Step methods:

- Morinishi's rewriting $\frac{1}{2} (\partial_t \rho \cdot + \rho \partial_t \cdot) u = \sqrt{\rho} \partial_t \sqrt{\rho} u$
- use adopted midpoint rule
- \longrightarrow similar to Morinishi , Subbareddy et. al., JCP 2009
- generalises to higher order

3

Image: A mathematical states in the second states in the second

$$\frac{1}{2} \left(\partial_t \varrho \cdot + \varrho \partial_t \cdot \right) u + \frac{1}{2} \left(\partial_x u \varrho \cdot + \varrho u \partial_x \cdot \right) u + \partial_x \rho = 0$$

One Step methods:

- Morinishi's rewriting $\frac{1}{2} (\partial_t \rho \cdot + \rho \partial_t \cdot) u = \sqrt{\rho} \partial_t \sqrt{\rho} u$
- use adopted midpoint rule
- \longrightarrow similar to Morinishi , Subbareddy et. al., JCP 2009
- generalises to higher order

$$\sqrt{\rho}\partial_t\left(\sqrt{\rho}u\right) + \frac{1}{2}D^{\mathbf{u}\rho}u + D_x\rho = 0$$

J. Reiss (TU Berlin)

<ロ> <四> <四> <四> <四> <四</p>

$$\sqrt{\rho}\partial_t\sqrt{\rho} + \frac{1}{2}B^{\mathbf{u}}\rho = 0$$
$$\sqrt{\rho}\partial_t(\sqrt{\rho}u) + \frac{1}{2}D^{\mathbf{u}\rho}u + D_xp = 0$$
$$\frac{1}{\gamma - 1}\partial_tp + \frac{\gamma}{\gamma - 1}B^{\mathbf{u}}p - C^{\mathbf{u}}p = 0$$

$$\sqrt{\rho}^{n+1/2} \frac{\left(\sqrt{\rho}^{n+1} - \sqrt{\rho}^{n}\right)}{\Delta t} + \frac{1}{2} B^{\mathbf{u}^{n+a}} \rho^{n+b} = 0$$
$$\sqrt{\rho}^{n+1/2} \frac{\left(\sqrt{\rho}u\right)^{n+1} - \left(\sqrt{\rho}u\right)^{n}}{\Delta t} + \frac{1}{2} D^{\mathbf{u}^{n+a}\rho^{n+b}} u^{n+1/2} + D_x p^{n+c} = 0$$
$$\sqrt{\rho}^{n+1/2} = \frac{1}{2} \left(\sqrt{\rho}^n + \sqrt{\rho}^{n+1}\right)$$

August 8th, 2012 20 / 46

2

590

ヘロン 人間 とくほ とくほ とう

$$\sqrt{\rho}\partial_t\sqrt{\rho} + \frac{1}{2}B^{\mathbf{u}}\rho = 0$$
$$\sqrt{\rho}\partial_t(\sqrt{\rho}u) + \frac{1}{2}D^{\mathbf{u}\rho}u + D_xp = 0$$
$$\frac{1}{\gamma - 1}\partial_tp + \frac{\gamma}{\gamma - 1}B^{\mathbf{u}}p - C^{\mathbf{u}}p = 0$$

$$\sqrt{\rho}^{n+1/2} \frac{\left(\sqrt{\rho}^{n+1} - \sqrt{\rho}^n\right)}{\Delta t} + \frac{1}{2} B^{\mathbf{u}^{n+a}} \rho^{n+b} = 0$$

$$\sqrt{\rho}^{n+1/2} \frac{\left(\sqrt{\rho}u\right)^{n+1} - \left(\sqrt{\rho}u\right)^n}{\Delta t} + \frac{1}{2} D^{\mathbf{u}^{n+a}\rho^{n+b}} u^{n+1/2} + D_x \rho^{n+c} = 0$$

$$\sqrt{\rho}^{n+1/2} = \frac{1}{2} \left(\sqrt{\rho}^n + \sqrt{\rho}^{n+1}\right) \qquad u^{n+1/2} = \frac{1}{2} \frac{\left(\sqrt{\rho}u\right)^{n+1} + \left(\sqrt{\rho}u\right)^n}{\sqrt{\rho}^{n+1/2}}$$

Higher Order

$$\sqrt{\rho}\partial_t\sqrt{\rho} + \frac{1}{2}B^{\mathbf{u}}\rho = 0$$
$$\sqrt{\rho}\partial_t(\sqrt{\rho}u) + \frac{1}{2}D^{\mathbf{u}\rho}u + D_xp = 0$$
$$\frac{1}{\gamma - 1}\partial_tp + \frac{\gamma}{\gamma - 1}B^{\mathbf{u}}p - C^{\mathbf{u}}p = 0$$

- Implicit Midpoint rule is Gauss-collocation method
- All Gauss-collocation methods preserve skew-symme. & cons.[†]

†Brouwer, Reiss, in prep.

E 5 4 E

Overview

Burgers equation

- 2 Euler/Navier-Stokes Equations
- 3 Time discretization
- 4 Arbitrarily Transformed Grids
- 5 Fluxes & Boundary conditions
- 6 Incompressible flows

The Sec. 74

< 🗇 🕨

Euler Equations, more dimensions Skew–symmetric momentum equation

$$\sqrt{\rho}\partial_t \left(\sqrt{\rho}u_\alpha\right) + \frac{1}{2} \left[\partial_{x_\beta}\rho u_\beta \cdot + \rho u_\beta \partial_{x_\beta} \cdot \right] u_\alpha + \partial_{x_\alpha} \rho = 0.$$

Main problem: Keep skew symmetric structure on distorted grids.^a

Local base $\mathbf{e}_{\alpha} = \partial_{\xi^{\alpha}} \mathbf{r}, \, \mathbf{r} = \mathbf{r}(\xi, \eta, \zeta) = (x, y, z)^{T}$

^aVeldman, Rinzema, Playing with nonuniform grids, J. Engin. and Math.26, p 119, (1992), VV2003

Euler Equations, more dimensions Skew–symmetric momentum equation

$$\sqrt{\rho}\partial_t\left(\sqrt{\rho}u_\alpha\right) + \frac{1}{2}\left[\partial_{x_\beta}\rho u_\beta \cdot + \rho u_\beta \partial_{x_\beta} \cdot\right] u_\alpha + \partial_{x_\alpha}\rho = 0.$$

Main problem: Keep skew symmetric structure on distorted grids.

Local base
$$\mathbf{e}_{\alpha} = \partial_{\xi^{\alpha}} \mathbf{r}, \, \mathbf{r} = \mathbf{r}(\xi, \eta, \zeta) = (x, y, z)^T$$

Use divergence as

$$\frac{\partial u_{\beta}}{\partial x_{\beta}} = \frac{1}{J} \sum_{\alpha, cy} \partial_{\xi^{\alpha}} (\mathbf{e}_{\beta} \times \mathbf{e}_{\gamma}) \mathbf{u}$$

$$= \frac{1}{J} \sum_{\alpha, cy} (\mathbf{e}_{\beta} \times \mathbf{e}_{\gamma}) \partial_{\xi^{\alpha}} \mathbf{u}.$$

A

Euler Equations, more dimensions Skew–symmetric momentum equation

$$\sqrt{\rho}\partial_t\left(\sqrt{\rho}u_\alpha\right) + \frac{1}{2}\left[\partial_{x_\beta}\rho u_\beta \cdot + \rho u_\beta \partial_{x_\beta} \cdot\right] u_\alpha + \partial_{x_\alpha}\rho = 0.$$

Main problem: Keep skew symmetric structure on distorted grids.

Local base
$$\mathbf{e}_{\alpha} = \partial_{\xi^{\alpha}} \mathbf{r}, \, \mathbf{r} = \mathbf{r}(\xi, \eta, \zeta) = (x, y, z)^T$$

Use divergence as
Euler Equations in 2D

Semidiscrete

$$J\partial_t \rho + B^u \rho = 0$$

$$J\sqrt{\rho}\partial_t (\sqrt{\rho}u) + \frac{1}{2} D^{\mathbf{u}\rho} u + D_x p = 0$$

$$J\sqrt{\rho}\partial_t (\sqrt{\rho}v) + \frac{1}{2} D^{\mathbf{u}\rho} v + D_y p = 0$$

$$J\frac{1}{\gamma - 1} \partial_t p + \frac{\gamma}{\gamma - 1} B^u p - C^u p = 0$$

with

and D_x

$$B^{\mathbf{u}} = D_{\xi}\tilde{U} + D_{\eta}\tilde{V}$$

$$D^{\mathbf{u}\rho} = (D_{\xi}\tilde{U}R + R\tilde{U}D_{\xi}) + (D_{\eta}\tilde{V}R + R\tilde{V}D_{\eta})$$

$$C^{\mathbf{u}} = UD_{x} + VD_{y}$$
where $\tilde{U} = (UY_{\eta} - VX_{\eta})$ and $\tilde{V} = (VX_{\xi} - UY_{\xi})$
and $D_{x} = D_{\xi}Y_{\eta} - D_{\eta}Y_{\xi}, D_{y} = \dots$

J. Reiss (TU Berlin)

æ

Overview

Burgers equation

- 2 Euler/Navier-Stokes Equations
- 3 Time discretization
- 4 Arbitrarily Transformed Grids
- 5 Fluxes & Boundary conditions
 - Incompressible flows

The Sec. 74

< A >

Boundary conditions

Flux vs. Value, 1D mass equation

$$\partial_t \rho + D_x u \rho = 0 \qquad \longrightarrow \qquad \partial_t \mathbf{1}^T \rho + \underbrace{\mathbf{1}^T D_x}_{b^T} u \rho = 0$$

mass flux over boundaries:

$$b^{T}u\rho = -\left((\rho u)_{1}\frac{3}{2} - (\rho u)_{2}\frac{1}{2}\right) + \left((\rho u)_{N}\frac{3}{2} - (\rho u)_{N-1}\frac{1}{2}\right) = -f_{0} + f_{N}$$

Flux no-zero even for $u_1 = 0$

Boundary conditions

Would like $u_1 = 0 \Leftrightarrow f_0 = 0$

$$Wu' = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & & & \\ -\frac{1}{2} & 0 & \frac{1}{2} & & \\ & -\frac{1}{2} & 0 & \frac{1}{2} & & \\ & & \ddots & \ddots & \ddots & \\ & & & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} u.$$
$$\longrightarrow b^{T} = (-1, 0, \dots, 0, 1).$$

weigh- matrix W (norm)

э

Boundary conditions

Would like $u_1 = 0 \Leftrightarrow f_0 = 0$

$$Wu' = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & & & \\ -\frac{1}{2} & 0 & \frac{1}{2} & & \\ & -\frac{1}{2} & 0 & \frac{1}{2} & & \\ & & \ddots & \ddots & \ddots & \\ & & & -\frac{1}{2} & \frac{1}{2} & \end{pmatrix} u.$$
$$\longrightarrow b^{T} = (-1, 0, \dots, 0, 1).$$

weigh- matrix W (norm)

$$W_{ij}=diag(rac{1}{2},1,1,\ldots,1,rac{1}{2})$$

Summation By Parts (SBP)-Property

J. Reiss (TU Berlin)

< ロ > < 同 > < 回 > < 回 >

Boundary conditions: SBP

For SBP derivatives there is a norm, such that²

- Telescoping sum is broken at boundary
- Skew Symmetry only broken at D_{1,1} and D_{N,N}

Boundary flux of our scheme depends entirely

- on boundary values,
- addition flux to enforce BC

Enforcing BC e.g. in Carpenter³ give global energy estimates. (Work in progress...)

²Strand, JCP 110, p47, 1994 ³Carpenter et al, JCP 108, p272, 1993

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

J. Reiss (TU Berlin)

August 8th, 2012 29 / 46

(3)

Without SBP

J. Reiss (TU Berlin)

August 8th, 2012 30 / 46

With SBP

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

August 8th, 2012 31 / 46

Conservation with boundary

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

August 8th, 2012

32 / 46

First Conclusions

- Skew symmetry leads to kinetic energy conservation
- ... with telescoping sum property full conservation
- strict skew symmetry & perfect conservation on transformed grids
- Procedure easy to implement & numerically efficient
- Derivatives of any order in space
- Time stepping of any order

E N 4 E N

First Conclusions

- Skew symmetry leads to kinetic energy conservation
- ... with telescoping sum property full conservation
- strict skew symmetry & perfect conservation on transformed grids
- Procedure easy to implement & numerically efficient
- Derivatives of any order in space
- Time stepping of any order

Outlook

- Implementation for shock acoustic simulations in progress
- Big DNS of turbulent flows

3

4 3 5 4 3 5 5

Bonus Part

Schemes for the incompressible Navier-Stokes equation

2

Bonus Part

Schemes for the incompressible Navier-Stokes equation

How to avoid odd-even decoupling?

ldea:

- energy and momentum conserving, and **collocated**, by
 - use of skew symmetry
 - &
 - the combination of non-symmetric derivatives
- Grid transformations preserving these properties
 - general in 2D
 - restricted in 3D

3

EX 4 EX

$$\partial_{t}\rho + \partial_{x_{\alpha}}\rho u_{\alpha} = 0$$

$$\sqrt{\rho}\partial_{t} (\sqrt{\rho}u_{\alpha}) + \frac{1}{2} (\partial_{x_{\beta}}\rho u_{\beta} \cdot + \rho u_{\beta}\partial_{x_{\beta}} \cdot) u_{\alpha} + \partial_{x_{\alpha}}p = \partial_{\beta}\tau_{\alpha,\beta}$$

$$\frac{1}{\gamma - 1} \partial_{t}p + \frac{\gamma}{\gamma - 1} \partial_{x_{\beta}}(u_{\beta}p) - u_{\beta}\partial_{x_{\beta}}p = 0$$

$$\partial_t u_{\alpha} + \frac{1}{2} \left(\partial_{x_{\beta}} u_{\beta} \cdot + u_{\beta} \partial_{x_{\beta}} \cdot \right) u_{\alpha} + \partial_{x_{\alpha}} p = \nu \Delta u_{\alpha}$$
$$\partial_{x_{\alpha}} u_{\alpha} = 0 \qquad \alpha, \beta = 1, 2, 3$$

Pressure Poission Equation:

$$\partial_{\mathbf{x}_{\alpha}}\partial_{\mathbf{x}_{\alpha}}\mathbf{p} = \partial_{\mathbf{x}_{\alpha}}\left(-\mathbf{D}^{\mathbf{u}}\mathbf{u}_{\alpha}+\nu\Delta\mathbf{u}_{\alpha}\right)$$

э

$$\partial_{t} u_{\alpha} + \frac{1}{2} \left(\partial_{x_{\beta}} u_{\beta} \cdot + u_{\beta} \partial_{x_{\beta}} \cdot \right) u_{\alpha} + \partial_{x_{\alpha}} p = \nu \Delta u_{\alpha}$$
$$\partial_{x_{\alpha}} u_{\alpha} = 0 \qquad \alpha, \beta = 1, 2, 3$$

Pressure Poission Equation:

$$\partial_{\mathbf{x}_{\alpha}}\partial_{\mathbf{x}_{\alpha}}\mathbf{p} = \partial_{\mathbf{x}_{\alpha}}\left(-\mathbf{D}^{\mathbf{u}}\mathbf{u}_{\alpha}+\nu\Delta\mathbf{u}_{\alpha}\right)$$

э

$$\partial_{t} u_{\alpha} + \frac{1}{2} \left(\partial_{x_{\beta}} u_{\beta} \cdot + u_{\beta} \partial_{x_{\beta}} \cdot \right) u_{\alpha} + \partial_{x_{\alpha}} p = \nu \Delta u_{\alpha}$$
$$\partial_{x_{\alpha}} u_{\alpha} = 0 \qquad \alpha, \beta = 1, 2, 3$$

Pressure Poission Equation:

$$\partial_{\mathbf{x}_{\alpha}}\partial_{\mathbf{x}_{\alpha}}\mathbf{p} = \partial_{\mathbf{x}_{\alpha}}\left(-\mathbf{D}^{\mathbf{u}}\mathbf{u}_{\alpha}+\nu\Delta\mathbf{u}_{\alpha}\right)$$

Discrete

$$\partial_{x_{\alpha}}\partial_{x_{\alpha}}p \sim D_{\alpha}G_{\alpha}p$$

$$\underbrace{(Gp)_{i} \sim (p_{i+1} - p_{i-1})}_{DGp \sim (p_{i+2} - 2p_{i} + p_{i-2})} (Du)_{i} \sim (u_{i+1} - u_{i-1})$$

$$\partial_{t} u_{\alpha} + \frac{1}{2} \left(\partial_{x_{\beta}} u_{\beta} \cdot + u_{\beta} \partial_{x_{\beta}} \cdot \right) u_{\alpha} + \partial_{x_{\alpha}} p = \nu \Delta u_{\alpha}$$
$$\partial_{x_{\alpha}} u_{\alpha} = 0 \qquad \alpha, \beta = 1, 2, 3$$

Pressure Poission Equation:

$$\partial_{\mathbf{x}_{\alpha}}\partial_{\mathbf{x}_{\alpha}}\mathbf{p} = \partial_{\mathbf{x}_{\alpha}}\left(-\mathbf{D}^{\mathbf{u}}\mathbf{u}_{\alpha}+\nu\Delta\mathbf{u}_{\alpha}\right)$$

Discrete

$$\partial_{\mathbf{x}_{\alpha}}\partial_{\mathbf{x}_{\alpha}}\mathbf{p}\sim \mathbf{D}_{\alpha}\mathbf{G}_{\alpha}\mathbf{p}$$

$$(Gp)_i \sim (p_{i+1} - p_{i-1})$$
 & $(Du)_i \sim (u_{i+1} - u_{i-1})$

$$DGp \sim (p_{i+2} - 2p_i + p_{i-2})$$

Odd-even decoupling, nasty to solve!

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

Avoiding decoupling of Δp

- Simple
- Ho extra damping
- Boundary non-simple
- Different geometry factors for *p*, *u*_α

∃ ► < ∃ ►</p>

Avoiding decoupling of Δp

- + Simple
- 🕂 No extra damping
- Boundary non-simple
- Different geometry factors for *p*, *u*_α

- Rhie-Chow: Smaller Damping

Skew Symmetric Schemes

3 > 4 3

Avoiding decoupling of Δp

- + Simple
- Ho extra damping
- Boundary non-simple
- Different geometry factors for *p*, *u*_α

__ ??? __

Skew Symmetric Schemes

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

August 8th, 2012 37 / 46

э

▶ < ∃ >

Discretisation

$$\partial_{x_{\alpha}} u_{\alpha} = 0$$

$$\partial_{t} u_{\alpha} + \frac{1}{2} \left(\partial_{x_{\beta}} u_{\beta} \cdot + u_{\beta} \partial_{x_{\beta}} \cdot \right) u_{\alpha} + \partial_{x_{\alpha}} p = \nu \Delta u_{\alpha}$$

$$D_{\alpha}u_{\alpha} = 0$$

$$\partial_{t}u_{\alpha} + \underbrace{\frac{1}{2}(D_{\beta}U_{\beta} + U_{\beta}G_{\beta})}_{D^{u}}u_{\alpha} + G_{\alpha}p = \nu Lu_{\alpha}$$

Transport term is skew symmetric

$$D^{\mathbf{u}^T} = rac{1}{2} (U_eta D_eta^T + G_eta^T U_eta) \equiv -D^{\mathbf{u}}$$

provided

$$D_eta = -G_eta^T$$

not necessary skew sym.!

イロン イボン イヨン 一日

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

August 8th, 2012 38 / 46

$$D_{\alpha}u_{\alpha} = 0$$

$$\partial_{t}u_{\alpha} + D^{\mathbf{u}}u_{\alpha} + G_{\alpha}p = \nu Lu_{\alpha}$$

$$D_{\alpha}G_{\alpha}\rho = D_{\alpha}\left(-D^{\mathsf{u}}u_{\alpha} + \nu Lu_{\alpha}\right)$$

2

$$D_{\alpha}u_{\alpha} = 0$$

$$\partial_{t}u_{\alpha} + D^{\mathbf{u}}u_{\alpha} + G_{\alpha}p = \nu Lu_{\alpha}$$

$$D_{\alpha}G_{\alpha}\rho = D_{\alpha}\left(-D^{\mathsf{u}}u_{\alpha} + \nu Lu_{\alpha}\right)$$

2

$$D_{\alpha}u_{\alpha} = 0$$

$$\partial_{t}u_{\alpha} + D^{\mathbf{u}}u_{\alpha} + G_{\alpha}p = \nu Lu_{\alpha}$$

$$D_{\alpha}G_{\alpha}\rho = D_{\alpha}\left(-D^{\mathbf{u}}u_{\alpha} + \nu Lu_{\alpha}\right)$$

$$\underbrace{\underline{D}_{\beta} = -G_{\beta}^{T}}_{\rightarrow \text{ Energy cons.!}} = \frac{1}{\Delta h} \begin{pmatrix} \ddots & & \\ -1 & 1 & 0 \\ & & \ddots \end{pmatrix}$$

Not upwind!

2

$$D_{\alpha}u_{\alpha} = 0$$

$$\partial_{t}u_{\alpha} + D^{\mathbf{u}}u_{\alpha} + G_{\alpha}p = \nu Lu_{\alpha}$$

$$\begin{split} D_{\alpha}G_{\alpha}p &= D_{\alpha}\left(-D^{\mathbf{u}}u_{\alpha} + \nu Lu_{\alpha}\right)\\ \underbrace{D_{\beta} = -G_{\beta}^{T}}_{\rightarrow \text{ Energy cons.!}} = \frac{1}{\Delta h} \begin{pmatrix} \ddots & & \\ -1 & 1 & 0 \\ & \ddots \end{pmatrix} \longrightarrow D_{\beta}G_{\beta} = \frac{1}{\Delta h} \begin{pmatrix} \ddots & & \\ 1 & -2 & 1 \\ & & \ddots \end{pmatrix} \\ \text{Not upwind!} \end{split}$$

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

$$D_{\alpha}u_{\alpha} = 0$$

$$\partial_{t}u_{\alpha} + D^{\mathbf{u}}u_{\alpha} + G_{\alpha}p = \nu Lu_{\alpha}$$

$$D_{\alpha}G_{\alpha}p = D_{\alpha}\left(-D^{\mathbf{u}}u_{\alpha} + \nu Lu_{\alpha}\right)$$

$$\underbrace{D_{\beta} = -G_{\beta}^{T}}_{\rightarrow \text{ Energy cons.!}} = \frac{1}{\Delta h} \begin{pmatrix} \ddots & & \\ -1 & 1 & 0 \\ & \ddots \end{pmatrix} \longrightarrow D_{\beta}G_{\beta} = \frac{1}{\Delta h} \begin{pmatrix} \ddots & & \\ 1 & -2 & 1 \\ & \ddots \end{pmatrix}$$
Not upwind!
$$D_{\alpha}\left(\begin{array}{c} \ddots & & \\ & \ddots \end{array}\right)$$

J. Reiss (TU Berlin)

2

イロト イヨト イヨト イヨト

Numerical example

2

Numerical example

August 8th, 2012 40 / 46

<ロ> <四> <四> <三> <三> <三> <三</td>

Numerical example

August 8th, 2012 40 / 46

2

Transformed Grids

$$D_{\alpha}u_{\alpha} = 0$$

$$\partial_{t}u_{\alpha} + \frac{1}{2}(D_{\beta}U_{\beta} + U_{\beta}G_{\beta})u_{\alpha} + G_{\alpha}p = \nu Lu_{\alpha}$$

J. Reiss (TU Berlin)

August 8th, 2012 41 / 46

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

Transformed Grids

$$D_{\alpha}u_{\alpha} = 0$$

$$\partial_{t}u_{\alpha} + \frac{1}{2}(D_{\beta}U_{\beta} + U_{\beta}G_{\beta})u_{\alpha} + G_{\alpha}p = \nu Lu_{\alpha}$$

$$\bar{D}_{\beta}M_{\alpha,\beta}u_{\alpha} = 0$$

$$J\partial_{t}u_{\alpha} + \frac{1}{2}\left(\bar{D}_{\gamma}M_{\beta,\gamma}U_{\beta} + U_{\beta}M_{\beta,\gamma}\bar{G}_{\gamma}\right)u_{\alpha} + M_{\alpha,\gamma}\bar{G}_{\gamma}p = \nu Lu_{\alpha}$$

$$ar{D}_eta = -ar{G}_eta^{ extsf{T}}$$

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

August 8th, 2012 41 / 46

<ロ> <四> <四> <三</td>

Transformed Grids

$$D_{\alpha}u_{\alpha} = 0$$

$$\partial_{t}u_{\alpha} + \frac{1}{2}(D_{\beta}U_{\beta} + U_{\beta}G_{\beta})u_{\alpha} + G_{\alpha}p = \nu Lu_{\alpha}$$

$$\bar{D}_{\beta}M_{\alpha,\beta}u_{\alpha} = 0$$

$$J\partial_{t}u_{\alpha} + \frac{1}{2}\left(\bar{D}_{\gamma}M_{\beta,\gamma}U_{\beta} + U_{\beta}M_{\beta,\gamma}\bar{G}_{\gamma}\right)u_{\alpha} + M_{\alpha,\gamma}\bar{G}_{\gamma}p = \nu Lu_{\alpha}$$

$$ar{D}_eta = -ar{G}_eta^{ extsf{T}}$$

$$\Delta \boldsymbol{\rho} \sim \bar{D}_{\beta} \frac{M_{\alpha,\beta} M_{\alpha,\gamma}}{J} \bar{G}_{\gamma} \boldsymbol{\rho} = \dots$$

J. Reiss (TU Berlin)

August 8th, 2012 41 / 46

Transformed Grids: Conservation?

$$\bar{D}_{\beta}M_{\alpha,\beta}u_{\alpha} = 0$$

$$J\partial_{t}u_{\alpha} + \frac{1}{2}\left(\bar{D}_{\gamma}M_{\beta,\gamma}U_{\beta} + U_{\beta}M_{\beta,\gamma}\bar{G}_{\gamma}\right)u_{\alpha} + \frac{M_{\alpha,\gamma}\bar{G}_{\gamma}p}{\nu} = \nu Lu_{\alpha}$$

$$ar{D}_eta = -ar{G}_eta^T$$

-2

イロト イヨト イヨト イヨト

Transformed Grids: Conservation?

$$D_{\beta}M_{\alpha,\beta}u_{\alpha} = 0$$

$$J\partial_{t}u_{\alpha} + \frac{1}{2}\left(\bar{D}_{\gamma}M_{\beta,\gamma}U_{\beta} + U_{\beta}M_{\beta,\gamma}\bar{G}_{\gamma}\right)u_{\alpha} + \frac{M_{\alpha,\gamma}\bar{G}_{\gamma}p}{\nu} = \nu Lu_{\alpha}$$

$$ar{D}_eta = -ar{G}_eta^{ extsf{T}}$$

Energy conservation
$$u_{\alpha}^{T} M_{\alpha,\gamma} \bar{G}_{\gamma} p$$
$$= p^{T} \bar{G}_{\gamma}^{T} M_{\alpha,\gamma} u_{\alpha}$$
$$= -p^{T} \bar{D}_{\gamma} M_{\alpha,\gamma} u_{\alpha}$$
$$= 0$$

<ロ> <四> <四> <四> <四> <四</p>

Transformed Grids: Conservation?

$$D_{\beta}M_{\alpha,\beta}u_{\alpha} = 0$$

$$J\partial_{t}u_{\alpha} + \frac{1}{2}\left(\bar{D}_{\gamma}M_{\beta,\gamma}U_{\beta} + U_{\beta}M_{\beta,\gamma}\bar{G}_{\gamma}\right)u_{\alpha} + M_{\alpha,\gamma}\bar{G}_{\gamma}p = \nu Lu_{\alpha}$$

$$ar{D}_eta = -ar{G}_eta^{ extsf{T}}$$

Energy conservationMomentum conservation $u_{\alpha}^{T} M_{\alpha,\gamma} \bar{G}_{\gamma} p$ $1^{T} M_{\alpha,\gamma} \bar{G}_{\gamma} p$ $= p^{T} \bar{G}_{\gamma}^{T} M_{\alpha,\gamma} u_{\alpha}$ $= p^{T} \bar{G}_{\gamma}^{T} m_{\alpha,\gamma}$ $= -p^{T} \bar{D}_{\gamma} M_{\alpha,\gamma} u_{\alpha}$ $= -p^{T} \bar{D}_{\gamma} m_{\alpha,\gamma}$ = 0?

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

August 8th, 2012 42 / 46
Transformed Grids: Momentum Conservation

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

August 8th, 2012 43 / 46

э

Image: A matrix and a matrix

Transformed Grids: Momentum Conservation

2D

$$ar{D}_{\gamma}m_{lpha,\gamma}=\left(egin{array}{cc}ar{D}_{\xi}y_{\eta}-ar{D}_{\eta}y_{\xi}\ \ldots\end{array}
ight)=0$$

Provided
$$y_{\xi} = \bar{D}_{\xi} y$$
 $y_{\eta} = \bar{D}_{\eta} y$

2

Transformed Grids: Momentum Conservation

2D

$$ar{D}_{\gamma}m_{lpha,\gamma}=\left(egin{array}{cc} ar{D}_{\xi}y_{\eta}-ar{D}_{\eta}y_{\xi} \ \ldots \end{array}
ight)=0$$

Provided
$$oldsymbol{y}_{\xi}=ar{D}_{\xi}oldsymbol{y}$$
 $oldsymbol{y}_{\eta}=ar{D}_{\eta}oldsymbol{y}$

3D

$$ar{D}_{\gamma}^{T}m_{lpha,\gamma} = \ \left(egin{array}{c} ar{D}_{\zeta}(y_{\eta}z_{\zeta}-y_{\zeta}z_{\eta})+ar{D}_{\eta}(y_{\zeta}z_{\xi}-y_{\xi}z_{\zeta})+ar{D}_{\zeta}(y_{\xi}z_{\eta}-y_{\eta}z_{\xi}) \ & \dots \end{array}
ight) \ \ldots \end{array}
ight)$$

Only zero for restricted transformations:

$$x(\xi,\eta), y(\xi,\eta), z(\zeta)$$

J. Reiss (TU Berlin)

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Second Conclusions

We found

Schemes for the incompressible Navier-Stokes equation, wich are

- collocated, energy and momentum conserving, by
 - use of skew symmetry
 - &
 - the combination of non-symmetric derivatives
- Grid transformations preserving these properties
 - general in 2D
 - restricted in 3D
- Very simple to implement

BA 4 BA

Conclusions

Skew symmetric Schemes are

- Skew symmetric schemes respect kinetic energy
- Avoid numerical damping
- Stable
- Simple to implement
- ... worth a try!

4 3 5 4 3

A b

Thank you for your attention!

Question?

J. Reiss (TU Berlin)

Skew-Symmetric Schemes

August 8th, 2012 46 / 46

E N 4 E N

- **A**

Euler Equations, more dimensions

$$\sqrt{\rho}\partial_t\left(\sqrt{\rho}u_\alpha\right) + \frac{1}{2} \left[\partial_{x_\beta}\rho u_\beta \cdot + \rho u_\beta \partial_{x_\beta} \cdot \right] u_\alpha + \partial_{x_\alpha}\rho = 0.$$

Momentum equation in skew symmetric form, 2D, $u_1 \equiv u$ component :

$$\begin{aligned} \frac{J}{\sqrt{\rho}} \partial_t \left(\sqrt{\rho} u \right) \\ &+ \frac{1}{2} \Big[\left(\partial_{\xi} \varrho(y_{\eta} u - x_{\eta} v) \cdot + \varrho(y_{\eta} u - x_{\eta} v) \partial_{\xi} \cdot \right) \\ &+ \left(\partial_{\eta} \varrho(-y_{\xi} u + x_{\xi} v) \cdot + \varrho(-y_{\xi} u + x_{\xi} v) \partial_{\eta} \cdot \right) \Big] u \\ &+ \left(\partial_{\xi} y_{\eta} - \partial_{\eta} y_{\xi} \right) \rho = 0 \end{aligned}$$

J. Reiss (TU Berlin)

4 3 5 4 3

Shock & Artifical Damping

$$\frac{1}{2}(\partial_t R + R\partial_t)u + \frac{1}{2}(DUR + RUD)u + Dp = D\tau$$

Friction Term $\tau = \mu D u$

$$D\mu Du \rightarrow -F\sigma F^T u$$

with adaptive sigama:

$$\sigma = \frac{1}{2} \left(1 - \frac{r_{th}}{r_i} + \left| 1 - \frac{r_{th}}{r_i} \right| \right)$$

with with shock detector building on dilatation $^{1} \label{eq:constraint}$

$$r_i = r_i(\nabla u)$$

⁴Bogey et al, JCP 228, 1447, 2009

Where are we now?

Shock & Acousic Pulse

 ϱ

э

★ E ► ★ E

Skew Symmetric discretisation

Euler Equations, time

$$\partial_t \varrho + B^u \varrho = 0$$

$$\frac{1}{2} [\partial_t R + R \partial_t] u + \frac{1}{2} D^{u\varrho} u + D_x p = 0$$

$$\frac{1}{\gamma - 1} \partial_t p + \frac{\gamma}{\gamma - 1} B^u p - C^u p = 0$$

Leap-Frog like scheme

$$\begin{aligned} \frac{1}{2\Delta t} \left(\varrho^{n+1} - \varrho^{n-1} \right) &+ B^{u^n} \varrho^n = 0 \\ \frac{1}{4\Delta t} \left((R^{n+1} + R^n) u^{n+1} - (R^{n-1} + R^n) u^{n-1} \right) &+ \frac{1}{2} D^{u^n \varrho^n} u^n + D_x p^n = 0 \\ \frac{1}{\gamma^{-1}} \frac{1}{2\Delta t} \left(p^{n+1} - p^{n-1} \right) &+ \gamma \frac{B^{u^n} p^n}{\gamma - 1} - C^{u^n} p^n = 0 \end{aligned}$$

э

Skew Symmetric discretisation

Euler Equations, implicit time mass

$$\frac{1}{2\Delta t}\left(\varrho^{n+1}-\varrho^{n-1}\right)+\frac{1}{8}D\left((u\varrho)^{n-1}+6(u\varrho)^n+(u\varrho)^{n+1}\right)=0$$

velocity

$$\begin{aligned} &\frac{1}{4\Delta t} \left((R^{n+1} + R^n) u^{n+1} - (R^{n-1} + R^n) u^{n-1} \right) + \\ &\frac{1}{2} \frac{1}{8} \left(D^{(u_{\ell})^{n-1}} u^{n-1} + D^{(u_{\ell})^n} (u^{n-1} + 4u^n + u^{n+1}) + D^{(u_{\ell})^{n+1}} u^{n+1} \right) \\ &+ \frac{1}{4} D_x (p^{n-1} + 2p^n + p^{n+1}) = 0 \end{aligned}$$

pressure

$$0 = \frac{1}{\gamma - 1} \frac{1}{2\Delta t} \left(p^{n+1} - p^{n-1} \right) + \frac{\gamma}{4\gamma - 1} D\left((up)^{n-1} + 2(up)^n + (up)^{n+1} \right) - \frac{1}{4} u^n D(p^{n-1} + 2p^n + p^{n+1})$$

Time Integration

Energy conservation

Time integration by midpoint rule produces energy conservation

$$\frac{u^{n+1}-u^n}{\Delta t}+\frac{1}{3}D^{u^{n+1/2}}u^{n+1/2}=0$$

Multiplying by $(u^{n+1/2})^T = \frac{1}{2}(u^n + u^{n+1})^T$

$$\frac{1}{2}(u^{n}+u^{n+1})^{T}\frac{u^{n+1}-u^{n}}{\Delta t}+\frac{1}{3}\underbrace{(u^{n+1/2})^{T}D^{u^{n+1/2}}u^{n+1/2}}_{=0}=0$$

Time Integration

Energy conservation

Time integration by midpoint rule produces energy conservation

$$\frac{u^{n+1}-u^n}{\Delta t}+\frac{1}{3}D^{u^{n+1/2}}u^{n+1/2}=0$$

Multiplying by $(u^{n+1/2})^T = \frac{1}{2}(u^n + u^{n+1})^T$

$$\frac{1}{2}(u^{n}+u^{n+1})^{T}\frac{u^{n+1}-u^{n}}{\Delta t} = 0$$

gives

$$\frac{1}{2}\left((u^{n+1})^{T}u^{n+1}-(u^{n})^{T}u^{n}\right)=0$$

3

イロト 不得 トイヨト イヨト

Time Integration

Momentum conservation

Time integration by midpoint rule produces momentum conservation Multiplying by $(\vec{1})^T = (1, 1, 1, 1, 1, ...)$

$$(\vec{1})^T \frac{u^{n+1} - u^n}{\Delta t} + \frac{1}{3} (\vec{1})^T D^{u^{n+1/2}} u^{n+1/2} = 0$$

with

$$(\vec{1})^T D^{u^{n+1/2}} u^{n+1/2} = (\vec{1})^T D U^{n+1/2} + (u^{n+1/2})^T D u^{n+1/2} = 0$$

gives

$$\frac{1}{2}\left(\sum_{i}u_{i}^{n+1}-\sum_{i}u_{i}^{n}\right)=0$$

★ ∃ > < ∃ >

Image: A matrix and a matrix

Euler Equations, more dimensions

$$\frac{1}{2} \left(\partial_t \varrho + \varrho \partial_t \right) u_i + \frac{1}{2} \left[\nabla \varrho \vec{u} + \varrho \vec{u} \cdot \nabla \right] u_i + \nabla p = 0.$$

Use divergence as

$$\nabla \mathbf{u} = \frac{1}{J} \sum_{i, cy} \partial_{\xi^i} (\mathbf{e}_j \times \mathbf{e}_k) \mathbf{u} = \frac{1}{J} \sum_{i, cy} (\mathbf{e}_j \times \mathbf{e}_k) \partial_{\xi^i} \mathbf{u}.$$

Momentum equation in skew symmetric form

$$\begin{split} \frac{1}{2} \left(\partial_t \varrho + \varrho \partial_t \right) u_\alpha &+ \frac{1}{2} \frac{1}{J} \sum_{i, cy} \left(\partial_{\xi^i} (\mathbf{e}_j \times \mathbf{e}_k) \varrho \mathbf{u} + (\mathbf{e}_j \times \mathbf{e}_k) \varrho \mathbf{u} \partial_{\xi^i} \right) u_\alpha \\ &+ \left(\frac{1}{J} \sum_{i, cy} \partial_{\xi^i} (\mathbf{e}_j \times \mathbf{e}_k) \rho \right)_\alpha = 0 \end{split}$$

... is indeed skew symmetric!

J. Reiss (TU Berlin)

August 8th, 2012 54 / 46

Time discretization

$$\partial_t \varrho + RHS_{\varrho} = 0$$

$$\frac{1}{2} [\partial_t R + R \partial_t] u + RHS_{u} = 0$$

$$\frac{1}{\gamma - 1} \partial_t p + RHS_{\rho} = 0$$

Central scheme 3-step

$$\begin{array}{l} \frac{1}{2\Delta t} \left(\varrho^{n+1} - \varrho^{n-1} \right) & +RHS_{\varrho} = 0 \\ \frac{1}{4\Delta t} \left((R^{n+1} + R^n) u^{n+1} - (R^{n-1} + R^n) u^{n-1} \right) & +RHS_u = 0 \\ \frac{1}{\gamma^{-1}} \frac{1}{2\Delta t} \left(\rho^{n+1} - \rho^{n-1} \right) & +RHS_{\rho} = 0 \end{array}$$

2

Skew Symmetric discretisation

Euler Equations, time

$$mass^{n+\frac{1}{2}} = \mathbf{1}^{T} \frac{(\varrho^{n} + \varrho^{n+1})}{2}$$
$$mom^{n+\frac{1}{2}} = \frac{(\varrho^{n} + \varrho^{n+1})^{T}}{2} \frac{(u^{n} + u^{n+1})}{2}$$

$$e_{tot}^{n+1/2} = \frac{\mathbf{1}^T}{\gamma - 1} (p^n + p^{n+1})/2 + \frac{(u^n)^T (\varrho^n + \varrho^{n+1}) u^{n+1}}{4}$$

E.g. momentum conservation

$$mom^{1/2} - mom^{N-1/2} = \sum_{n=1}^{N-1} f_{1/2} - \sum_{n=1}^{N-1} f_{N-1/2}$$

 \rightarrow equivalent to FV for $\Delta t \rightarrow 0$

э

4 3 > 4 3

End