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INTRODUCTION with historical perspective

∂tu+∇ · F(u) = 0

In the 80’s numerical techniques devised to provide high order
monotone approximation to solutions of hyperbolic C.L.s

1. A. Harten (J.Comput.Phys., 1983) : TVD conditions

2. Goodman, LeVeque (Math.Comp.) : TVD in mulitD = first order
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INTRODUCTION with historical perspective

∂tu+∇ · F(u) = 0

In the 80’s numerical techniques devised to provide high order
monotone approximation to solutions of hyperbolic C.L.s

1. A. Harten (J.Comput.Phys., 1983) : TVD conditions

2. Goodman, LeVeque (Math.Comp.) : TVD in mulitD = first order

This has spawned a number of new approaches

◮ Monotonicity conditions

1. ENO/WENO (Harten, Osher, Engquist, Chakravarthy, Shu)
2. TVB conditions (Shu Math.Comp. 1987)
3. Positive coefficient schemes (Spekreijse Math.Comp. 1987)

◮ Discretization frameworks

1. Stabilized FE (or central) (Hughes, Morton, Ni, Lerat, Jameson)
2. Discontinuous Galerkin (Cockburn and Shu, starting 1988)
3. Roe’s Fluctuation Splitting (starting 1986)
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INTRODUCTION with historical perspective

∂tu+∇ · F(u) = 0

Discontinuous Galerkin : smart and elegant combination of existing
tools (approximation, Galerkin projection, Riemann solvers, limiters) to
generate automatically arbitrary higher order schemes

An instant hit ...
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INTRODUCTION with historical perspective

∂tu+∇ · F(u) = 0

Fluctuation Splitting/Residual Distribution :

“A more fundamental and robust approach [...] due to Roe (1986), is
that of the “genuinely multidimensional” upwind schemes. These may

be regarded as the true multi-D generalization of 1-D fluctuation
splitting [...] These methods are best formulated on simplex-type

(finite-element) grids and include newly developed, compact limiters
for avoiding oscillations ...”



B. van Leer, (excerpt from Upwind high

resolution methods for compressible flow: from

donor cell to residual distribution,

Commun.Comput.Phys. 1(2), 2006)
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INTRODUCTION with historical perspective

∂tu+∇ · F(u) = 0

Fluctuation Splitting/Residual Distribution :

“A more fundamental and robust approach [...] due to Roe (1986), is
that of the “genuinely multidimensional” upwind schemes. These may

be regarded as the true multi-D generalization of 1-D fluctuation
splitting [...] These methods are best formulated on simplex-type

(finite-element) grids and include newly developed, compact limiters
for avoiding oscillations ...”
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INTRODUCTION with historical perspective

∂tu+∇ · F(u) = 0

Initial idea (P.L.Roe, Num. Meth. Fluid Dyn. 1982) : given values of u on the
mesh, integral of ∇ · F(u) over elements measures the error
(fluctuation); decompose the fluctuation in signals allowing to evolve
solution values to those solving the problem
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INTRODUCTION with historical perspective

∂tu+∇ · F(u) = 0

Initial idea (P.L.Roe, Num. Meth. Fluid Dyn. 1982) : integral of ∇ · F(u) over
elements measures the error (fluctuation); decompose the fluctuation in
signals allowing to evolve solution values to those solving the problem

◮ 80’ and 90’, under the lead of P.L. Roe, H. Deconinck :

1. Genuinely multidimensional upwinding (scalar)
2. Steady state hyperbolic decomposition
3. Each scalar hyperbolic component discretized using MU technique

Genuinely multiD upwind second order compact (nearest neighbor)

second order, nonlinear, positive discretization. Very well adapted to

steady supersonic, multidimensional Roe linearization, inexact

decompositions in sub-critical case, no unsteady.
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INTRODUCTION with historical perspective

∂tu+∇ · F(u) = 0

Initial idea (P.L.Roe, Num. Meth. Fluid Dyn. 1982) : integral of ∇ · F(u) over
elements measures the error (fluctuation); decompose the fluctuation in
signals allowing to evolve solution values to those solving the problem

◮ 80’ and 90’, under the lead of P.L. Roe, H. Deconinck :
Genuinely multiD upwind second order compact (nearest neighbor)

second order, nonlinear, positive discretization. Very well adapted to

steady supersonic, multidimensional Roe linearization, inexact

decompositions in sub-critical case, no unsteady.

◮ 20 years later with contributions of R. Abgrall, T.J. Barth, D.
Caraeni, M. Hubbard, C.W. Shu et al.

1. Time dependent problems
2. Conservation without Roe lienarization
3. Higher (than second) accuracy
4. More general data approximation (including discontinuous)
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INTRODUCTION with historical perspective

∂tu+∇ · F(u) = 0

Initial idea (P.L.Roe, Num. Meth. Fluid Dyn. 1982) : integral of ∇ · F(u) over
elements measures the error (fluctuation); decompose the fluctuation in
signals allowing to evolve solution values to those solving the problem

◮ 80’ and 90’, under the lead of P.L. Roe, H. Deconinck :
Genuinely multiD upwind second order compact (nearest neighbor)

second order, nonlinear, positive discretization. Very well adapted to

steady supersonic, multidimensional Roe linearization, inexact

decompositions in sub-critical case, no unsteady.

◮ 20 years later with contributions of R. Abgrall, T.J. Barth, D.
Caraeni, M. Hubbard, C.W. Shu et al.
The method has come to a form which is more correctly referred to as a

weighted residual method, many of the initial multidimensional upwind

fluctuation splitting ideas could not (so far) be retained ..
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INTRODUCTION with historical perspective

∂tu+∇ · F(u) = 0

Initial idea (P.L.Roe, Num. Meth. Fluid Dyn. 1982) : integral of ∇ · F(u) over
elements measures the error (fluctuation); decompose the fluctuation in
signals allowing to evolve solution values to those solving the problem

◮ 80’ and 90’, under the lead of P.L. Roe, H. Deconinck

◮ 20 years later with contributions of R. Abgrall, T.J. Barth, D.
Caraeni, M. Hubbard, C.W. Shu et al.

Despite so many contributions the method never really caught up with other

approaches based on more sound mathematical foundations (DG), and it

definitely has a much lower level of maturity. But some ideas have stuck.

Hybrid nature : in between finite element and finite volume. This allows

easily to import/export ideas born in this framework to improve others and

vice-versa ... keeping alive the interest in the method
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INTRODUCTION with historical perspective

∂tu+∇ · F(u) = 0

Initial idea (P.L.Roe, Num. Meth. Fluid Dyn. 1982) : integral of ∇ · F(u) over
elements measures the error (fluctuation); decompose the fluctuation in
signals allowing to evolve solution values to those solving the problem

Despite so many contributions the method never really caught up with other

approaches based on more sound mathematical foundations (DG), and it

definitely has a much lower level of maturity

What am I going to tell you ?



COURSE OUTLINE : Part I

1. Conservative FV discretization and fluctuations

2. Fluctuation splitting/residual distribution framework

3. Design principles

4. Limiters in reverse

5. Relations with other techniques
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COURSE OUTLINE : Part II

1. Higher (than second) orders

2. Time dependent problems

3. Viscous problems

4. Free surface flows

5. Summary, perspectives
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PART I OUTLINE

Finite Volume schemes and Fluctuations

Design criteria

Nonlinear schemes and limiters

Relations with other techniques
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1
Conservative Finite Volume schemes

and Fluctuations



Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ F̂(uLi+1/2, u
R
i+1/2)− F̂(u

L
i−1/2, u

R
i−1/2) = 0

i i+ 1i− 1

ui

ui+1

ui−1

i+ 1/2i− 1/2
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ F̂(uLi+1/2, u
R
i+1/2)− F̂(u

L
i−1/2, u

R
i−1/2) = 0

(consistent) F̂(u, u) = F(u)

(L-continuous) ‖F̂(u, v)− F̂(u, z)‖ ≤ KF‖v − z‖

(E-stable. Monotone, etc.)
i i+ 1i− 1

ui

ui+1

ui−1

i+ 1/2i− 1/2
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ F̂i+1/2 − F̂i−1/2 = 0

i i+ 1i− 1

ui

ui+1

ui−1

i+ 1/2i− 1/2
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ F̂i+1/2 − F̂i−1/2 = 0

∆xi+1
dui+1

dt
+ F̂i+3/2 − F̂i+1/2 = 0

∆xi−1
dui−1

dt
+ F̂i−1/2 − F̂i−3/2 = 0

i i+ 1i− 1

ui

ui+1

ui−1

i+ 1/2i− 1/2
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ F̂i+1/2 − F̂i−1/2 = 0

∆xi+1
dui+1

dt
+ F̂i+3/2 − F̂i+1/2 = 0

∆xi−1
dui−1

dt
+ F̂i−1/2 − F̂i−3/2 = 0

Conservation from flux cancelation at interfaces

i i+ 1i− 1

ui

ui+1

ui−1

i+ 1/2i− 1/2
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ (F̂i+1/2 −Fi) + (Fi − F̂i−1/2) = 0

i i+ 1i− 1

ui

ui+1

ui−1

i+ 1/2i− 1/2
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+

φ
i+1/2
i︷ ︸︸ ︷

(F̂i+1/2 −Fi)+

φ
i−1/2
i︷ ︸︸ ︷

(Fi − F̂i−1/2) = 0

i i+ 1i− 1

ui

ui+1

ui−1

i+ 1/2i− 1/2
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ φ
i+1/2
i + φ

i−1/2
i = 0

at i+ 1/2 conservation becomes :

φ
i+1/2
i + φ

i+1/2
i+1 = (F̂i+1/2 −Fi) + (Fi+1 − F̂i+1/2)

i i+ 1i− 1

ui

ui+1

ui−1

i+ 1/2i− 1/2
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ φ
i+1/2
i + φ

i−1/2
i = 0

at i+ 1/2 conservation becomes :

φ
i+1/2
i + φ

i+1/2
i+1 = Fi+1 −Fi := φi+1/2

i i+ 1i− 1

ui

ui+1

ui−1

i+ 1/2i− 1/2
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ φ
i+1/2
i + φ

i−1/2
i = 0

at i− 1/2 conservation becomes :

φ
i−1/2
i + φ

i−1/2
i−1 = Fi −Fi−1 := φi−1/2

i i+ 1i− 1

ui

ui+1

ui−1

i+ 1/2i− 1/2
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ φ
i+1/2
i + φ

i−1/2
i = 0

i i+ 1i− 1

ui

ui+1

ui−1

i + 1/2i − 1/2
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ φ
i+1/2
i + φ

i−1/2
i = 0

φi−1/2 :=
i∫

i−1

∂xF , (fluctuation)

φi−1/2 = Fi −Fi−1 (as before ...)
i i+ 1i− 1

ui

ui+1

ui−1

i + 1/2i − 1/2

φi−1/2
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Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ φ
i+1/2
i + φ

i−1/2
i = 0

φi−1/2 :=
i∫

i−1

∂xF , (fluctuation)

φ
i−1/2
i = Fi − F̂i−1/2 (splitting)

φ
i−1/2
i−1 = F̂i−1/2 − Fi−1 (splitting)

i i+ 1i− 1

ui

ui+1

ui−1

i + 1/2i − 1/2

φ
i−1/2
i

φ
i+1/2
i

MARIO RICCHIUTO - Residual Distribution, Part I (CEMRACS 2012) July 19, 2012 - 30



Finite Volume schemes and Fluctuations in 1D

Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ φ
i+1/2
i + φ

i−1/2
i = 0

φi−1/2 :=
i∫

i−1

∂xF , φi+1/2 :=
i+1∫
i

∂xF

φ
i−1/2
i = Fi − F̂i−1/2 , φ

i+1/2
i = F̂i+1/2 −Fi

i i+ 1i− 1

ui

ui+1

ui−1

i + 1/2i − 1/2

φ
i−1/2
i

φ
i+1/2
i

FV scheme in Fluctuation splitting form ... still the same guy
though
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Finite Volume schemes and Fluctuations in 2D

The multi-D case. Starting point : conservation law

∂tu+∇ · F(u) = 0
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Finite Volume schemes and Fluctuations in 2D

i

i

j

j

K

fijCi
Cj

~nK
ij

~nK
il

l

fK
ij

~ni = −2(~nK
ij + ~nK

il )

The FV scheme reads

|Ci|
dui
dt

+
∑

j

∫

fij

F̂ · n̂ dl = 0
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Finite Volume schemes and Fluctuations in 2D

i

i

j

j

K

fij

fK
ij

Ci
Cj

~nK
ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

The FV scheme reads

|Ci|
dui
dt

+
∑

K|i∈K

∑

j∈K

∫

fK
ij

F̂ · n̂ dl = 0
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Finite Volume schemes and Fluctuations in 2D

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

The FV scheme reads

|Ci|
dui
dt

+
∑

K|i∈K

∑

j∈K

F̂ij · ~n
K
ij = 0
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Finite Volume schemes and Fluctuations in 2D

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

The FV scheme reads

|Ci|
dui
dt

+
∑

K|i∈K

∑

j∈K

F̂ij · ~n
K
ij = 0

Discrete conservation

F̂ij · ~n
K
ij + F̂ji · ~n

K
ji = 0
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Finite Volume schemes and Fluctuations in 2D

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

Using the identity
∑

K

∑
j ~n

K
ij = 0

|Ci|
dui
dt

+
∑

K|i∈K

∑

j∈K

(F̂ij −Fi) · ~n
K
ij = 0
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Finite Volume schemes and Fluctuations in 2D

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

The FV scheme reads

|Ci|
dui
dt

+
∑

K|i∈K

∑

j∈K

(F̂ij −Fi) · ~n
K
ij

︸ ︷︷ ︸
φK
i

= 0
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Finite Volume schemes and Fluctuations in 2D

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

The FV scheme reads

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0 , φKi =
∑

j∈K

(F̂ij −Fi) · ~n
K
ij
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Finite Volume schemes and Fluctuations

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

The FV scheme reads

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0 , φKi =
∑

j∈K

(F̂ij −Fi) · ~n
K
ij

Discrete conservation

F̂ij · ~n
K
ij + F̂ji · ~n

K
ji = 0 =⇒

∑

j∈K

φKj =
1

2

∑

j∈K

Fi · ~nj := φK
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Finite Volume schemes and Fluctuations

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

The FV scheme reads

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0 , φKi =
∑

j∈K

(F̂ij −Fi) · ~n
K
ij

Discrete conservation (Fh continuous P 1 finite element approx.)

∑

j∈K

φKj = φK =

∫

K

∇ · Fh
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Finite Volume schemes and Fluctuations

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

The FV scheme reads (Fh continuous P 1 finite element approx.)

φK =

∫

K

∇ · Fh ,

Discrete conservation︷ ︸︸ ︷∑

j∈K

φKj = φK

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0 , φKi =
∑

j∈K

(F̂ij −Fi) · ~n
K
ij

... but it’s still the same guy .. !!
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Finite Volume schemes and Fluctuations

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

The FV scheme reads (Fh continuous P 1 finite element approx.)

φK =

∫

K

∇ · Fh ,

Discrete conservation︷ ︸︸ ︷∑

j∈K

φKi = φK

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0 , φKi =
∑

j∈K

(F̂ij −Fi) · ~n
K
ij

... but it’s still the same guy .. !!
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2
Residual Distribution

the framework



Residual Distribution framework

∇ · F(u) = 0 in Ω

u = g on Γ−

~λ(u) = ∂uF(u)

(1)

Ωh

~λ

Γ−

Some notations...

◮ Consider Ωh tesselation of Ω

◮ Unknowns (Degrees of Freedom, DoF) : ui ≈ u(Mi)

◮ Mi ∈ Ωh a given set of nodes (vertices +other dofs)

◮ uh : continuous polynomial interpolation uh =
∑
i
ψi ui
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Residual Distribution framework

1. ∀K ∈ Ωh compute : φK =

∫

K
∇ · Fh(uh)

2. Distribution : φK =
∑
i∈K

φKi

Distribution
coeff.s : φKi =βKi φ

K

3. Compute nodal values :
solve algebraic system

∑

T |i∈T

φKi = 0, ∀ i ∈ Ωh (2)

K

φK

φK
1

φK
2 φK

3

i
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Residual Distribution framework
Seek the steady limit of

|Ci|
dui
dt

+
∑

K| i∈K

φKi
t→∞
−→

∑

K| i∈K

φKi = 0 (3)

The idea of Residual Distribution or Fluctuation Splitting

◮ Fluctuations & Signals (Roe, Num.Meth.Fluid Dyn., 1982)

◮ From an initial guess, nodal values evolve to steady state
due to signals “proportional” to cell residuals (Roe’s
fluctuation)

K

φK
φK
1

φK
2 φK

3 i

1 - Compute fluctuation 2 - Split 3 - Gather signals

4 -
Evolve
eq. ((3))
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Structural conditions

Conservation. LW theorem : convergence (if ...) to weak
solution ?

Stability. which form of stability (energy/entropy, equivalent
algebraic condition, convergence ?), choice of φKi

Accuracy. characterization of the error, choice of φKi

Oscillations. monotonicity preserving schemes, choice of φKi
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Conservation

Conservation, LW theorem for RD and ∇ · F(u) = 0

Under some (standard) continuity assumptions on φK and φKi
the discrete solution uh converges (if ..... !) to a weak solution
of the continuous problem, provided that (Abgral, Barth SISC, 2002 ;

Abgrall, Roe J.Sci.Comp., 2003) :
∑

j∈K

φKj (uh) = φK(uh) =

∮

∂K

Fh(uh) · n̂ dl

for some continuous approximation of the flux Fh.

MARIO RICCHIUTO - Residual Distribution, Part I (CEMRACS 2012) July 19, 2012 - 49



Conservation

Conservation, LW theorem for RD and ∇ · F(u) = 0

∑

j∈K

φKj (uh) = φK(uh) =

∮

∂K

Fh(uh) · n̂ dl

for some continuous approximation of the flux Fh.

In practice, approach 1

Set Fh =
∑

j∈K ψjFj and integrate exactly.

This gives the P 1 element residual seen for the FV scheme
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Conservation

Conservation, LW theorem for RD and ∇ · F(u) = 0

∑

j∈K

φKj (uh) = φK(uh) =

∮

∂K

Fh(uh) · n̂ dl

for some continuous approximation of the flux Fh.

In practice, approach 2

Set Fh = F(vh) with v some set of variables, vh =
∑

j ψjvj ,
apply Gauss Formulae on ∂K (Csik, Ricchiuto, Deconinck,

J.Comput.Phys, 2002)

φK(uh) =
∑

f∈∂K

∫

f

Fh(x) · n̂ dl =
∑

f∈∂K

|f |

Gp∑

q=1

ωqFh(xq) · n̂f
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Conservation

Conservation, LW theorem for RD and ∇ · F(u) = 0

∑

j∈K

φKj (uh) = φK(uh) =

∮

∂K

Fh(uh) · n̂ dl

for some continuous approximation of the flux Fh.

In practice, approach 3

Set Fh = F(vh) with v some set of variables, vh =
∑

j ψjvj , and
integrate exactly of below truncation error (Deconinck, Struijs, Roe

Computers & Fluids, 1993 ; Abgrall, Barth SISC, 2002)

φK =

∫

K

∂F

∂v
(vh) · ∇vh dK
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Conservation

Conservation, LW theorem for RD and ∇ · F(u) = 0

∑

j∈K

φKj (uh) = φK(uh) =

∮

∂K

Fh(uh) · n̂ dl

for some continuous approximation of the flux Fh.

In practice

Schemes are more often written so that we recover at the end

φK(uh) =
∑

f∈∂K

∫

f

Fh(x) · n̂ dl =
∑

f∈∂K

|f |

Gp∑

q=1

ωqFh(xq) · n̂f

for some (edge) continuous polynomial reconstruction Fh(x)
which remains one of the degrees of freedom of the method
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Conservation

Conservation, LW theorem for RD and ∇ · F(u) = 0

∑

j∈K

φKj (uh) = φK(uh) =

∮

∂K

Fh(uh) · n̂ dl

for some continuous approximation of the flux Fh.

This only guarantees that
if discontinuous solutions are approximated,

the correct jump (Rankine-Hugoniot) conditions are recovered

What about stability, accuracy, etc. ?
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3
DESIGN CRITERIA

Accuracy, stability, and all that jazz



Design criteria

1. ∀K ∈ Ωh compute :

φK =

∫

K
∇ · Fh(uh)

2. Distribution : φK =
∑
i∈K

φKi

Distribution
coeff.s : φKi =βKi φ

K

3. Compute nodal values :
solve algebraic system

|Ci|
dui
dt

+
∑

T |i∈T

φKi = 0, t→∞ (4)

K

φK

φK
1

φK
2 φK

3

i
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What can we say about the stability of this method ?

First : what is stability ?
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What can we say about the stability of this method ?

First : what is stability ?

Assume, for h fixed you do

un+1
i = uni − ωi

∑

K|i∈K

φKi (unh) , ωi =
∆t

|Ci|
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What can we say about the stability of this method ?

First : what is stability ?

More abstractly (ω a scalar,e.g. ω = mini ωi) for h fixed you do

un+1 = un − ω(Ah u
n − f)
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What can we say about the stability of this method ?

First : what is stability ?

More abstractly (ω a scalar,e.g. ω = mini ωi) for h fixed you do

un+1 = un − ω(Ah u
n − f)

A condition for convergence with n→∞ but h fixed

‖(I− ωAh)u‖
2 ≤ r‖u‖2 , ∀u and with r < 1

which is equivalent to

utAhu ≥
1− r

2ω
‖u‖2 +

ω

2
‖Ah u‖

2 ≥ Ch‖u‖
2 ≥ 0 ∀ u
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What can we say about the stability of this method ?

First : what is stability ?

More abstractly (ω a scalar,e.g. ω = mini ωi) for h fixed you do

un+1 = un − ω(Ah u
n − f)

A condition for convergence with n→∞ but h fixed

‖(I− ωAh)u‖
2 ≤ r‖u‖2 , ∀u and with r < 1

which is equivalent to

utAhu ≥
1− r

2ω
‖u‖2 +

ω

2
‖Ah u‖

2≥ Ch‖u‖
2 ≥ 0 ∀ u

Coercivity ...
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Stability and energy

Consider the steady limit of

∂tu+ ~a · ∇u = 0
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Stability and energy

Consider the steady limit of

∂tu+ ~a · ∇u = 0

Semi-discrete counterpart

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0
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Stability and energy

Consider the steady limit of

∂tu+ ~a · ∇u = 0

Semi-discrete counterpart

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0

Energy budget

The equivalent of the quantity utAhu seen in the previous slides
is

utAhu ≡
∑

i∈Ωh

ui
∑

K|i∈K

φKi
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Stability and energy

Consider the steady limit of

∂tu+ ~a · ∇u = 0

Semi-discrete counterpart

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0

Energy budget

The equivalent of the quantity utAhu seen in the previous slides
is

utAhu ≡
∑

K∈Ωh

∑

i∈K

uiφ
K
i
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Stability and energy

Consider the steady limit of

∂tu+ ~a · ∇u = 0

Semi-discrete counterpart

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0

Energy budget

The equivalent of the quantity utAhu seen in the previous slides
is

utAhu ≡
∑

K∈Ωh

∑

i∈K

uiφ
K
i

︸ ︷︷ ︸
φE

K
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Stability and energy

Consider the steady limit of

∂tu+ ~a · ∇u = 0

Semi-discrete counterpart

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0

Energy budget

The equivalent of the quantity utAhu seen in the previous slides
is

utAhu ≡
∑

K∈Ωh

φEK What is φEK ?
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Stability and energy

Starting from

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0

Energy budget

∑

i∈Ωh

|Ci|ui
dui
dt

+
∑

K∈Ωh

φEK = 0

MARIO RICCHIUTO - Residual Distribution, Part I (CEMRACS 2012) July 19, 2012 - 68



Stability and energy

Starting from

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0

Energy budget

∑

i∈Ωh

|Ci|
d

dt

(
u2i
2

)
+

∑

K∈Ωh

φEK = 0
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Stability and energy

Starting from

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0

Energy budget

∫

Ωh

dEh
dt

+
∑

K∈Ωh

φEK = 0

with the energy density

E =
u2

2

and with Eh =
∑
i∈Ωh

Eiψi (piecewise linear)
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Stability and energy

Saying that

0 ≤ utAhu ≡
∑

K∈Ωh

φEK

is equivalent to
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Stability and energy

Saying that

0 < utAhu ≡
∑

K∈Ωh

φEK

is equivalent to

Energy stability

∫

Ωh

dEh
dt

= −
∑

K∈Ωh

φEK ≤ 0

with the energy density

E =
u2

2

and with Eh =
∑
i∈Ωh

Eiψi (piecewise linear)
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Stability and energy

Saying that

0 < utAhu ≡
∑

K∈Ωh

φEK

is equivalent to

Energy stability (modulo boundary conditions)

∫

Ωh

dEh
dt

= −

∫

∂Ωh

Eh~a · n̂ dl − δE , δE ≥ 0

what one would like is to find that

φEK =

∫

∂K

Eh~a · n̂ dl + δEK , δEK ≥ 0
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Stability and upwinding

Consider again the steady limit of

∂tu+ ~a · ∇u = 0

A geometrical view of advection...
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Stability and upwinding

Consider again the steady limit of

∂tu+ ~a · ∇u = 0

A geometrical view of advection...

1-target triangle
The inlet region is an edge

1 node downstream : 1 target

kj =
~a · ~nj
2

> 0
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Stability and upwinding

Consider again the steady limit of

∂tu+ ~a · ∇u = 0

A geometrical view of advection...

1-target triangle
The inlet region is an edge

1 node downstream : 1 target

kj =
~a · ~nj
2

> 0
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Stability and upwinding

Consider again the steady limit of

∂tu+ ~a · ∇u = 0

A geometrical view of advection...

2-target triangle
The outlet region is an edge

2 nodes downstream : 2 targets

kj =
~a · ~nj
2

> 0
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Stability and upwinding

Consider again the steady limit of

∂tu+ ~a · ∇u = 0

A geometrical view of advection...

2-target triangle
The outlet region is an edge

2 nodes downstream : 2 targets

kj =
~a · ~nj
2

> 0
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Stability and upwinding

Consider now the semi-discrete RD advection equation :

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0

A geometrical view of advection...

Multidimensional Upwinding (MU)
Multidimensional Upwind (MU) schemes

only split φK to downstream nodes,
i.e. those for which kj > 0.

All MU schemes reduce to the same in the 1-target case.
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Stability and upwinding

Consider now the semi-discrete RD advection equation :

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0

A geometrical view of advection...

Multidimensional Upwinding (MU)
Multidimensional Upwind (MU) schemes

In 1-target elements
if k1 > 0 (node 1 only node downstream)

φK1 = φK , φK2 = φK3 = 0
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Stability and upwinding

Consider now the semi-discrete RD advection equation :

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0

A geometrical view of advection...

Multidimensional Upwinding (MU)
Multidimensional Upwind (MU) schemes

In 2-targets elements
if k1 < 0 (node 1 only node upstream)

φK1 = 0 , φK2 + φK3 = φK
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Stability and MU schemes

Example 1 : Roe’s optimal N scheme

1

1

2

2

3

3

φN
1 = φK

φN
2 = φN

3 = 0
φN
1 = φK(~a1)

φN
2 = φK(~a2)

φN
3 = 0

~a

~a

~a1

~a2

φK(~a1) =
∫
K
~a1 · ∇uh

φK(~a2) =
∫
K
~a2 · ∇uh

The formula (Roe Cranfield U.Tech.Rep., 1987 ; Roe, Sidilkover SINUM, 1992)

φNi = k+i (ui − uin) , uin =

∑
j∈K

k−j uj

∑
j∈K

k−j
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Stability and MU schemes

Example 2 : the LDA scheme

The LDA scheme reads

φLDA
i (uh) = βLDA

i φK(uh)

where

βLDA
i =

k+i∑
j∈K

k+j

recalling that for the advection
equation (uh piecewise linear)

φK(uh) =

∫

K

~a · ∇uh

φK

|K3|/|K|

|K2|/|K|

~a

1

1

2

K3

K2
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Stability and MU

The following properties can be easily shown :

1. MU schemes, 1-target (Deconinck, Ricchiuto Enc.Comput.Mech.,

2007)

φEK =

∫

∂K

Eh~a · n̂ dl + δEK , δEK ≥ 0

2. N scheme energy stable (Barth, NASA 1996 ; Abgrall, Barth SISC,

2002)

3. LDA scheme, 2-targets (Deconinck, Ricchiuto Enc.Comput.Mech.,

2007)

φELDA =
(∑

j∈K

k+j
)(u2out

2
−
u2in
2

)

︸ ︷︷ ︸
NRG balance

along streamline

+ δELDA , δELDA ≥ 0

Multidimensional upwinding does the job ...
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Stability, upwinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA

1996 ; Abgrall, Barth SISC, 2002), also E-flux schemes by (Osher

SINUM, 1984)

2. Streamline upwind finite element scheme SUPG, (Hughes,

Brooks CMAME, 1982) :

MARIO RICCHIUTO - Residual Distribution, Part I (CEMRACS 2012) July 19, 2012 - 85



Stability, upwinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA

1996 ; Abgrall, Barth SISC, 2002), also E-flux schemes by (Osher

SINUM, 1984)

2. Streamline upwind finite element scheme (SUPG) (Hughes,

Brooks CMAME, 1982) :
∫

Ωh

ψi∇ · Fh(uh) +
∑

K∈Ωh

∫

K
~a(uh) · ∇ψi τ ~a(uh) · ∇uh = 0

can be written as the RD scheme
∑

K|i∈K

φKi = 0

with

φKi =

∫

K

ψi∇ · Fh(uh) +

∫

K
~a(uh) · ∇ψi τ ~a(uh) · ∇uh
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Stability, upwinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA

1996 ; Abgrall, Barth SISC, 2002), also E-flux schemes by (Osher

SINUM, 1984)

2. Streamline upwind finite element scheme SUPG :

φSUPG
i =

∫

K

ψi~a · ∇uh +

∫

K

~a · ∇ψi τ ~a · ∇uh

one easily checks that since
∑

j ψj = 1 and
∑

j ∇ψj = 0

∑

j∈K

φSUPG
j =

∫

K

~a · ∇uh = φK(uh)
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Stability, upwinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA

1996 ; Abgrall, Barth SISC, 2002), also E-flux schemes by (Osher

SINUM, 1984)

2. Streamline upwind finite element scheme (SUPG) :

φESUPG =

∮

∂K

u2h
2
~a · n̂ dl +

∫

K

~a · ∇uh τ ~a · ∇uh

︸ ︷︷ ︸
Streamline

dissipation ≥0
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Stability, upwinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA

1996 ; Abgrall, Barth SISC, 2002), also E-flux schemes by (Osher

SINUM, 1984)

2. Streamline upwind finite element scheme (SUPG) :

φESUPG =

∮

∂K

u2h
2
~a · n̂ dl +

∫

K

~a · ∇uh τ ~a · ∇uh

︸ ︷︷ ︸
Streamline

dissipation ≥0

3. Lax-Friedrich’s/Rusanov scheme

φLFi =

∫

K

ψi~a · ∇uh + αLF

∑

j∈K

(ui − uj)
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Stability, upwinding, and dissipation

1. FV scheme (1st order upwind) NRG stable (Barth, NASA

1996 ; Abgrall, Barth SISC, 2002), also E-flux schemes by (Osher

SINUM, 1984)

2. Streamline upwind finite element scheme (SUPG) :

φESUPG =

∮

∂K

u2h
2
~a · n̂ dl +

∫

K

~a · ∇uh τ ~a · ∇uh

︸ ︷︷ ︸
Streamline

dissipation ≥0

3. Lax-Friedrich’s/Rusanov scheme

φELF =

∮

∂K

u2h
2
~a · n̂ dl +

αLF

3

∑

i,j∈K

(ui − uj)
2
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Stability, upwinding, and dissipation

Upwinding has beneficial effect in terms of energy stability
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Design criteria : what is the truncation error ?

◮ By Taylor expansion : no way (unless meshes with
particular structure are considered)

◮ Error analysis based on variational form :

1. which variational form ?
2. NRG stability not enough, no coercivity no tools for analysis

◮ Idea : use ’weak’ form to define error (consistency estimate)
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Design criteria : what is the truncation error ?

Idea : use ’weak’ form to define an integral truncation error

∫

Ω
∇ϕ · F(u)dx +BCs = 0←→

∫

Ω
∇ϕ · Fh(uh)dx+ BCs = εh

with u a smooth exact (classical) solution

This gives a consistency estimate..

What is εh ?
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Design criteria, consistency analysis

What do we have ... ?
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Design criteria, consistency analysis

What do we have ... ?
Consider

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1) in L2 from
approximation theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk) in L2

from approximation theory, see e.g. (Ern, Guermond Springer,

2004)

with wh a continuous polynomial approximation of degree k
(e.g standard Lagrange elements)
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Design criteria, consistency analysis

Continuous Lagrange elements

P PP 1 2 3

Q1 Q
2 Q 3
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Design criteria, consistency analysis

What do we do ... ?
Consider

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1) in L2 from
approximation theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk) in L2

from approximation theory, see e.g. (Ern, Guermond Springer,

2004)

Take the steady RD scheme
∑

K|i∈K

φKi (uh) = 0

approximating ∇ · F in node i
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Design criteria, consistency analysis

What do we do ... ?
Consider

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1) in L2 from
approximation theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk) in L2

from approximation theory, see e.g. (Ern, Guermond Springer,

2004)

Formally replace the nodal values of uh, computed by the
scheme, with those of the exact solution w,

exaclty as done in finite difference TE analysis
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Design criteria, consistency analysis

What do we do ... ?
Consider

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1) in L2 from
approximation theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk) in L2

from approximation theory, see e.g. (Ern, Guermond Springer,

2004)

We obtain ∑

K|i∈K

φKi (wh) 6= 0

since of course the nodal values of the exact solution w do not
verify the discrete equations
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Design criteria, consistency analysis

What do we do ... ?
Consider

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1) in L2 from
approximation theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk) in L2

from approximation theory, see e.g. (Ern, Guermond Springer,

2004)

Given ϕ a Cr
0(Ω) class function, r large enough, define

ǫh :=
∑

i∈Ωh

ϕi

∑

K|i∈K

φKi (wh)

A global measure of how much the discrete equations differ
from the continuous one
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Design criteria, consistency analysis

What do we do ... ?
Estimate ǫh (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck

J.Comput.Phys, 2007)

ǫh =
∑

K∈Ωh

∑
i∈K

ϕiφ
K
i (wh) = ǫa + ǫd

ǫa = −

∫

Ωh

∇ϕh · (Fh(wh)−F(w))

︸ ︷︷ ︸
approximation error

ϕh =
∑

K∈Ωh

∑
j∈K

ψjϕj
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Design criteria, consistency analysis

What do we do ... ?
Estimate ǫh (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck

J.Comput.Phys, 2007)

ǫh =
∑

K∈Ωh

∑
i∈K

ϕiφ
K
i (wh) = ǫa + ǫd

ǫd =
∑

K∈Ωh

∑

i,j∈K

ϕi − ϕj

nKDoF

(φKi (wh)− φ
G
i (wh))

︸ ︷︷ ︸
distribution error

φGi (wh) =

∫

K
ψi∇ · (Fh(wh)−F(w)) (Galerkin proj.)
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Design criteria, consistency analysis

What do we do ... ?
Estimate ǫh (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck

J.Comput.Phys, 2007)

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1) in L2 from
approximation theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk) in L2

from approximation theory, see e.g. (Ern, Guermond Springer,

2004)

MARIO RICCHIUTO - Residual Distribution, Part I (CEMRACS 2012) July 19, 2012 - 103



Design criteria, consistency analysis

What do we do ... ?
Estimate ǫh (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck

J.Comput.Phys, 2007)

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1) in L2 from
approximation theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk) in L2

from approximation theory, see e.g. (Ern, Guermond Springer,

2004)

We get easily the estimates

‖ǫa‖ = ‖

∫

Ωh

∇ϕh · (Fh(wh)−F(w))‖ ≤ C
′
a h

k+1
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Design criteria, consistency analysis

What do we do ... ?
Estimate ǫh (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck

J.Comput.Phys, 2007)

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1) in L2 from
approximation theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk) in L2

from approximation theory, see e.g. (Ern, Guermond Springer,

2004)

We get easily the estimates

‖φG(wh)‖ = ‖
∫
K

ψi∇ · (Fh(wh)−F(w))‖ ≤ C
′′
a h

k+2

‖ϕi − ϕj‖ ≤ h‖∇ϕ‖ ≤ C h
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Design criteria, consistency analysis

What do we do ... ?
Estimate ǫh (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck

J.Comput.Phys, 2007)

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1) in L2 from
approximation theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk) in L2

from approximation theory, see e.g. (Ern, Guermond Springer,

2004)

We get easily the estimates

‖ǫd‖ = ‖
∑

K∈Ωh

∑
i,j∈K

ϕi − ϕj

nKDoF

(φKi (wh)− φ
G
i (wh))‖

≤ CΩh
h−2 × C h × (supK supi∈K ‖φ

K
i (wh)‖+ C ′′

a h
k+2)
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Design criteria, consistency analysis

What do we do ... ?
Estimate ǫh (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck

J.Comput.Phys, 2007)

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1) in L2 from
approximation theory, see e.g. (Ern, Guermond Springer, 2004)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk) in L2

from approximation theory, see e.g. (Ern, Guermond Springer,

2004)

We get easily the estimates

‖ǫd‖ ≤ C
′ h−1supK sup

i∈K
‖φKi (wh)‖+ C ′′′

a hk+1
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Design criteria, consistency analysis

What do we do ... ?
Estimate ǫh (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck

J.Comput.Phys, 2007)

‖ǫh‖ ≤ Ca h
k+1 + C ′ h−1supK sup

i∈K
‖φKi (wh)‖
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Design criteria, consistency analysis

What do we do ... ?
Estimate ǫh (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto, Abgrall, Deconinck

J.Comput.Phys, 2007)

‖ǫh‖ ≤ Ca h
k+1 + C ′ h−1supK sup

i∈K
‖φKi (wh)‖

For a polynomial approximation of degree k,
a sufficient condition to have a ‖ǫh‖ ≤ C h

k+1 is (in 2d)

φKi (wh) = O(h
k+2) , ∀Kh , ∀ i ∈ K

A local TE condition ..
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Design criteria, high order schemes

For a polynomial approximation of degree k,
a sufficient condition to have a ‖ǫh‖ ≤ C h

k+1 is (in 2d)

φKi (wh) = O(h
k+2) , ∀Kh , ∀ i ∈ K

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk)
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Design criteria, high order schemes

For a polynomial approximation of degree k,
a sufficient condition to have a ‖ǫh‖ ≤ C h

k+1 is (in 2d)

φKi (wh) = O(h
k+2) , ∀Kh , ∀ i ∈ K

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk)

High order prototype 1, Petrov-Galerkin

φKi (uh) =

∫

K

ωK
i ∇ · Fh(uh) , ‖ω

K
i ‖ < C <∞
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Design criteria, high order schemes

For a polynomial approximation of degree k,
a sufficient condition to have a ‖ǫh‖ ≤ C h

k+1 is (in 2d)

φKi (wh) = O(h
k+2) , ∀Kh , ∀ i ∈ K

1. w ∈ Hk+1 smooth solution : ∇ · F(w) = ∂uF(w) · ∇w = 0

2. w − wh = O(hk+1), F(w) −Fh(wh) = O(hk+1)

3. ∇(w − wh) = O(hk), ∇ · (F(w) −Fh(wh)) = O(hk)

High order prototype 2, accuracy preserving RD

φKi (uh) = βKi

∫

K

∇ · Fh(uh) = βKi φ
K(uh) , ‖β

K
i ‖ < C <∞

MARIO RICCHIUTO - Residual Distribution, Part I (CEMRACS 2012) July 19, 2012 - 112



High order schemes, examples

LDA scheme (P 1) elements

βLDA
i = k+i

(∑

j∈K

k+j
)−1

SUPG

ωK
i = ψi + ~a(uh) · ∇ψi τ , ~a(uh) = ∂uF(uh)
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4
LIMITERS

using them in reverse



Nonlinear high order schemes

So far we have

1. A “stability” criterion requiring an upwind bias (other
stabilization strategies mentioned later if time ..)

2. An accuracy (consistency) criterion requiring bounded
weights in the residual splitting

How about discontinuity capturing ?
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Discontinuity capturing : positivity

|Ci|
dui
dt

= −
∑

K|i∈K

φKi

Positive coefficient scheme (Spekreijse, Math.Comp. 49, 1987)

A scheme for which

φKi =
∑

j∈K
j 6=i

cKij (ui − uj) with cKik ≥ 0

s said to be LED (Local Extremum Diminishing)
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Discontinuity capturing : positivity

|Ci|
un+1

i − uni
∆t

= −
∑

K|i∈K

∑

j∈K
j 6=i

cKij (u
n
i − u

n
j )

Positive coefficient scheme (Spekreijse, Math.Comp. 49, 1987)

When combined with Explicit Euler time integration (or with
another boundedness preserving time integration scheme) LED
leads to

un+1

i =
∑

j

ciju
n
j

where

cij ≥ 0 ,
∑

j

cKij = 1 provided
∆t

|Ci|

∑

j

cij ≤ 1

In this case the scheme is said (by abuse of language) to be
positive
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Discontinuity capturing : positivity

|Ci|
un+1

i − uni
∆t

= −
∑

K|i∈K

∑

j∈K
j 6=i

cKij (u
n
i − u

n
j )

Positive coefficient scheme (Spekreijse, Math.Comp. 49, 1987)

When combined with Explicit Euler time integration (or with
another boundedness preserving time integration scheme) LED
leads to

un+1

i =
∑

j

ciju
n
j

where

cij ≥ 0 ,
∑

j

cKij = 1 provided
∆t

|Ci|

∑

j

cij ≤ 1

In this case the scheme is said (by abuse of language) to be
positive
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Discontinuity capturing : positivity

un+1
i =

∑

j

ciju
n
j

with
cij ≥ 0 ,

∑

j

cKij = 1

Positive coefficient scheme (Spekreijse, Math.Comp. 49, 1987)

A positive scheme verifies the discrete max principle

min
j
unj ≤ u

n+1
i ≤ max

j
unj
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Positive schemes : examples

Example 1 : Roe’s optimal N scheme

1

1

2

2

3

3

φN
1 = φK

φN
2 = φN

3 = 0
φN
1 = φK(~a1)

φN
2 = φK(~a2)

φN
3 = 0

~a

~a

~a1

~a2

φK(~a1) =
∫
K
~a1 · ∇uh

φK(~a2) =
∫
K
~a2 · ∇uh

The formula (Roe Cranfield U.Tech.Rep., 1987 ; Roe, Sidilkover SINUM, 1992)

φNi = k+i (ui − uin) , uin =

∑
j∈K

k−j uj

∑
j∈K

k−j
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Nonlinear high order schemes

Example 2 : Lax-Friedrich’s distribution

1

2

3

φT

φLFi =

∫

K

ψi∇ · Fh + αLF

∑

j∈K

(ui − uj)

for positivity (scalar case)

αLF ≥ hK sup
x∈K
‖∂uF(uh(x))‖
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Nonlinear high order schemes

Bad news ... (Godunov)

All linear positive (LED) schemes are first order accurate ...
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Nonlinear high order schemes

Where does the limiter come in
Recall that one prototype of a high order scheme is

φKi (uh) = βKi φ
K(uh) , ‖β

K
i ‖ ≤ C <∞
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Nonlinear high order schemes

Where does the limiter come in
Recall that one prototype of a high order scheme is

φKi (uh) = βKi φ
K(uh) , ‖β

K
i ‖ ≤ C <∞

For linear positive coefficient schemes

φPi (uh) =
∑

j∈K

cKij (ui − uj) , cKij ≥ 0

Formally we have

βPi (uh) =

∑
j∈K

cKij (ui − uj)

φK(uh)
in general unbounded !

MARIO RICCHIUTO - Residual Distribution, Part I (CEMRACS 2012) July 19, 2012 - 124



Nonlinear high order schemes

Where does the limiter come in
The idea : apply a limiter function to bound the distribution
coefficient
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Nonlinear high order schemes

Where does the limiter come in
The idea : apply a limiter function to bound the distribution
coefficient

βLPi (uh) =
ψ
(
βPi (uh)

)
∑
j∈K

ψ
(
βPj (uh)

)

The scaling on the denominator guarantees that
∑
j
βLPi = 1

What are the conditions on the limiter function ψ(·) ?
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Nonlinear high order schemes

Where does the limiter come in
Linear positive coefficient schemes

φPi (uh) =
∑

j∈K

cKij (ui−uj) , c
K
ij ≥ 0 ; βPi (uh) =

φPi (uh)

φK(uh)
unbounded

βLPi (uh) =
ψ
(
βPi (uh)

)
∑
j∈K

ψ
(
βPj (uh)

) limited distribution coefficient
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Nonlinear high order schemes

Where does the limiter come in
Linear positive coefficient schemes

φPi (uh) =
∑

j∈K

cKij (ui−uj) , c
K
ij ≥ 0 ; βPi (uh) =

φPi (uh)

φK(uh)
unbounded

βLPi (uh) =
ψ
(
βPi (uh)

)
∑
j∈K

ψ
(
βPj (uh)

) limited distribution coefficient

Provided ψ(r) ≥ 0 and
ψ(r)

r
≥ 0 we have

φLPi (uh) = βLPi φK =
βLPi
βPi︸︷︷︸
γP
i ≥0

φPi =
∑

j∈K

cLPij (ui−uj) , cLPij = γPi c
K
ij ≥ 0!
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High order schemes

High order RD scheme

1. Compute cell residual φK =
∮

∂K

Fh(uh) · dl

2. Compute linear positive distribution φPi =
∑

j c
K
ij (ui − uj)

3. Limit βP
i = φPi /φ

K → βLP
i = ψ(βP

i )/
(∑

j ψ(β
P
j )

)

4. Distribute cell residual φKi = βLPi φK

5. Evolve |Ci|
dui
dt

= −
∑

K|i∈K

φKi until steady state
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High order schemes

High order RD scheme

1. Compute cell residual φK =
∮

∂K

Fh(uh) · dl

2. Compute linear positive distribution φPi =
∑

j c
K
ij (ui − uj)

3. Limit βP
i = φPi /φ

K → βLP
i = ψ(βP

i )/
(∑

j ψ(β
P
j )

)

4. Distribute cell residual φKi = βLPi φK

5. Evolve |Ci|
dui
dt

= −
∑

K|i∈K

φKi until steady state

The simplest possible choice for ψ(·) is

ψ(r) = max(0, r)
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Examples

Rotational advection
Scalar example : ~a · ∇u = 0 with ~a = (y, 1− x) and bcs

uin =

{
cos(2π(x+ 0.5))2 if x ∈ [−0.75,−0.25]
0 otherwise

x

y

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

inlet outlet
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Examples (cont’d)

Rotational advection
N and Limited N (LN) schemes

x

y

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

N scheme

x

y

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

LN scheme

x

u

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 N
LN
Exact

outlet
data
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Examples (cont’d)

Rotational advection
LF and Limited LF (LLF) schemes

x

y

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

LF scheme

x

y

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

LLF scheme

x

u

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 LF
LLF
Exact

outlet
data
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Examples (cont’d)

Burger’s equation
Scalar example : ∇ · F(u) = 0 with F(u) = (u, u2

2 ) and bcs

u(x, y = 0) = 1.5− 2x

uin
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Examples (cont’d)

Burger’s equation

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

N scheme

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LN scheme

N and Limited N (LN) schemes

x

u

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N

LN

y = 0.3

y = 0.6
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Examples (cont’d)

Burger’s equation

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LF scheme

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LLF scheme

LF and Limited LF (LLF) schemes

x

u

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

LF

LLF

y = 0.3

y = 0.6
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Remarks on extension to systems

Historical perspective

Two approaches (Roe J.Comput.Phys, 1986 ; Nishikawa, Rad, Roe AIAA

Conf. 2001) and (van der Weide, Deconinck Comput.Fluid Dyn., Wiley 1996)

1. Local projection (wave decomposition) of the continuous
PDE to obtain (possibly decoupled) scalar equations
discretized independently

2. Formal matrix generalization in which the scalar flux
vector is replaced by a tensor and the ki = ~a · ~ni/2
coefficients become matrix flux Jacobians
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Remarks on extension to systems

Practical implementation

Hybrid of the two (Abgrall, Mezine J.Comput.Phys, 2004 ; Ricchiuto, Csik,

Deconinck J.Comput.Phys, 2005) :

◮ Matrix formulation for linear first order schemes

◮ Projection onto characteristic directions to obtain scalar
residuals to work with for the limiting procedure (similar
to FV limiting on characteristic var.s)
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Example 1 : Mach 3.6 scramjet inlet (Euler, perfect gas)

Mesh

N scheme

Nonlinear scheme
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Example 2 : Mach 10 bow shock (Euler, perfect gas)
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6
ON THE RELATIONS WITH

FEM, FV, DG, WENO FD, etc. etc.



Relations with other techniques

Continuous, Stabilized Finite Elements
By nature of the underlying approximation, these methods bear
close resemblance to stabilized continuous Galerkin methods as
e.g. the SUPG of (Hughes, Brooks CMAME, 1982) (bcs omitted)

∫

Ωh

ψi∇ · Fh(uh) +
∑

K∈Ωh

∫

K
~a(uh) · ∇ψi τ ~a(uh) · ∇uh = 0

which, as seen, can be written as the RD scheme

∑

K|i∈K

φKi = 0 with φKi =

∫

K

ψi∇·Fh(uh)+

∫

K
~a(uh)·∇ψi τ ~a(uh)·∇uh
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Relations with other techniques

Continuous, Stabilized Finite Elements
More generally, a Petrov-Galerkin method with test space
spanned by functions {ωi}i∈Ωh

such that ∀K ∈ Ωh

∑

j∈K

ωi

∣∣
K

=
∑

j∈K

ωK
i = 1

can be recast as a RD scheme

∑

K|i∈K

φKi = 0 with φKi =

∫

K

ωK
i ∇ · Fh(uh)
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Relations with other techniques : RD and FV

Which numerical flux defines your conservative statement ?

The first relation we have already seen : FV schemes can be
written such that they “sit” in an element

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0 , φKi =
∑

j∈K

(F̂ij −Fi) · ~n
K
ij
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Relations with other techniques : RD and FV

Which numerical flux defines your conservative statement ?

The first relation we have already seen : FV schemes can be
written such that they “sit” in an element

Here conservation is expressed by
the FV flux function F̂

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0 , φKi =
∑

j∈K

(F̂ij −Fi) · ~n
K
ij
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Relations with other techniques : RD and FV

Which numerical flux defines your conservative statement ?

A different view is to recast RD as FV on the median dual

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

|Ci|
dui
dt

+
∑

K|i∈K

∑

j∈K

F̂ij · ~n
K
ij = 0
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Relations with other techniques : RD and FV

Which numerical flux defines your conservative statement ?

A different view is to recast RD as FV on the median dual

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

|Ci|
dui
dt

= −
∑

K|i∈K

∑

j∈K

F̂ij ·~n
K
ij

What definition of F̂ij such
∑

j∈K

F̂ij · ~n
K
ij = βK

i φ
K

for a given φKi = βKi φ
K
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Relations with other techniques : RD and FV

Which numerical flux defines your conservative statement ?

A different view is to recast RD as FV on the median dual

i

i

j

j

K

fijCi
Cj

fK
ij ~nK

ij

~nK
il

l

~ni = −2(~nK
ij + ~nK

il )

|Ci|
dui
dt

= −
∑

K|i∈K

∑

j∈K

F̂ij ·~n
K
ij

What numerical flux F̂RD
ij

defines local conservation on
the median dual cell for RD ?
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Relations with other techniques : RD and FV

Which numerical flux defines your conservative statement ?

A different view is to recast RD as FV on the median dual.

|Ci|
dui
dt

= −
∑

K|i∈K

∑

j∈K

F̂RD
ij · ~n

K
ij

∑

j∈K

F̂RD
ij · ~n

K
ij = βK

i ΦK , ∀ i

What numerical flux F̂RD
ij

defines local conservation on
the median dual cell for RD ?

Answer in (Abgrall, 2012)

F̂RD
ij · ~nij = Ψi −Ψj with Ψi = βKi φ

K −Fi ·
~ni
2
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Relations with other techniques : RD and FV

Which numerical flux defines your conservative statement ?

A different view is to recast RD as FV on the median dual.

|Ci|
dui
dt

= −
∑

K|i∈K

∑

j∈K

F̂RD
ij ·~n

K
ij

What numerical flux F̂RD
ij

defines local conservation on
the median dual cell for RD ?

Answer in (Abgrall, 2012)

F̂RD
ij · ~nij = Ψi −Ψj with Ψi = βKi φ

K −Fi ·
~ni
2

Consistent 3-states
numerical flux function

This is still the RD scheme
we start with
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Relations with other techniques : RD and FV

i i+ 1i− 1

ui

ui+1

ui−1

i+ 1/2i− 1/2

FV fluxes from RD schemes
Starting point : conservation law

∂tu+ ∂xF(u) = 0

Conservative FV :

∆xi
dui
dt

+ F̂i+1/2 − F̂i−1/2 = 0
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Relations with other techniques : RD and FV

F̂i+1/2 = F̂(ui(xi+1/2), ui+1(xi+1/2))

F̂i−1/2 = F̂(ui−1(xi−1/2), ui(xi−1/2))

i i+ 1i− 1

ui(x)

ui+1(x)

ui−1(x)

i+ 1/2i− 1/2

FV fluxes from RD schemes
Conservative FV :

∆xi
dui
dt

+ F̂i+1/2 − F̂i−1/2 = 0
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Relations with other techniques : RD and FV

∆Fi = F(ui(xi+1/2)− F(ui(xi−1/2))

φ
i+1/2
i = F̂i+1/2 − F(ui(xi+1/2))

φ
i+1/2
i = F(ui+1(xi+1/2))− F̂i+1/2

i i+ 1i− 1

ui(x)

ui+1(x)

ui−1(x)

i+ 1/2i− 1/2

FV fluxes from RD schemes
Conservative FV, reformulation :

∆xi
dui
dt

+∆Fi + φ
i+1/2
i + φ

i−1/2
i = 0
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Relations with other techniques : RD and FV

∆Fi = F(ui(xi+1/2)− F(ui(xi−1/2))

φ
i+1/2
i = F̂i+1/2 − F(ui(xi+1/2))

φ
i+1/2
i = F(ui+1(xi+1/2))− F̂i+1/2

i i+ 1i− 1

ui(x)

ui+1(x)

ui−1(x)

i+ 1/2i− 1/2

FV fluxes from RD schemes
Conservative FV, reformulation :

∆xi
dui
dt

+∆Fi + φ
i+1/2
i + φ

i−1/2
i = 0

∆xi+1
dui+1

dt
+∆Fi+1 + φ

i+3/2
i+1 + φ

i+1/2
i+1 = 0
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Relations with other techniques : RD and FV

∆Fi = F(ui(xi+1/2)− F(ui(xi−1/2))

φ
i+1/2
i = F̂i+1/2 − F(ui(xi+1/2))

φ
i+1/2
i = F(ui+1(xi+1/2))− F̂i+1/2

i i+ 1i− 1

ui(x)

ui+1(x)

ui−1(x)

i+ 1/2i− 1/2

FV fluxes from RD schemes
Conservative FV, reformulation :

φ
i+1/2
i + φ

i+1/2
i+1 := φi+1/2 = F(ui+1(xi+1/2))−F(ui(xi+1/2))
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Relations with other techniques : RD and FV

h

l

x+

i−1/2

i

ui(x)

ui+1(x)

ui−1(x)

x+

i+1/2
x−

i−1/2
x−

i+1/2

FV fluxes from RD schemes

Integrate over each control volume : no need for numerical flux
(continuity through ghost elements)

In each ghost element apply any RD scheme which will provide
a definition for the numerical flux as x+i±1/2 − x

−
i±1/2 → 0
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Relations with other techniques : RD and FV

h

l

x+

i−1/2

i

ui(x)

ui+1(x)

ui−1(x)

x+

i+1/2
x−

i−1/2
x−

i+1/2

FV fluxes from RD schemes

∆xi
un+1

i − uni
∆t

+∆Fi + β
i+1/2
i φi+1/2 + β

i−1/2
i φi+1/2 = 0
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Relations with other techniques : RD and FV

F̂i+1/2 = F̂(ui(xi+1/2), ui+1(xi+1/2))

F̂i−1/2 = F̂(ui−1(xi−1/2), ui(xi−1/2))

i i+ 1i− 1

ui(x)

ui+1(x)

ui−1(x)

i+ 1/2i− 1/2

FV fluxes from RD schemes

∆xi
un+1
i − uni

∆t
+ F

RD

i+1/2 −F
RD

i−1/2 = 0

F
RD

i+1/2 =F(ui(xi+1/2)) + β
i+1/2
i φi+1/2

F
RD

i−1/2 =F(ui(xi−1/2))− β
i−1/2
i φi−1/2
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Relations with other techniques

Other examples

In (Chou, Shu J.Comput.Phys, 2006 ; Chou, Shu J.Comput.Phys, 2006) the
authors propose a WENO Finite Difference scheme consisting of
a RD technique using nodal WENO reconstructions instead of
Lagrange approximation. The RD formulation permits to keep
the simplicity of the WENO FD approach, while allowing high
accurate solutions on non-smooth cartesian meshes
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Relations with other techniques

Other examples

In (Abgrall, Shu Comm.Compu.Phys, 2009) DG schemes are recast as
RD. The key is defining the fluctuation including a numerical
flux F̂ as

φK =

∮

∂K
F̂ · n̂ dl

A preliminary construction of a hybrid DG-RD nonlinear
scheme is proposed
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Relations with other techniques

Other examples

Residual distribution schemes based on discontinuous
approximation explored in (Hubbard J.Comput.Phys, 2008 ; Abgrall

Adv.Appl.Math.Mech, 2010 ; Hubbard, Ricchiuto Computers & Fluids, 2011).

As before, the key is defining the fluctuation including a
numerical flux F̂ as

φK =

∮

∂K
F̂ · n̂ dl

RD techniques used to generate nonlinear schemes. The
advantages of the discontinuous approximation are retained
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Relations with other techniques

Important points

1. RD as a general framework to study weighted residual
discretizations on general meshes

2. RD as a means of constructing non-oscillatory schemes

3. RD to define FV numerical fluxes, interesting applications
in presence of source terms (see Part II)
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.. to be continued ...

M.R. web :
www.math.u-bordeaux1.fr/∼mricchiu

BACCHUS Inria team :
http://bacchus.bordeaux.inria.fr


	Finite Volume schemes and Fluctuations
	Design criteria
	Nonlinear schemes and limiters
	Relations with other techniques



