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3
VERY HIGH ORDER

RD schemes



Why higher (than second) order schemes

Main motivation
Efficiency of kth order method

ηk =
1

error× CPU
= ηscheme

k

1

nDoF−k hk

with ηscheme
k = 1/characteristic cost. The bigger ηscheme

k the
better the scheme.

Increasing ηscheme
k is hard.

But we can start by increasing k, thus boosting ηk

trying to minimize the nDoF-k required for a given error level
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How to get higher (than second) order schemes

How do we get high order mesh convergence rates...

1. Polynomial approximations of arbitrary degree

2. Discretizations verifying some conditions for some error
estimate to hold

CAVEAT

To get any asymptotic convergence rates, we need convergence

STABILITY plays a role

MARIO RICCHIUTO - Residual Distribution, Part II (CEMRACS 2012) July 19, 2012 - 5



Higher (than second) order

1. ∀K ∈ Ωh compute : φK =

∫

K
∇ · Fh(uh)

2. Distribution : φK =
∑
i∈K

φKi

Distribution
coeff.s : φKi =βKi φ

K

3. Compute nodal values :
solve algebraic system

∑

T |i∈T

φKi = 0, ∀ i ∈ Ωh (1)

K

φK

φK
1

φK
2 φK

3

i
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Higher (than second) order

Accuracy condition

For a polynomial approximation of degree k,
a sufficient condition to have a ‖ǫh‖ ≤ C hk+1 is (in 2d)

φKi (wh) = O(hk+2) , ∀Kh , ∀ i ∈ K

leading to the two high order prototypes

φKi =

∫

K

ωK
i ∇ · Fh(uh) , ‖ ωK

i ‖ < C <∞

φKi = βKi φ
K , ‖βKi ‖ < C <∞
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Higher (than second) order

Continuous Lagrange elements

P PP 1 2 3

Q1 Q
2 Q 3
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Higher (than second) order

RD on higher order elements

1. ∀K compute : φK =

∫

K

∇ · Fh(uh)

2. Distribution : φK =
∑
j∈K

φKj

Distribution
coeff.s : φKi =βKi φ

K

3. Evolution : lim
t→∞

of

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0
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Higher (than second) order

A naive approach
To solve the steady limit of

∂tu+ ~a · ∇u = 0

we write a scheme that “imitates” the P 1 LDA scheme

φKi = βK
i φ

K , βK
i = k+i

( ∑

j∈K

k+j
)−1

where recall that ki = ~a · ni defining the normals as

i
j

~ni

~nj

MARIO RICCHIUTO - Residual Distribution, Part II (CEMRACS 2012) July 19, 2012 - 10



Higher (than second) order

A naive approach
To solve the steady limit of

∂tu+ ~a · ∇u = 0

We solve the scalar
rotation problem we
saw earlier and get

Monotonicity ?

S
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Higher (than second) order

A naive approach
To solve the steady limit of

∂tu+ ~a · ∇u = 0

We solve the scalar
rotation problem we
saw earlier and get

Monotonicity ?

S
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Higher (than second) order

A second naive approach
To solve the steady limit of

∂tu+ ~a · ∇u = 0

1. Generalize the LF distribution
Lax-Friedrich’s (Rusanov) :

φLFi =
1

K
φK + αLF

∑

j∈T

(ui − uj)

LED scheme for

αLF ≥
1

2K
h sup

x∈K

‖∂uF(uh(x))‖
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Higher (than second) order

A second naive approach
To solve the steady limit of

∂tu+ ~a · ∇u = 0

1. Generalize the LF distribution

2. Apply the limiter as done in the P 1 case
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Higher (than second) order

We proceed as in the P 1 case

1. Evaluation of φK =
∮

∂K

Fh(uh) · ~n dl

2. Evaluation of φLFi =
1

K
φK + αLF

∑
j∈T

(ui − uj)

3. Limiting :

βLLF
i =

max(0, βLF
i )∑

j∈K

max(0, βLF
j )

4. Distribution : φLLFi = βLLF
i φK

(
= γiφ

LF
i , γi ∈ [0, 1]

)

5. Evolve until steady state. Example :

un+1
i = uni − ωi

∑
K

φLLFi
n→∞
−→

∑
K

φLLFi = 0
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Higher (than second) order

Scalar example : ∇ · F(u) = 0 with F(u) = (u, u2

2 ) and bcs

u(x, y = 0) = 1.5− 2x

uin
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Higher (than second) order
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Higher (than second) order

Scalar example : ~a · ∇u = 0 with ~a = (y, 1− x) and bcs

uin =

{
cos(2π(x+ 0.5))2 if x ∈ [−0.75,−0.25]
0 otherwise

x

y

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

inlet outlet
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Higher (than second) order
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Higher (than second) order

Structural problems

We observe two problems

1. The first is really structural

2. The second is related to stability and can be cured
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Higher (than second) order

Structural problems

We observe two problems

1. The first is really structural (Ricchiuto, 2011)

Proposition. (Advection, spurious modes) In 2d, any RD scheme
for which φKi = βK

i φ
K applied to P k triangles with k ≥ 2, and

Qk quads with k ≥ 1 has spurious modes. These modes can be
explicitly computed and are those for which ∀ f ∈ K

∫

f

uh = 0
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Higher (than second) order

Structural problems

We observe two problems

1. The first is really structural (Ricchiuto, 2011)

Proposition. (Advection, spurious modes) In 2d, any RD scheme
for which φKi = βK

i φ
K applied to P k triangles with k ≥ 2, and

Qk quads with k ≥ 1 has spurious modes. These modes can be
explicitly computed and are those for which ∀ f ∈ K

∫

f

uh = 0

The paradigm of Roe and Deconinck
has to be modified
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Higher (than second) order

Structural problems

We observe two problems

1. The first is really structural

2. The second is related to stability and can be cured :

the limited LF scheme is entirely built on the algebraic
preservation of the LED condition. No upwind bias is
introduced.
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Higher (than second) order

Solution to spurious modes 1 : modify the stencil

Enlarge the stencil to compute φK

1. Reconstruction operator R1k that maps the P 1

approximation to a degree k edge continuous polynomial.
This boils down to reconstructing gradients, hessians etc.
in the nodes. Explored in (Caraeni Computers & Fluids, 2005 ;

Chou, Shu J.Comput.Phys, 2006 ; Hubbard J.Comput.Phys, 2007)

2. Conformal sub-triangulation of the element, writing the
scheme by sub-cells while using the macro-cell to define the
polynomial. Explored in (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto

et al. J.Comput.Appl.Math, 2008 ; Vymazal et al. J.Comput.Phys, 2011).
similarities with the spectral volume of Z.J. Wang
(J.Comput.Phys) 2002.
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Higher (than second) order

Solution to spurious modes 1 : modify the stencil

Enlarge the stencil to compute φK

1. Reconstruction operator R1k (Caraeni Computers & Fluids, 2005 ;

Chou, Shu J.Comput.Phys, 2006 ; Hubbard J.Comput.Phys, 2007)

2. Conformal sub-triangulation, writing the scheme by
sub-cells (Abgrall, Roe J.Sci.Comp., 2003 ; Ricchiuto et al.

J.Comput.Appl.Math, 2008 ; Vymazal et al. J.Comput.Phys, 2011).
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Higher (than second) order

Scalar example : ~a · ∇u = 0 with ~a = (y, 1− x) and bcs

uin =

{
cos(2π(x+ 0.5))2 if x ∈ [−0.75,−0.25]
0 otherwise

x

y

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

inlet outlet
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Higher (than second) order

Solution to spurious modes 1 : modify the stencil

From (Hubbard J.Comput.Phys 2007), outlet data
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Higher (than second) order

Solution to spurious modes 1 : modify the stencil

L1 convergence
(Hubbard J.Comput.Phys 2007)
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Higher (than second) order

Solution to spurious modes 2

Distribute using variable weights. The scheme basically
becomes a Petrov-Galerkin FE-like method reading

∑

K∈Ωh

∫

K

ωK
i (x, y, uh)∇ · Fh(uh)

How to define ωK
i ?
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Higher (than second) order

Solution to spurious modes 2

Distribute using variable weights. The scheme basically
becomes a Petrov-Galerkin FE-like method reading

∑

K∈Ωh

∫

K

ωK
i (x, y, uh)∇ · Fh(uh)

How to define ωK
i ?

One example is Hughes’ SUPG scheme :

ωK
i = ψi + ~a(uh) · ∇ψi τ

and all the limiters stuff ?
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Higher (than second) order

Solution to spurious modes 2

Distribute using variable weights. The scheme basically
becomes a Petrov-Galerkin FE-like method reading

∑

K∈Ωh

∫

K

ωK
i (x, y, uh)∇ · Fh(uh)

How to define ωK
i ?

I will discuss one approach developed at Inria
(Abgrall, Larat, Ricchiuto J.Comput.Phys.) 2011
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Higher (than second) order
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Smooth solutions and spurious modes
{βp

i } 7→ {β∗

i }

~λ~λ

Think a lillte bit about it and ..
Things are OK in shocks. In smooth areas φK = O(hk+2) ≪ 1

(Abgrall, J.Comput.Phys 2006) :

◮ Linearize the nonlinear system
∑

K|i∈K

φKi = 0 : M∗
h = B∗

h

◮ M∗
h does not have full range : infinite solutions, hence

spurious modes
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Smooth solutions and spurious modes
{βp

i } 7→ {β∗

i }

~λ~λ

More simply (Out the door, back through the window...)
◮ The construction of the LLF scheme uses the algebraic

constraint (for LED)

φLFj × βLLF
j φK ≥ 0 → cLLFij = γKi c

LF
ij ≥ 0

◮ Upwinding not included in the process

◮ Locally can have “down-winding” or zero entries in
equation (as central scheme and advection)
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Smooth solutions and spurious modes
{βp

i } 7→ {β∗

i }

~λ~λ

More simply (Out the door, back through the window...)

Upwinding not included in the process ..

we want to “put it back in” in smooth regions .. how ?
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Higher order nonlinear Lax Friedrich’s scheme

The best we came up with so far
Add streamline diffusion (Abgrall J.Comput.Phys 2006 ; Abgrall, Larat,

Ricchiuto J.Comput.Phys 2011)

φLLFsi = βLLF
i φK + δ(uh)

∫

K

~a(uh) · ∇ψi τ ~a(uh) · ∇uh
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Higher order nonlinear Lax Friedrich’s scheme

The best we came up with so far
Add streamline diffusion (Abgrall J.Comput.Phys 2006 ; Abgrall, Larat,

Ricchiuto J.Comput.Phys 2011)

φLLFsi = βLLF
i φK︸ ︷︷ ︸

Nonlinear
LED scheme

+ δ(uh)

∫

K

~a(uh) · ∇ψi τ ~a(uh) · ∇uh

◮ As already seen
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Higher order nonlinear Lax Friedrich’s scheme

The best we came up with so far
Add streamline diffusion (Abgrall J.Comput.Phys 2006 ; Abgrall, Larat,

Ricchiuto J.Comput.Phys 2011)

φLLFsi = βLLF
i φK︸ ︷︷ ︸

Nonlinear
LED scheme

+ δ(uh)︸ ︷︷ ︸
Smoothness

sensor

∫

K

~a(uh) · ∇ψi τ ~a(uh) · ∇uh

◮ As already seen

◮ To identify smooth regions :

δ(uh) = O(h) in discontinuities
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Higher order nonlinear Lax Friedrich’s scheme

The best we came up with so far
Add streamline diffusion (Abgrall J.Comput.Phys 2006 ; Abgrall, Larat,

Ricchiuto J.Comput.Phys 2011)

φLLFsi = βLLF
i φK︸ ︷︷ ︸

Nonlinear
LED scheme

+ δ(uh)︸ ︷︷ ︸
Smoothness

sensor

∫

K

~a(uh) · ∇ψi τ ~a(uh) · ∇uh

︸ ︷︷ ︸
Streamline
dissipation

◮ As already seen

◮ To identify smooth regions :

δ(uh) = O(h) in discontinuities

◮ Exactly as in the SUPG scheme
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Higher order nonlinear Lax Friedrich’s scheme

~a · ∇u = 0 on [−1, 1]× [0, 1]

x

y

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

i o

MARIO RICCHIUTO - Residual Distribution, Part II (CEMRACS 2012) July 19, 2012 - 40



Higher order nonlinear Lax Friedrich’s scheme
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Higher order nonlinear Lax Friedrich’s scheme
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Higher order nonlinear Lax Friedrich’s scheme

∇ ·
(
u ,
u2

2

)
= 0 on [0, 1]2

u
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Higher order nonlinear Lax Friedrich’s scheme
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Extension to systems

◮ All the steps extend formally

◮ Limiting step can either be done eq. by eq. or by a
characteristic projection (as in FV schemes)
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Example 1 : Mach 3.6 scramjet inlet (Euler, perfect gas)

Mesh

LLFs scheme : P 1 on conformally refined mesh

LLFs scheme : P 2
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Scramjet inlet

x
8 10 12

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x
8 10 12

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

LLFs(P 1/P 2
dof )

LLFs(P 2)

x
2 4 6 8 10 12

2

2.5

3

3.5

P1/P2
dof

P2

Ma - top wall
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Euler equations : subsonic cylinder
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Euler equations : subsonic cylinder

Conformally refined P 1 −Q1 (left) vs P 2 −Q2 (right)
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Grid convergence (entropy)

MARIO RICCHIUTO - Residual Distribution, Part II (CEMRACS 2012) July 19, 2012 - 50



MARIO RICCHIUTO - Residual Distribution, Part II (CEMRACS 2012) July 19, 2012 - 51

4
RD BASED SCHEMES

for viscous problems



Navier-Stokes and viscous problems

Consider now the problem

∇ · F(u) = ∇ · Fν(u,∇u)

where most often

Fν(u,∇u) = D∇u with D a SPD matrix
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Navier-Stokes and viscous problems

Consider now the problem

∇ · F(u) = ∇ · Fν(u,∇u)

where most often

Fν(u,∇u) = D∇u with D a SPD matrix

Early work on the extension of RD to this problem used a
Galerkin approximation for the viscous term (Paillere et al

Int.J.Num.Meth.Fluids 1996). :

∑

K|i∈K

βK
i φ

K +

∫

Ωh

D∇uh · ∇ψi = 0

This “decoupling” introduces a loss of accuracy in the so-called
Pe=1 region (Ricchiuto et al J.Comput.Appl.Math 2008).
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Navier-Stokes and viscous problems

Consider now the problem

∇ · F(u) = ∇ · Fν(u,∇u)

where most often

Fν(u,∇u) = D∇u with D a SPD matrix

Early work on the extension of RD to this problem used a
Galerkin approximation for the viscous term (Paillere et al

Int.J.Num.Meth.Fluids 1996).

Attempts at improving this while keeping the viscous term in a
variational form (Ricchiuto et al J.Comput.Appl.Math 2008 ; Villedieu et al

J.Comput.Phys 2011) successful in the P 1 case and hard to justify in
general (despite some interesting numerical results).
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Navier-Stokes and viscous problems

∇ · F(u) = ∇ · Fν(u,∇u) , Fν(u,∇u) = D∇u

A more sound approach : include the viscous flux in the element
residual and carry it along together with the hyperbolic terms :

1. Evaluate

φK(uh) =

∮

∂K

(Fh(uh)−Fν
h (uh,∇uh)) · n̂

2. Solve for t→ ∞

|Ci|
dui
dt

+
∑

K|i∈K

βK
i φ

K(uh) = 0
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Navier-Stokes and viscous problems

This approach introduces several issues which are only partially
dealt with in

1. (Caraeni, Fuchs Computes & Fluids 2005)

2. (Chou, Shu J.Comput.Phys 2007)

3. (Nishikawa J.Comput.Phys 2007 ; Nishikawa J.Comput.Phys 2010 ;

Nishikawa Computers & Fluids 2011)

4. (Abgrall et al Int.J.Num.Meth.Fluids 2012 ; Abgrall, De Santis, Ricchiuto

ICCFD7 2012)

The objective is to give a little insight in these issues
pointing out the common points with other numerical schemes
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Navier-Stokes and viscous problems

Let us stick to the steady limit of (ν a constant viscosity)

∂tu+ ~a · ∇u = ν∆u

Issue 1 : C0 continuity
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Navier-Stokes and viscous problems

Let us stick to the steady limit of (ν a constant viscosity)

∂tu+ ~a · ∇u = ν∆u

Issue 1 : C0 continuity
The underpinning approximation of the solution in RD methods
is only C0 continuous across the faces on which the hyperbolic
flus is evaluated. But now (even in the P 1 case) :

φK =

∮

∂K

uh~a · n̂−

∮

∂K

ν∇uh · n̂
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Navier-Stokes and viscous problems

Let us stick to the steady limit of (ν a constant viscosity)

∂tu+ ~a · ∇u = ν∆u

Issue 1 : C0 continuity
The underpinning approximation of the solution in RD methods
is only C0 continuous across the faces on which the hyperbolic
flus is evaluated. But now (even in the P 1 case) :

φK =

∮

∂K

uh~a · n̂−

∮

∂K

ν∇uh · n̂︸ ︷︷ ︸
Not defined

on ∂K
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Navier-Stokes and viscous problems

Let us stick to the steady limit of (ν a constant viscosity)

∂tu+ ~a · ∇u = ν∆u

Issue 1 : C0 continuity
The underpinning approximation of the solution in RD methods
is only C0 continuous across the faces on which the hyperbolic
flus is evaluated. But now (even in the P 1 case) :

φK =

∮

∂K

uh~a · n̂−

∮

∂K

F̂ν
h (∇uu

∣∣
K
,∇uu

∣∣
K′

) · n̂

Conditions on F̂ν
h

1. Consistency : F̂ν
h = ν∇u if built using C1 continuous data

2. Accuracy : F̂ν
h − ν∇u = O(hk+1) on P k is u is smooth
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Navier-Stokes and viscous problems

Issue 1 : C0 continuity

φK =

∮

∂K

uh~a · n̂−

∮

∂K

F̂ν
h (∇uu

∣∣
K
,∇uu

∣∣
K′

) · n̂

Conditions on F̂ν
h

1. Consistency : F̂ν
h = ν∇u if built using C1 continuous data

2. Accuracy : F̂ν
h − ν∇u = O(hk+1) on P k is u is smooth

Solutions proposed

◮ Gradient reconstruction in the degrees of freedom

◮ First order formulation of the problem

MARIO RICCHIUTO - Residual Distribution, Part II (CEMRACS 2012) July 19, 2012 - 61



Navier-Stokes and viscous problems

Issue 1 : C0 continuity and gradient reconstruction

◮ Reconstruct in every degree of freedom i ∈ Ωh an accurate
value of ∇ui using the set of values

{
uj , ∀ j ∈ K and ∀K ∈ Ωh

∣∣i ∈ K
}

◮ Set ∇̂uh =
∑

j ψj∇uj

◮ Set F̂ν
h = ν∇̂uh
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Navier-Stokes and viscous problems

Reconstruction procedures

◮ Green-Gauss reconstruction

◮ Least squares reconstruction

◮ L2 projection

Gradient reconstruction : pros & cons

◮ Well known procedures in the FV framework +

◮ Simple enough and can be coded efficiently +

◮ Non local -

◮ Accuracy condition : ∇uj −∇uex(xj) = O(hk+1) -
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Navier-Stokes and viscous problems

Gradient Reconstruction procedures

◮ Simple and efficient approaches limited to second and third
order accuracy

◮ More complex WENO reconstructions up to fourth order in
(Chou, Shu J.Comput.Phys 2007) but limited to structured meshes
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Navier-Stokes and viscous problems

Issue 1 : C0 continuity and FOS
Recast the problem as the limit of the First Order System

∂tu+ ~a · ∇u− ν∂xp− ν∂yq = 0
TR ∂tp+ p− ∂xu = 0
TR ∂tq + q − ∂yu = 0

Write a scheme for the coupled system until steady state.
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Navier-Stokes and viscous problems

FOS pros & cons

◮ Works very well +

◮ Relaxation time TR can be optimized to achieve fast
convergence +

◮ Very memory demanding -

◮ Extension to Navier-Stokes difficult (see next) -

◮ A different way to look at the mixed problem

◮ Due to the coupling, equivalent at steady state to an
(expensive) “implicit reconstruction” technique

∇̂uh = F (uh,∇uh, ∇̂uh)
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Navier-Stokes and viscous problems

Let us stick to the steady limit of (ν a constant viscosity)

∂tu+ ~a · ∇u = ν∆u

Issue 2 : what is the correct “distribution direction” ?
How do we distribute the element residual

φK =

∮

∂K

uh~a · n̂−

∮

∂K

F̂ν
h · n̂

In 1d reduces to the a problem very similar to finding a
viscous numerical flux with the right stability properties

faced in the DG community
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Navier-Stokes and viscous problems

Issue 2 : what is the correct “distribution direction” ?
How do we distribute the element residual

φK =

∮

∂K

uh~a · n̂−

∮

∂K

F̂ν
h · n̂

Three approaches

1. Blend the ν = 0 scheme with a central scheme. Blending
parameter written as a function of the Reynolds number
(Peclet)

ReK =
‖~a‖K hK

ν

Stability problems (weak iterative convergence)
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Navier-Stokes and viscous problems

Issue 2 : what is the correct “distribution direction” ?

∂tu+ ~a · ∇u− ν∂xp− ν∂yq = 0
TR ∂tp+ p− ∂xu = 0
TR ∂tq + q − ∂yu = 0

Three approaches

2. Discretize the coupled First Order System
◮ The system is hyperbolic : use standard RD techniques
◮ Optimization of TR : fast convergence with explicit time

stepping. ∆t = O(h) offsets the cost of extra equations
◮ Convergence rates of O(hk+1) in the H1 norm attainable
◮ Memory demanding
◮ Navier-Stokes remains a challenge
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Navier-Stokes and viscous problems

Issue 2 : what is the correct “distribution direction” ?
How do we distribute the element residual

φK =

∮

∂K

uh~a · n̂−

∮

∂K

F̂ν
h · n̂

Three approaches

3. Use the FOS to derive an equation for u. In the coupling
terms containing the FOS gradients, replace these by
reconstructed gradients.

◮ Allows to define viscous numerical fluxes for DG, FV , etc.
(Nishikawa Computers & Fluids 2011)

◮ Works very well with the central (or nonlinear) +
streamline dissipation developed at Inria

◮ With simple schemes allows Navier-Stokes
◮ Limited by the accuracy of the gradient reconstruction
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Laminar flat plate

From (Abgrall, De Santis, Ricchiuto ICCFD7 2012)

Ma∞ = 0.3 , Re∞ = 5000

Coarse grid

MARIO RICCHIUTO - Residual Distribution, Part II (CEMRACS 2012) July 19, 2012 - 71



Laminar flat plate

Skin friction coefficient vs Blasius’ laminar boundary layer theory
Left : P 1, Right : P 2
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Laminar flat plate

Typical iterative convergence (matrix free GMRES, LU-SGS prec.)
Left : P 1, Right : P 2
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Laminar delta wing computations

From (Abgrall, De Santis, Ricchiuto ICCFD7 2012)

X

Y

Z

Ma∞ = 0.3 , Re∞ = 2000 , AoA = 12.5◦
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Laminar delta wing computations

2 cycles of refinement based on vorticity magnitude
(MMG3D generator by C.Dobrzynski available under GNU GPL license at

http://www.math.u-bordeaux1.fr/ cdobrzyn/logiciels/mmg3d.php)

Fine grid 600k tets
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Laminar delta wing computations

Flow separation and Mach number (P 1 scheme)
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Laminar delta wing computations

Flow separation and vorticity magnitude (P 1 scheme)
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Laminar delta wing computations

Flow separation, Mach number and vorticity (P 1 vs P 2)
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Laminar delta wing computations. Drag coefficient

Reference value from (Leicht, Hartmann J.Comput.Phys. 2010) using a
second order DG scheme with adjoint based error estimation
and grid adaptation (finest meshes 2.5M elements) :

CD = 0.1658

Initial grid P 1 0.145
Adapted grid 1, P 1 0.146
Adapted grid 2, P 1 0.147
Adapted grid 2, P 2 0.162
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2
TIME DEPENDENT

... problems ...



Time dependent problems

We now consider the time dependent advection equation

∂tu+ ~a · ∇u = 0
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Time dependent problems

We now consider the time dependent advection equation

∂tu+ ~a · ∇u = 0

The accuracy problem
The prototype

|Ci|
dui
dt

+
∑

K|i∈K

φKi = 0

with ∑

j∈K

φKj =

∫

K

~a · ∇uh ∀K ∈ Ωh

is in general first order accurate in space.
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Time dependent problems

|Ci|
dui
dt

+
∑

K|i∈K

βK
i φ

K = 0 , φK =

∫

K

~a · ∇uh

Time continuous error analysis

P 1 triangles to fix ideas (Deconinck, Ricchiuto Enc.Comput.Mech. 2007)
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Time dependent problems

|Ci|
dui
dt

+
∑

K|i∈K

βK
i φ

K = 0 , φK =

∫

K

~a · ∇uh

Time continuous error analysis

P 1 triangles to fix ideas (Deconinck, Ricchiuto Enc.Comput.Mech. 2007).

(i) Let w be a smooth exact solution : ∂tw + ~a · ∇w = 0

(ii) Set wi(t) = w(t, xi, yi)

(iii) Let φK(wh) the quantity obtained when formally replacing
the nodal values of the numerical solution by the wis

(iii) ψ ∈ C1
0 compactly supported smooth function, ψi = ψ(xi, yi)

(iv) define the integral truncation error

ǫ(w,ψ) :=
∣∣ ∑

i∈Ωh

∑

K|i∈K

ψi

(
|Ci|

dwi

dt
+ βK

i φ
K(wh)

)∣∣
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Time dependent problems

|Ci|
dui
dt

+
∑

K|i∈K

βK
i φ

K = 0 , φK =

∫

K

~a · ∇uh

Time continuous error analysis

Proceeding as in the steady case :

ǫ(w,ψ) =
∣∣∣
∑

K∈Ωh

∑

j∈K

ψj

(
|Cj |

dwj

dt
+ βKj φ

K(wh)
)∣∣∣
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Time dependent problems

|Ci|
dui
dt

+
∑

K|i∈K

βK
i φ

K = 0 , φK =

∫

K

~a · ∇uh

Time continuous error analysis

Proceeding as in the steady case :

ǫ(w,ψ) ≤
∣∣∣
∫

Ω

ψh

(
∂t(wh − w) + ~a · ∇(wh − w)

)∣∣∣

+
∑

K∈Ωh

∑

i,j∈K

|ψj − ψi|
(∣∣∣|Cj |

dwj

dt
+ βKj φ

K(wh)
∣∣∣

+
∣∣∣
∫

K

ϕi

(
∂t(wh − w) + ~a · ∇(wh −w)

)∣∣∣
)
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Time dependent problems

|Ci|
dui
dt

+
∑

K|i∈K

βK
i φ

K = 0 , φK =

∫

K

~a · ∇uh

Time continuous error analysis

Estimating terms (approximation theory on P 1 triangles)

ǫ(w,ψ) ≤ C1h
2 + C2h

−1 sup
K∈Ωh
j∈K

∣∣∣|Cj |
dwj

dt
+ βK

j φ
K(wh)

∣∣∣

Second order local truncation error condition :

sup
K∈Ωh
j∈K

∣∣∣|Cj |
dwj

dt
+ βK

j φ
K(wh)

∣∣∣ = sup
K∈Ωh
j∈K

ǫKj ≤ Ch3
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Time dependent problems

|Ci|
dui
dt

+
∑

K|i∈K

βK
i φ

K = 0 , φK =

∫

K

~a · ∇uh

Time continuous error analysis

Pushing it a bit more :

ǫKj | =
∣∣∣|Cj |

dwj

dt
+ βK

j

∫

K

~a · ∇wh

∣∣∣

=
∣∣∣|Cj |

dwj

dt
− βK

j

∫

K

∂twh + βK
j

∫

K

(
∂t(wh − w) + ~a · ∇(wh − w)

)∣∣∣

≤
∣∣∣|Cj |

dwj

dt
− βK

j

∫

K

∂twh

∣∣∣+ Ch3
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Time dependent problems

|Ci|
dui
dt

+
∑

K|i∈K

βK
i φ

K = 0 , φK =

∫

K

~a · ∇uh

Time continuous error analysis

Second order accuracy constraint :

∣∣∣|Cj |
dwj

dt
− βK

j

∫

K

∂twh

∣∣∣ ≤ Ch3

Only true for : centered scheme (mass lumping stuff)
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Time dependent problems

High order schemes : time dependent case

There is a number of different ways to do it right discussed in

◮ (Hubbard, Roe Iint.J.Num.Meth.Fluids 2000)

◮ (Csik, Ricchiuto, Deconinck AIAA CP 2001)

◮ (Abgrall, Mezine J.Comput.Phys. 2003)

◮ (Abgrall, Andrianov, Mezine J.Comput.Phys. 2003)

◮ (Caraeni, Fuchs Computers & Fluids 2005)

◮ (Ricchiuto, Csik, Deconinck J.Comput.Phys. 2005)

◮ (Dobes, Deconinck J.Comput.Appl.Math. 2008)

◮ (Ricchiuto, Bollermann J.Comput.Phys. 2009)

◮ (Ricchiuto, Abgrall J.Comput.Phys. 2010)

◮ (Hubbard, Ricchiuto Computers & Fluids 2011)

.. and references therein ...
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Time dependent problems

The main idea is to recover second (to fix ideas) order accuracy
in space by modifying the (semi-)discrete equations as follows :

1. ∀K ∈ Ωh compute :

φK =

∫

K

(
∂tuh +∇ · Fh(uh)

)

2. Distribution : φKi = βK
i φ

K

3. Integrate ODE system
∑

T |i∈T

βK
i φ

K = 0 :

∑

T |i∈T

βK
i

∫

K

∂tuh = −
∑

T |i∈T

βK
i

∫

K

∇ · Fh(uh)

K

φK

φK
1

φK
2 φK

3

i
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Time dependent problems

Remarks

◮ After time discretization, independently on the explicit or
implicit nature of the time stepping scheme, we end with a
nonlinear system of equations of the type

M(un+1)un+1 +∆tF (un+1) = ∆tG(un, tun−1, . . .)

where M depends on un+1 via the βK
i
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Time dependent problems

Remarks

◮ After time discretization, independently on the explicit or
implicit nature of the time stepping scheme, we end with a
nonlinear system of equations of the type

M(un+1)un+1 +∆tF (un+1) = ∆tG(un, tun−1, . . .)

◮ As in all weighted residual methods we have a mass matrix
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Time dependent problems

Remarks

◮ After time discretization, independently on the explicit or
implicit nature of the time stepping scheme, we end with a
nonlinear system of equations of the type

M(un+1)un+1 +∆tF (un+1) = ∆tG(un, tun−1, . . .)

◮ As in all weighted residual methods we have a mass matrix

◮ Even for simple wave propagation problems, almost all of
these schemes do not allow simple high order explicit (e.g.
Runge-Kutta) time stepping
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Time dependent problems

Remarks

◮ After time discretization, independently on the explicit or
implicit nature of the time stepping scheme, we end with a
nonlinear system of equations of the type

M(un+1)un+1 +∆tF (un+1) = ∆tG(un, tun−1, . . .)

◮ As in all weighted residual methods we have a mass matrix

◮ Even for simple wave propagation problems, almost all of
these schemes do not allow simple high order explicit (e.g.
Runge-Kutta) time stepping

◮ A lot of effort has gone into understanding how and if to
modify the distribution strategy w.r.t the steady state case
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Time dependent problems : genuinely explicit schemes

Explicit stabilization operators for stabilized FEM

Exception to the rule : (Ricchiuto, Abgrall J.Comput.Phys 2010).
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Time dependent problems : genuinely explicit schemes

Explicit stabilization operators for stabilized FEM

Exception to the rule : (Ricchiuto, Abgrall J.Comput.Phys 2010).
Idea explained for SUPG
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Time dependent problems : genuinely explicit schemes

Explicit stabilization operators for stabilized FEM

Exception to the rule : (Ricchiuto, Abgrall J.Comput.Phys 2010).
Idea explained for SUPG

◮ Consider an explicit (single- or multi-step) high order time
integration scheme

u′ + f(u) = 0 → un+1 − un +∆tE(un, un−1, . . .) = 0

◮ Assume that, given a smooth exact solution w, the scheme
has the local truncation error

ǫn = |wn+1 − wn +∆tE(wn, wn−1, . . .)| = C∆tp+1

◮ Now set set f(u) = ∇ · F(u) in our ODE
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Time dependent problems : genuinely explicit schemes

Explicit stabilization operators for stabilized FEM
The SUPG finite element scheme reads

∫

Ωh

ψi

(
un+1
h − unh +∆tEh(u

n
h, u

n−1
h , . . .)

)

+
∑

K|i∈K

∫

K

~a(unh) · ∇ψi τ
(
un+1
h − unh +∆tEh(u

n
h, u

n−1
h , . . .)

)
= 0
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Time dependent problems : genuinely explicit schemes

Explicit stabilization operators for stabilized FEM
The SUPG finite element scheme reads

∫

Ωh

ψi

(
un+1
h − unh +∆tEh(u

n
h, u

n−1
h , . . .)

)

+
∑

K|i∈K

∫

K

~a(unh) · ∇ψi τ
(
un+1
h − unh +∆tEh(u

n
h, u

n−1
h , . . .)

)
= 0

To remain consistent, the streamline dissipation term contains
the whole unsteady residual leading to a skew algebraic system

despite of the explicit time integration
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Time dependent problems : genuinely explicit schemes

Explicit stabilization operators for stabilized FEM
In (Ricchiuto, Abgrall J.Comput.Phys 2010) : without any formal loss of
accuracy, the time dependent residual in the stabilization term
can be replaced by a weakly consistent shifted one

L∑

l=0

αlu
n−l
h +∆tEh(u

n
h, u

n−1
h , . . .)

that for a smooth solution w satisfies a lower order consistency
estimate

|

L∑

l=0

αlw
n−l +∆tE(wn, wn−1, . . .)| = C′∆tp
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Time dependent problems : genuinely explicit schemes

Explicit stabilization operators for stabilized FEM
The SUPG finite element scheme is modified as

∫

Ωh

ψi

(
un+1
h − unh +∆tEh(u

n
h, u

n−1
h , . . .)

)

+
∑

K|i∈K

∫

K

~a(unh) · ∇ψi τ
( L∑
l=0

αlu
n−l
h +∆tEh(u

n
h, u

n−1
h , . . .)

)
= 0

It remains to invert the SPD Galerkin mass matrix
or further simplify via mass lumping
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Time dependent problems : genuinely explicit schemes

Explicit stabilization operators for stabilized FEM
The SUPG finite element scheme is modified as

∫

Ωh

ψi

(
un+1
h − unh +∆tEh(u

n
h, u

n−1
h , . . .)

)

+
∑

K|i∈K

∫

K

~a(unh) · ∇ψi τ
( L∑
l=0

αlu
n−l
h +∆tEh(u

n
h, u

n−1
h , . . .)

)
= 0

It remains to invert the SPD Galerkin mass matrix
or further simplify via mass lumping

Same construction allows to obtain genuinely explicit second
order nonlinear RD

Higher order in the works

MARIO RICCHIUTO - Residual Distribution, Part II (CEMRACS 2012) July 19, 2012 - 103



Time dependent problems : shock “bubble” interaction

RD (CN in time, unstructured h = 1/200)

(Holden et al J.Comput.Phys 1999, cartesian h = 1/400)
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Time dependent problems : double Mach reflection

Reflection of a Ma=10 moving shock on a 30 ramp
Comparison on the same grid with cell centered FV + limiter of

Barth and Jespersen + RK2

MARIO RICCHIUTO - Residual Distribution, Part II (CEMRACS 2012) July 19, 2012 - 105



MARIO RICCHIUTO - Residual Distribution, Part II (CEMRACS 2012) July 19, 2012 - 106

5
SHALLOW WATER

SIMULATIONS

with RD based schemes



RD for Shallow Water simulations

∂tH +∇ · (H~v) = 0

∂t(H~v) +∇ · (H~v ⊗ ~v + g
H2

2
I) + gH(∇b+ cf~v) = 0

◮ good in deep water

◮ not very good in the surf region
and before wave break up (need
non-hydrostatic corrections)

◮ quite good at predicting runup on
sloping shores and flooding

B

η

~v

H

x
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RD for Shallow Water simulations

∂tH +∇ · (H~v) = 0

∂t(H~v) +∇ · (H~v ⊗ ~v + g
H2

2
I) + gH(∇b+ cf~v) = 0

Numerical challenges

◮ Std stuff of hyperbolic conservation laws (shocks, contacts,
expansions, etc) ;

◮ Dry are areas (H = 0) way more common than zero density
in gas dynamics ;

◮ Source terms dominated flows ;

◮ A large number of simple and non-trivial equilibria flux
div-source term ;
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RD for Shallow Water simulations

∂tH +∇ · (H~v) = 0

∂t(H~v) +∇ · (H~v ⊗ ~v + g
H2

2
I) + gH(∇b+ cf~v) = 0

Interesting topics

◮ Preservation of equilibria with RD (well balancedness or
C-property)

◮ Construction of well balanced FV fluxes using RD

◮ Long wave run up on complex bathymetries
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RD for Shallow Water simulations

Equilibria with invariants I : homoenergetic frictionless flows
Consider the following set of derived quantities :

E = gη +
‖~v‖2

2
(total energy)

~q = H~v (discharge)

Under the compatibility condition ~v⊥ · ∇b = 0, the shallow water
equations admit the family of steady solutions

E = gη +
‖~v‖2

2
= E0

~q = H~v = ~q0

The condition ~v⊥ · ∇b = 0 only allows pseudo-one dimensional
flows, with no cross-wind bathymetry variations.
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RD for Shallow Water simulations

Equilibria with invariants I & 1/2 : lake at rest
For ~v = 0 we recover the well known lake at rest state

η = η0

~v = 0

The velocity being null, the bathymetry can be arbitrary
without violating the compatibility condition.

Constant energy
Lake at rest
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RD for Shallow Water simulations

Equilibria with invariants II : sloping channels with friction and
transverse bed variations

b(x, y) = b0 − ξ0x+ β(y)

η = η0 − ξ0x

H = H0 − β(y)

cf(u(y), H(y))u(y) = ξ0 = −∂xb

Pseudo 1d flow with transverse
bathymetry, depth, velocity variations.
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RD for Shallow Water simulations

Equilibria with invariants III : C-property

A scheme is said to verify the C-property (Conservation) for a
certain steady equilibrium if it is able to preserve ir exactly and
indefinitely (Bermudez, Vazquez Computers & Fluids)

One speaks of approximate C-property, if the equilibrium is
preserved within a certain error, smaller than the truncation of
the scheme. In this case, here we say that the discretization is
super-consistent with the given equilibrium.

Schemes verifying the C-property are often referred to as
well-balanced (Greenberg, Leroux SISC 1996)
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RD for Shallow Water simulations

∂tu+∇ · F(u) + S(u, x, y) = 0 on Ω× [0, Tf ] ⊂ R
2 × R

+

Super consistency results forRD schemes on P 1 triangles
Consider now the RD schemes obtained as some form of

∑

K|i∈K

βK
i

∫

K

(
∂tuh +∇ · Fh + Sh

)
= 0
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RD for Shallow Water simulations

∂tu+∇ · F(u) + S(u, x, y) = 0 on Ω× [0, Tf ] ⊂ R
2 × R

+

Super consistency results forRD schemes on P 1 triangles
Consider now the RD schemes obtained as some form of

∑

K|i∈K

βK
i

∫

K

(
∂tuh +∇ · Fh + Sh

)
= 0

Since the whole equation is “carried along” in the distribution
it is natural to expect that equilibria between different terms

should be resolved accurately
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RD for Shallow Water simulations

Main result (Ricchiuto, 2011)

On P 1 meshes, high order RD schemes preserve exactly steady
equilibria with a set of invariants v provided that

1. exact integration is used

2. the approximation of the flux and of the source term is
written as Fh = F(vh), Sh = S(vh)

For approximate quadrature and for a smooth enough
bathymetry the super consistency estimate holds

|ǫh| ≤ C hl , l = min(pf + 1, pv + 2)

with pf and pv the degrees of the polynomials exactly
integrated by the quadrature formulae used.
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RD for Shallow Water simulations

Meaning and remarks

◮ Equilibria described by v=const :

1. homoenergetic flow : v=[E , ~q]
2. lake ate rest : v=[η, ~q]
3. channel flows with friction (no transverse b) : v= [H, ~v]

◮ v is interpolated and everything else derived from its values

◮ perturbation = quadrature error in computing φK(vh)

◮ Similar to FV (Gallouet, Hérard, Seguin Computers & Fluids 2003 ;

Noelle, Xing, Shu J.Comput.Phys. 2007) but here unstructured
triangulations
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RD for Shallow Water simulations

Example : homoenergetic flow, unstructured triangular grids

... video ...
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RD for Shallow Water simulations

Example : homoenergetic flow, unstructured triangular grids

The scheme is second order accurate
Dependence by data regularity well described by theory
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RD for Shallow Water : construction of FV fluxes

∂t

[

h
hu

]

+ ∂x





hu

hu2 + g
h2

2



+ gh∂x

[

0
b(x)

]

= 0

Integrate over cell i plus RD scheme on ghost cells

∆xi
un+1

i − un
i

∆t
+ f(ui(x

−

i+1/2
))− f(ui(x

+

i−1/2
)) + Si+

β
i−1/2
i

(

f(ui(x
+

i−1/2
))− f(ui−1(x

−

i−1/2
)) + Si−1/2

)

+

β
i+1/2
i

(

f(ui+1(x
+

i+1/2
)) − f(ui(x

−

i+1/2
) + Si+1/2

)

= 0

h

l

x+

i−1/2

i

ui(x)

ui+1(x)

ui−1(x)

x+

i+1/2
x−

i−1/2
x−

i+1/2
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RD for Shallow Water : construction of FV fluxes
For a linear approximation of b(x)

Si = gh̃i(bi(x
−

i+1/2
)− bi(x

+

i−1/2
))

Si−1/2 = gh̃i−1/2(bi(x
+

i−1/2
)− bi−1(x

−

i−1/2
))

Si−1/2 = gh̃i+1/2(bi+1(x
+

i+1/2
)− bi(x

−

i+1/2
))

The actual value of the average height h̃ only depends on the interpolation within

the cells.

h

l

x+

i−1/2

, u

i

ui(x)

ui+1(x)

ui−1(x)

x+

i+1/2
x−

i−1/2
x−

i+1/2
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RD for Shallow Water : construction of FV fluxes
Using the well balanced RD approach we get in general

h̃i−1/2 =
1

x+

i−1/2
− x−

i−1/2

x
+

i−1/2
∫

x−

i−1/2

h(

[

h+ b+ u2/2g
hu

]

) =
∑

gp

ωgph(

[

Egp
qgp

]

)

in each quadrature point need to solve the nonlinear system
{

hgp + u2
gp/2g = Egp − bgp

hgpugp = qgp

Where the total energy E and the flux q = hu are interpolated linearly.
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RD for Shallow Water : construction of FV fluxes
The final well balanced FV discretization reads :

∆xi
un+1

i − un
i

∆t
+Si + fi+1/2 − fi−1/2 + Si+1/2 + Si−1/2 = 0

Si =

[

0

gh̃i(b
i+1/2
L − b

i−1/2
R )

]

fi+1/2(uL, uR) = f(uL) + β
i+1/2
i (f(uR)− f(uL))

Si+1/2 = β
i+1/2
i

[

0

gh̃i+1/2(bR − bL)

]

Generalized form of

well balanced quadrature of (Noelle, Xing, Shu, JCP 226, 2007)

Extra degree of freedom in the actual splitting

viz the definition of the βi coefficients
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Run up on complex bathymetries

Studied in (Ricchiuto, Bollermann JCP 2009 ; Ricchiuto AIP Proc. 1389 2011)

1. Adapted nonlinear variants of the Lax-Friedrich’s
distribution guaranteeing in some form

Hn+1
i ≥ 0 whenever Hn

h ≥ 0

2. Several time-stepping strategies allow the preservation of
this constraint :

◮ Implicit Crank-Nicholson. Positivity preserved under a
CFL=2 constraint ;

◮ Space-time schemes (discontinuous in time). Unconditional
positivity ;

◮ Genuinely explicit RK-RD schemes. Positivity preserved
under a CFL=1 constraint.

3. A strategy to maintain the lake at rest near dry regions

see examples
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Summary and perspectives

Acknowledge contributions of my collaborators/friends

◮ R. Abgrall, G. Baurin, P. Congedo, D. De Santis, C.
Dobrzynski, D. Genet, P. Jacq +++ (Inria)
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University)
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Summary and perspectives

◮ RD as a general framework to study non-oscillatory higher
order schemes

◮ On on hand “true RD schemes”

◮ On the other a means of improving other techniques via
several “bridges” allowing to recast one as the other
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Current work related to RD

◮ Turbulence modeling (PhD D. De Santis)

◮ GPU implementation (PhD D. Genet)

◮ Adjoint error estimation for RD (PhD S. D’angelo)

◮ Higher order time dependent (with R. Abgrall, A. Larat
and M. Hubbard - PhD A. Warzynski, Leeds)

◮ Other polynomial approximations (bridge with DG, Bezier)

◮ Non-hydrostatic free surface modeling with UQ (with R.
Abgrall, P. Congedo, A.I. Delis, F. Marche)

◮ Local adaptation for unsteady problems (with R. Abgrall,
C. Dobrzynski)

◮ Mass consistent coupling with transport equations (with E.
Vazquez)

◮ etc. etc.
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M.R. web :
www.math.u-bordeaux1.fr/∼mricchiu

BACCHUS Inria team :
http://bacchus.bordeaux.inria.fr
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