

Toward a supernodal sparse direct solver over DAG runtimes

CEMRACS'2012 Luminy

X. Lacoste, P. Ramet, M. Faverge, I. Yamazaki, G. Bosilca, J. Dongarra

Pierre RAMET BACCHUS team Inria Bordeaux Sud-Ouest

Guideline

Context and goals

Kernels

Panel factorization Trailing supernodes update (CPU version) Sparse GEMM on GPU

Runtimes

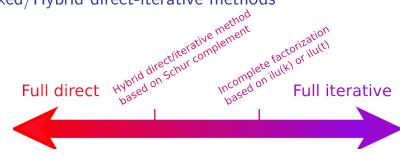
Results

Matrices and Machines Multicore results GPU results

Conclusion and extra tools

1 Context and goals

Mixed/Hybrid direct-iterative methods



The "spectrum" of linear algebra solvers

- Robust/accurate for general problems
- ► BLAS-3 based implementation
- Memory/CPU prohibitive for large 3D problems
- Limited parallel scalability

- Problem dependent efficiency/controlled accuracy
- Only mat-vec required, fine grain computation
- Less memory consumption, possible trade-off with CPU
- ► Attractive "build-in" parallel features

Possible solutions for Many-Cores

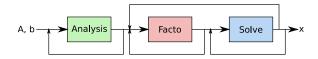
- Multi-Cores : PASTIX already finely tuned to use MPI and P-Threads;
- Multiple-GPU and many-cores, two solutions:
 - Manually handle GPUs:
 - lot of work;
 - heavy maintenance.
 - Use dedicated runtime:
 - May loose the performance obtained on many-core;
 - Easy to add new computing devices.

Elected solution, runtime:

- STARPU: RUNTIME Inria Bordeaux Sud-Ouest:
- ▶ DAGUE: ICL University of Tennessee, Knoxville.

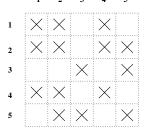
Major steps for solving sparse linear systems

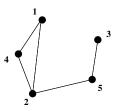
- 1. Analysis: matrix is preprocessed to improve its structural properties (A'x' = b') with $A' = P_n P D_r A D_c Q P^T$
- 2. Factorization: matrix is factorized as A = LU, LL^T or LDL^T
- 3. Solve: the solution *x* is computed by means of forward and backward substitutions



Symmetric matrices and graphs

- ► Assumptions: **A** symmetric, pivots are chosen on the diagonal
- Structure of **A** symmetric represented by the graph G = (V, E)
 - ▶ Vertices are associated to columns: $V = \{1, ..., n\}$
 - ▶ Edges *E* are defined by: $(i,j) \in E \leftrightarrow a_{ij} \neq 0$
 - ► G undirected (symmetry of A)
- ▶ Number of nonzeros in column $j = |Adj_G(j)|$
- Symmetric permutation \equiv renumbering the graph





Symmetric matrix

Corresponding graph

Fill-in theorem and Elimination tree

Theorem

Any $\mathbf{A}_{ij} = 0$ will become a non-null entry \mathbf{L}_{ij} or $\mathbf{U}_{ij} \neq 0$ in $\mathbf{A} = \mathbf{L}\mathbf{U}$ if and only if it exists a path in $G_A(V, E)$ from vertex i to vertex j that only goes through vertices with a lower number than i and j.

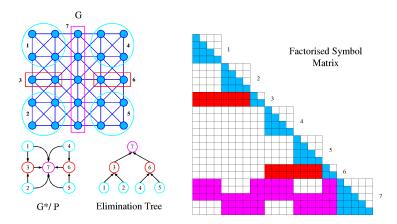
Definition

Let **A** be a symmetric positive-definite matrix, $G^+(\mathbf{A})$ is the **filled** graph (graph of $\mathbf{L} + \mathbf{L}^{\mathrm{T}}$) where $\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathrm{T}}$ (Cholesky factorization)

Definition

The **elimination tree** of **A** is a spanning tree of $G^+(\mathbf{A})$ satisfying the relation $PARENT[j] = min\{i > j | I_{ij} \neq 0\}$.

Direct Method



PaStiX Features

- ► LLt, LDLt, LU : supernodal implementation (BLAS3)
- Static pivoting + Refinement: CG/GMRES
- Simple/Double precision + Float/Complex operations
- ▶ Require only C + MPI + Posix Thread (PETSc driver)
- MPI/Threads (Cluster/Multicore/SMP/NUMA)
- Dynamic scheduling NUMA (static mapping)
- Support external ordering library (PT-Scotch/METIS)
- Multiple RHS (direct factorization)
- Incomplete factorization with ILU(k) preconditionner
- ► Schur computation (hybrid method MaPHYS or HIPS)
- Out-of Core implementation (shared memory only)

Direct Solver Highlights (MPI)

Main users

- Electomagnetism and structural mechanics at CEA-DAM
- MHD Plasma instabilities for ITER at CEA-Cadarache
- Fluid mechanics at Bordeaux

TERA CEA supercomputer

The direct solver PaStiX has been successfully used to solve a huge symmetric complex sparse linear system arising from a 3D electromagnetism code

- ▶ **45 millions unknowns**: required 1.4 Petaflops and was completed in half an hour on 2048 processors.
- ▶ **83 millions unknowns**: required 5 Petaflops and was completed in 5 hours on 768 processors.

Direct Solver Highlights (multicore)

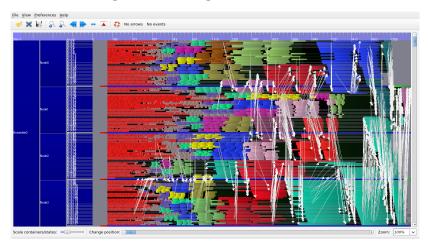
SGI 160-cores

Name	N	NNZA	Fill ratio	Fact
Audi	9.44×10^{5}	3.93×10^7	31.28	float LL^T
10M	1.04×10^{7}	8.91×10^{7}	75.66	complex LDL ^T

Audi	8	64	128	2×64	4x32	8×16	160
Facto (s)	103	21.1	17.8	18.6	13.8	13.4	17.2
Mem (Gb)	11.3	12.7	13.4	2×7.68	4×4.54	8x2.69	14.5
Solve (s)	1.16	0.31	0.40	0.32	0.21	0.14	0.49

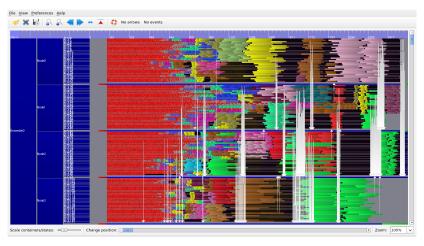
10M	10	20	40	80	160
Facto (s)	3020	1750	654	356	260
Mem (Gb)	122	124	127	133	146
Solve (s)	24.6	13.5	3.87	2.90	2.89

Static Scheduling Gantt Diagram



▶ 10Million test case on IDRIS IBM Power6 with 4 MPI process of 32 threads (color is level in the tree)

Dynamic Scheduling Gantt Diagram



► Reduces time by 10-15% (will increase with NUMA factor)

2 Kernels

Panel factorization (CPU only)

- Factorization of the diagonal block (XXTRF);
- ▶ TRSM on the extra-diagonal blocks (ie. solves $X \times b_d = b_{i,i>d}$ where b_d is the diagonal block).

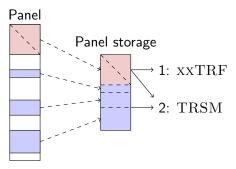


Figure: Panel update

Trailing supernodes update

- ▶ One global GEMM in a temporary buffer;
- ► Scatter addition (many AXPY).

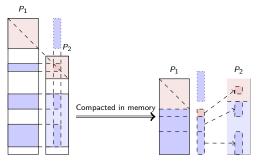


Figure: Panel update

Why a new kernel?

- A BLAS call ⇒ a CUDA startup paid;
- ▶ Many AXPY calls \Rightarrow loss of performance.

 \Rightarrow need a GPU kernel to compute all the updates from P_1 on P_2 at once.

How?

auto-tunning GEMM CUDA kernel

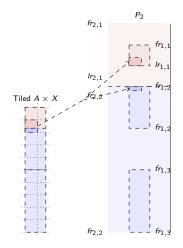
- ► Auto-tunning done by the framework ASTRA developped by Jakub Kurzak for MAGMA and inspired from ATLAS;
- ▶ computes $C \leftarrow \alpha AX + \beta B$, AX split into a 2D tiled grid;
- a block of threads computes each tile;
- ▶ each thread computes several entries of the tile in the shared memory and substract it from *C* in the global memory.

Sparse GEMM cuda kernel

- ▶ Based on auto-tuning GEMM CUDA kernel;
- ▶ Added two arrays giving first and last line of each blocks of P₁ and P₂;
- Computes an offset used when adding to the global memory.

 $\begin{array}{ll} \mathsf{blocknbr} &= 3; \\ \mathsf{blocktab} &= [\mathit{fr}_{1,1}, \mathit{lr}_{1,1}, \end{array}$

Sparse GEMM on GPU



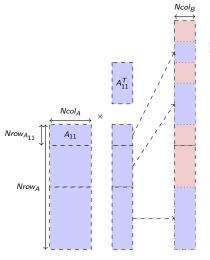
CUstream stream);

cuDoubleComplex *d_C, int ldc, int blocknbr, const int *blocktab, int fblocknbr, const int *fblocktab,

 $fr_{1,2}, Ir_{1,2},$

Figure: Panel update on GPU

GPU kernel experimentation



Parameters

- ightharpoonup $Ncol_A = 100;$
- ► $Ncol_B = Nrow_{A_{11}} = 100;$
- ► Nrow_A varies from 100 to 2000;
- Random number and size of blocks in A;
- Random blocks in B matching A;
- Get mean time of 10 runs for a fixed Nrow_A with different blocks distribution.

Figure: GPU kernel experimentation

GPU kernel performance

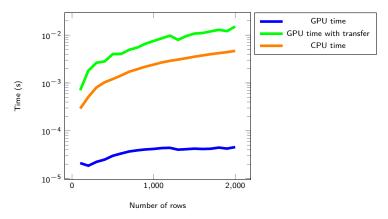


Figure: Sparse kernel timing with 100 columns.

3 Runtimes

Runtimes

- Task-based programming model;
- ► Tasks scheduled on computing units (CPUs, GPUs, ...);
- Data transfers management;
- Dynamically build models for kernels;
- Add new scheduling strategies with plugins;
- Get informations on idle times and load balances.

STARPU Tasks submission

Algorithm 1: STARPU tasks submission

```
 \begin{array}{|c|c|c|c|c|c|} \hline \textbf{forall the } \textit{Supernode } S_1 \textbf{ do} \\ \hline & \texttt{submit\_panel } (S_1); \\ /* \textbf{ update of the panel} & */ \\ \hline \textbf{forall the } \textit{extra } \textit{diagonal block } B_i \textbf{ of } S_1 \textbf{ do} \\ \hline & S_2 \leftarrow \texttt{supernode\_in\_front\_of } (B_i); \\ \hline & \texttt{submit\_gemm } (S_1, S_2); \\ \hline & /* \textbf{ sparse } \texttt{GEMM } B_{k,k \geq i} \times B_i^T \textbf{ substracted from } \\ \hline & S_2 & */ \\ \hline \textbf{end} \\ \hline \\ \textbf{end} \\ \hline \end{array}
```


DAGuE 's parametrized taskgraph

```
panel(j) [high_priority = on]
/* execution space */
i = 0 .. cblknbr-1
/* Extra parameters */
firstblock = diagonal_block_of( j )
lastblock = last_block_of( j )
lastbrow = last_brow_of( j ) /* Last block generating an update on j */
/* Locality */
:A(i)
RW A \leftarrow leaf ? A(j) : C gemm(lastbrow)
        \rightarrow A gemm(firstblock+1..lastblock)
        \rightarrow A(i)
```

Figure: Panel factorization description in DAGUE

4 Results

Matrices and Machines

Matrices

Name	N	NNZA	Fill ratio	OPC	Fact
MHD	4.86×10^{5}	1.24×10^{7}	61.20	9.84×10^{12}	Float <i>LU</i>
Audi	9.44×10^{5}	3.93×10^{7}	31.28	5.23×10^{12}	Float <i>LL</i> ^T
10M	1.04×10^{7}	8.91×10^{7}	75.66	1.72×10^{14}	Complex LDL^T

Machines

Processors	Frequency	GPUs	RAM
AMD Opteron 6180 SE (4×12)	2.50 GHz	Tesla T20 (×2)	256 GiB

CPU only results on Audi

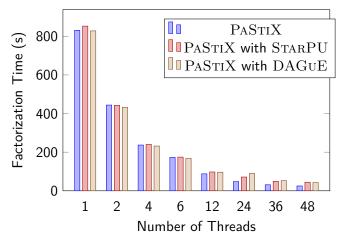


Figure: LL^T decomposition on Audi (double precision)

CPU only results on MHD

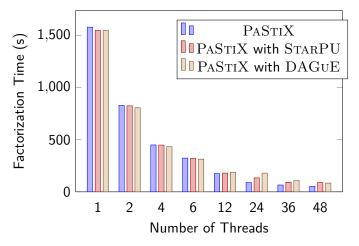


Figure: LU decomposition on MHD (double precision)

CPU only results on 10 Millions

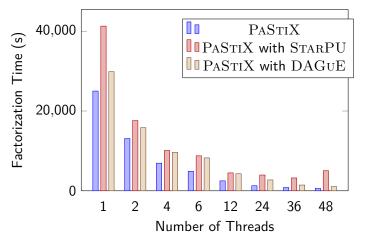


Figure: LDL^T decomposition on 10M (double complex)

Audi: GPU results on Romulus (STARPU)

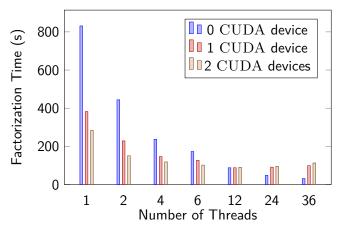


Figure: Audi LL^t decomposition with GPU on Romulus (double precision)

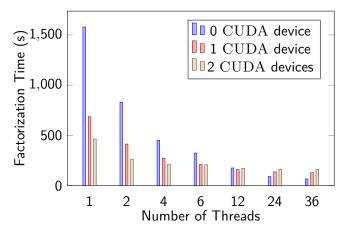


Figure: MHD LU decomposition with GPU on Romulus (double precision)

5 Conclusion and extra tools

Conclusion

- Timing equivalent to PASTIX with medium size test cases;
- Quite good scaling;
- Speedup obtained with one GPU and little number of cores;
- released in PASTIX 5.2
 (http://pastix.gforge.inria.fr).

Futur works

- ▶ Study the effect of the block size for GPUs;
- Write solve step with runtime;
- Distributed implementation (MPI);
- Panel factorization on GPU;
- Add context to reduce the number of candidates for each task;
- Bit-compatibilty for a same number of processors ?

Block ILU(k): supernode amalgamation algorithm

Derive a block incomplete LU factorization from the supernodal parallel direct solver

- Based on existing package PaStiX
- ► Level-3 BLAS incomplete factorization implementation
- ► Fill-in strategy based on level-fill among block structures identified thanks to the quotient graph
- ► Amalgamation strategy to enlarge block size

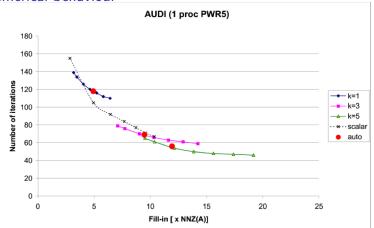
Highlights

- ► Handles efficiently high level-of-fill
- ► Solving time can be 2-4 faster than with scalar ILU(k)
- ► Scalable parallel implementation

Block ILU(k): some results on AUDI matrix

(N = 943, 695, NNZ = 39, 297, 771)

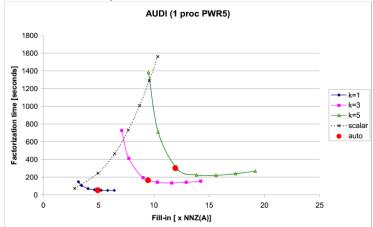
Numerical behaviour



Block ILU(k): some results on AUDI matrix

(N = 943, 695, NNZ = 39, 297, 771)

Preconditioner setup time



HIPS: hybrid direct-iterative solver

Based on a **domain decomposition**: interface one node-wide (no overlap in DD lingo)

$$\left(\begin{array}{cc}A_{B} & F \\ E & A_{C}\end{array}\right)$$

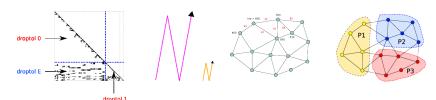
B: Interior nodes of subdomains (direct factorization).

C: Interface nodes.

Special decomposition and ordering of the subset C:

Goal: Building a global Schur complement preconditioner (ILU) from the local domain matrices only.

HIPS: preconditioners



Main features

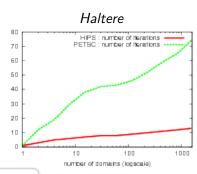
- ▶ Iterative or "hybrid" direct/iterative method are implemented.
- Mix direct supernodal (BLAS-3) and sparse ILUT factorization in a seamless manner.
- ► Memory/load balancing : distribute the domains on the processors (domains > processors).

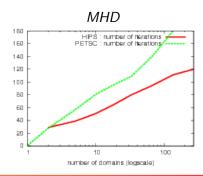
HIPS vs Additive Schwarz (from PETSc)

Experimental conditions

These curves compare HIPS (Hybrid) with Additive Schwarz from PETSc.

Parameters were tuned to compare the result with a very similar fill-in





BACCHUS softwares

Graph/Mesh partitioner and ordering :

http://scotch.gforge.inria.fr

Sparse linear system solvers :

http://pastix.gforge.inria.fr

http://hips.gforge.inria.fr

Thanks!

Pierre RAMET
INRIA Bacchus team
CEMRACS'2012 - Luminy