Two-Level Domain Decomposition Methods

Frédéric Nataf

Laboratory J.L. Lions - UPMC and CNRS

CEMRACS 2012 July 18, 2012

Victorita Dolean

Lab. J.-A. Dieudonné, Univ. de Nice-Sophia Antipolis

- 2 Schwarz algorithms as solvers
- 3 Schwarz algorithms as preconditioners
- Optimized Interface Conditions for wave phenomena
- 5 Classical coarse space method
- 6 Coarse grid for heterogeneous problems
- 7 An abstract 2-level Schwarz the GenEO algorithm
- 8 Parallel issues in FreeFem++

The original Schwarz Method (H.A. Schwarz, 1870)

Schwarz Method : $(u_1^n, u_2^n) \rightarrow (u_1^{n+1}, u_2^{n+1})$ with

 $\begin{aligned} &-\Delta(u_1^{n+1}) = f \quad \text{in } \Omega_1 & -\Delta(u_2^{n+1}) = f \quad \text{in } \Omega_2 \\ &u_1^{n+1} = 0 \text{ on } \partial\Omega_1 \cap \partial\Omega & u_2^{n+1} = 0 \text{ on } \partial\Omega_2 \cap \partial\Omega \\ &u_1^{n+1} = u_2^n \quad \text{on } \partial\Omega_1 \cap \overline{\Omega_2}. & u_2^{n+1} = u_1^{n+1} \quad \text{on } \partial\Omega_2 \cap \overline{\Omega_1}. \end{aligned}$

Parallel algorithm, converges but very slowly, overlapping subdomains only. The parallel version is called **Jacobi Schwarz method (JSM)**.

Motivation: pro and cons of direct solvers

Complexity of the Gauss factorization

Gauss	<i>d</i> = 1	<i>d</i> = 2	<i>d</i> = 3
dense matrix	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$
using band structure	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$O(n^{7/3})$
using sparsity	$\mathcal{O}(n)$	$O(n^{3/2})$	$\mathcal{O}(n^2)$

Different sparse direct solvers

- PARDISO (http://www.pardiso-project.org)
- SUPERLU (http://crd.lbl.gov/~xiaoye/SuperLU)
- SPOOLES

(www.netlib.org/linalg/spooles/spooles.2.2.html)

- MUMPS (http://graal.ens-lyon.fr/MUMPS/)
- UMFPACK (http:

//www.cise.ufl.edu/research/sparse/umfpack)

Limitations of direct solvers

In practice all direct solvers work well until a certain barrier:

- two-dimensional problems (10⁶ unknowns)
- three-dimensional problems (10⁵ unknowns).

Beyond, the factorization cannot be stored in memory any more.

To summarize:

- below a certain size, direct solvers are chosen.
- beyond the critical size, iterative solvers are needed.

Why domain decomposition?

Natural iterative/direct trade-off

- Parallel processing is the only way to have faster codes, new generation processors are parallel: dual, quadri core.
- Large scale computations need for an "artificial" decomposition
- Memory requirements, direct solvers are too costly.
- Iterative solvers are not robust enough.

New iterative/direct solvers are welcome : these are domain decomposition methods

In some situations, the decomposition is natural

- Moving domains (rotor and stator in an electric motor)
- Strongly heterogeneous media
- Different physics in different subdomains

Linear Algebra from the End User point of view

Direct	DDM	Iterative
Cons: Memory	Pro: Flexible	Pros: Memory
Difficult to	Naurally	Easy to
Pros: Robustness		Cons: Robustness
solve(MAT,RHS,SOL)	Few black box routines	solve(MAT,RHS,SOL)
	Few implementations	
	of efficient DDM	

Multigrid methods: very efficient but may lack robustness, not always applicable (Helmholtz type problems, complex systems) and difficult to parallelize.

Introduction

2 Schwarz algorithms as solvers

- Three continuous Schwarz algorithms
- Connection with the Block-Jacobi algorithm
- Discrete setting
- Iterative Schwarz methods
- Convergence analysis
- Schwarz methods using Freefem++
- Schwarz algorithms as solvers
- 3) Schwarz algorithms as preconditioners

Optimized Interface Conditions for wave phenomena

assical coarse space method

The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

 $-\Delta(u) = f$ in Ω u = 0 on $\partial \Omega$.

Schwarz Method : $(u_1^n, u_2^n) \rightarrow (u_1^{n+1}, u_2^{n+1})$ with

 $\begin{aligned} &-\Delta(u_1^{n+1}) = f \quad \text{in } \Omega_1 & -\Delta(u_2^{n+1}) = f \quad \text{in } \Omega_2 \\ &u_1^{n+1} = 0 \text{ on } \partial\Omega_1 \cap \partial\Omega & u_2^{n+1} = 0 \text{ on } \partial\Omega_2 \cap \partial\Omega \\ &u_1^{n+1} = u_2^n \quad \text{on } \partial\Omega_1 \cap \overline{\Omega_2}. & u_2^{n+1} = u_1^{n+1} \quad \text{on } \partial\Omega_2 \cap \overline{\Omega_1}. \end{aligned}$

Parallel algorithm, converges but very slowly, overlapping subdomains only.

The parallel version is called Jacobi Schwarz method (JSM).

The algorithm acts on the local functions $(u_i)_{i=1,2}$. To make things global, we need:

- extension operators, *E_i*, s.t. for a function *w_i* : Ω_{*i*} → ℝ,
 E_i(w_i) : Ω → ℝ is the extension of *w_i* by zero outside Ω_{*i*}.
- partition of unity functions $\chi_i : \Omega_i \mapsto \mathbb{R}, \chi_i \ge 0$ and $\chi_i(x) = 0$ for $x \in \partial \Omega_i$ and s.t.

$$w = \sum_{i=1}^2 E_i(\chi_i w_{|\Omega_i}).$$

Let u^n be an approximation to the solution to the global Poisson problem and u^{n+1} is computed by solving first local subproblems and then gluing them together.

Continuous ASM and RAS - II

Local problems to solve

$$-\Delta(u_i^{n+1}) = f \quad \text{in} \quad \Omega_i$$

$$u_i^{n+1} = 0 \quad \text{on} \quad \partial\Omega_i \cap \partial\Omega$$

$$u_i^{n+1} = u^n \quad \text{on} \quad \partial\Omega_i \cap \overline{\Omega}_{3-i}.$$

Two ways to "glue" solutions

 Using the partition of unity functions Restricted Additive Schwarz (RAS)

$$u^{n+1} := \sum_{i=1}^{2} E_i(\chi_i \, u_i^{n+1}) \, .$$

 Not based on the partition of unity Additive Schwarz (ASM)

$$u^{n+1} := \sum_{i=1}^{2} E_i(u_i^{n+1}).$$

Let us consider a linear system:

AU = F

with a matrix *A* of size $m \times m$, a right handside $F \in \mathbb{R}^m$ and a solution $U \in \mathbb{R}^m$ where *m* is an integer. Let *D* be the diagonal of *A*, the Jacobi algorithm reads:

$$DU^{n+1}=DU^n+(b-AU^n),$$

or equivalently,

$$U^{n+1} = U^n + D^{-1}(b - AU^n) = U^n + D^{-1}r^n,$$

where r^n is the residual of the equation.

We now define a block Jacobi algorithm. The set of indices $\{1, \ldots, m\}$ is partitioned into two sets

$$\mathcal{N}_1 := \{1, \ldots, m_s\} \text{ and } \mathcal{N}_2 := \{m_s + 1, \ldots, m\}.$$

Let $U_1 := U_{|\mathcal{N}_1}$, $U_2 := U_{|\mathcal{N}_2}$ and similarly $F_1 := F_{|\mathcal{N}_1}$, $F_2 := F_{|\mathcal{N}_2}$. The linear system has the following block form:

$$\left(\begin{array}{cc}A_{11} & A_{12}\\A_{21} & A_{22}\end{array}\right)\left(\begin{array}{c}U_1\\U_2\end{array}\right) = \left(\begin{array}{c}F_1\\F_2\end{array}\right)$$

where $A_{ij} := A_{|\mathcal{N}_i \times \mathcal{N}_j}$, $1 \le i, j \le 2$.

Block Jacobi methods - III

The block-Jacobi algorithm reads:

$$\begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} U_1^{n+1} \\ U_2^{n+1} \end{pmatrix} = \begin{pmatrix} F_1 - A_{12} U_2^n \\ F_2 - A_{21} U_1^n \end{pmatrix}.$$
 (1)

Let $U^n = (U_1^n, U_2^n)^T$, algorithm (1) becomes

$$\begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} U^{n+1} = F - \begin{pmatrix} 0 & A_{12} \\ A_{21} & 0 \end{pmatrix} U^n.$$
 (2)

On the other hand, it can be rewritten equivalently

$$\begin{pmatrix} U_1^{n+1} \\ U_2^{n+1} \end{pmatrix} = \begin{pmatrix} U_1^n \\ U_2^n \end{pmatrix} + \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}^{-1} \begin{pmatrix} r_1^n \\ r_2^n \end{pmatrix}$$
(3)

where

$$r^n := F - AU^n, r_i^n := r_{|\mathcal{N}_i}^n, \ i = 1, 2.$$

In order to have a more compact form, let us introduce

- R_1 the restriction operator from \mathcal{N} into \mathcal{N}_1
- R_2 the restriction operator from \mathcal{N} into \mathcal{N}_2 .

The transpose operator R_1^T is an extension operator from \mathcal{N}_1 into \mathcal{N} and the same holds for R_2^T . Notice that $A_{ii} = R_i A R_i^T$.

Block-Jacobi in compact form

$$U^{n+1} = U^n + (R_1^T (R_1 A R_1^T)^{-1} R_1 + R_2^T (R_2 A R_2^T)^{-1} R_2) r^n.$$
 (4)

where

$$r^n := F - AU^n, r_i^n := r_{iN_i}^n, i = 1, 2.$$

Let $\Omega := (0, 1)$ and consider the following BVP

 $-\Delta u = f \text{ in } \Omega$ u(0) = u(1) = 0.

discretized by a three point finite difference scheme on the grid $x_j := j h, 1 \le j \le m$ where h := 1/(m+1). Let $u_j \simeq u(x_j), f_j := f(x_j), 1 \le j \le m$ and the discrete problem

$$AU = F, U = (u_j)_{1 \le j \le m}, F = (f_j)_{1 \le j \le m}.$$

where $A_{jj} := 2/h^2$ and $A_{jj+1} = A_{j+1j} := -1/h^2$. Let domains $\Omega_1 := (0, (m_s + 1) h)$ and $\Omega_2 := (m_s h, 1)$ define an overlapping decomposition with a minimal overlap of width *h*.

Schwarz algorithms as block Jacobi methods - II

The discretization of the **JSM** for domain Ω_1 reads

$$\left\{ \begin{array}{l} -\frac{u_{1,j-1}^{n+1}-2u_{1,j}^{n+1}+u_{1,j+1}^{n+1}}{h^2}=f_j, \ 1\leq j\leq m_s\\ u_{1,0}^{n+1}=0\\ u_{1,m_s+1}^{n+1}=u_{2,m_s+1}^n \end{array} \right.$$

Solving for $U_1^{n+1} = (u_{1,j}^{n+1})_{1 \le j \le m_s}$ corresponds to solving a Dirichlet boundary value problem in subdomain Ω_1 with Dirichlet data taken from the other subdomain at the previous step. Then, U_1^{n+1} and U_1^{n+1} satisfy

$$\begin{aligned} A_{11}U_1^{n+1} + A_{12}U_2^n &= F_1, \\ A_{22}U_2^{n+1} + A_{21}U_1^n &= F_2. \end{aligned}$$

Schwarz as block Jacobi methods - III

The discrete counterpart of the extension operator E_1 (resp. E_2) is defined by $E_1(U_1) = (U_1, 0)^T$ (resp. $E_2(U_2) = (0, U_2)^T$).

then $E_1(U_1) + E_2(U_2) = E_1(\chi_1 U_1) + E_2(\chi_2 U_2) = \begin{pmatrix} U_1 \\ U_2 \end{pmatrix}$.

When the overlap is minimal, the discrete counterparts of the three Schwarz methods are equivalent to the same block Jacobi algorithm.

Continuous level

- Ω and an overlapping decomposition $\Omega = \bigcup_{i=1}^{N} \Omega_i$.
- A function $u : \Omega \to \mathbb{R}$.
- Restriction of $u : \Omega \to \mathbb{R}$ to Ω_i , $1 \le i \le N$.
- The extension E_i of a function $\Omega_i \to \mathbb{R}$ to a function $\Omega \to \mathbb{R}$.
- Partition of unity functions χ_i , $1 \le i \le N$.

Discrete level

- A set of d.o.f. \mathcal{N} and a decomposition $\mathcal{N} = \bigcup_{i=1}^{N} \mathcal{N}_i$.
- A vector $U \in \mathbb{R}^{\#\mathcal{N}}$.
- The restriction $R_i U$ where $U \in \mathbb{R}^{\#N}$ and R_i is a rectangular $\#N_i \times \#N$ boolean matrix.
- Extension R_i^T .
- Diagonal matrices with positive entries, of size #N_i × #N_i
 s. t. Id = ∑^N_{i=1} R^T_i D_i R_i.

Restrictions operators

Let \mathcal{T}_h be a mesh of a domain Ω and u_h some discretization of a function u which is the solution of an elliptic Dirichlet BVP. This yields a linear algebra problem

Find $U \in \mathbb{R}^{\#\mathcal{N}}$ s.t. A U = F.

Define the restriction operator $r_i = E_i^T$:

 $r_i: U_h \mapsto U_{h|\Omega_i}$

Let R_i be the boolean matrix corresponding to the restriction operator r_i :

$$R_{i} := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots \end{bmatrix}$$
$$R_{i} : \mathbb{R}^{\#\mathcal{N}} \longmapsto \mathbb{R}^{\#\mathcal{N}_{i}}$$

Partition of unity

We have

$$\boldsymbol{R}_i:\mathbb{R}^{\#\mathcal{N}}\longmapsto\mathbb{R}^{\#\mathcal{N}_i}$$

and the transpose is a prolongation operator

 $\boldsymbol{R}_{i}^{T}: \mathbb{R}^{\#\mathcal{N}_{i}} \longmapsto \mathbb{R}^{\#\mathcal{N}}.$

The local Dirichlet matrices are given by

 $A_i := R_i A R_i^T$.

We also need a kind of partition of unity defined by matrices D_i

 $D_i: \mathbb{R}^{\#\mathcal{N}_i} \longmapsto \mathbb{R}^{\#\mathcal{N}_i}$

so that we have:

$$\sum_{i=1}^{N} R_i^T D_i R_i = Id$$

Two subdomain case: 1d algebraic setting

Let $\mathcal{N} := \{1, \dots, 5\}$ be partitioned into $\mathcal{N}_1 := \{1, 2, 3\}$ and $\mathcal{N}_2 := \{4, 5\}$.

Then, matrices R_1 , R_2 , D_1 and D_2 are:

$$R_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \text{ and } R_{2} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} .$$
$$D_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } D_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} .$$

Consider now the case overlapping case

 $\mathcal{N}_1^{\delta=1}:=\{1,2,3,4\} \text{ and } \mathcal{N}_2^{\delta=1}:=\{3,4,5\}\,.$

Then, matrices R_1 , R_2 , D_1 , D_2 are:

$$R_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \text{ and } R_{2} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
$$D_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{pmatrix} \text{ and } D_{2} = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Two subdomain case: 1d finite element decomposition

Partition of the 1D mesh corresponds to an ovr. decomp. of \mathcal{N} :

 $\mathcal{N}_1:=\{1,2,3\} \text{ and } \mathcal{N}_2:=\{3,4,5\}\,.$

Then, matrices R_1 , R_2 , D_1 , D_2 are:

$$R_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \text{ and } R_{2} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} .$$
$$D_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/2 \end{pmatrix} \text{ and } D_{2} = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Consider now the situation of an overlapping partition.

 $\mathcal{N}_1^{\delta=1} := \{1, 2, 3, 4\} \text{ and } \mathcal{N}_2^{\delta=1} := \{2, 3, 4, 5\}.$

Then, matrices R_1 , R_2 , D_1 , D_2 are:

$$R_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \text{ and } R_{2} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
$$D_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{pmatrix} \text{ and } D_{2} = \begin{pmatrix} 1/2 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Multi-D and many subdomains: General procedure

The set of indices \mathcal{N} can be partitioned by an automatic graph partitioner such as **METIS** or **SCOTCH**.

- From the input matrix *A*, a connectivity graph is created.
- Two indices $i, j \in \mathcal{N}$ are connected if the matrix coefficient $A_{ij} \neq 0$.
- Even if matrix *A* is not symmetric, the connectivity graph is symmetrized.
- Algorithms that find a good partitioning of highly unstructured graphs are used.
- This distribution must be done so that the number of elements assigned to each processor is roughly the same (balance the computations among the processors).
- The number of adjacent elements assigned to different processors is minimized (minimize the communication between different processors).

Multi-D algebraic setting

Let us consider a partition into N subsets

 $\mathcal{N} := \cup_{i=1}^{N} \mathcal{N}_i, \quad \mathcal{N}_i \cap \mathcal{N}_j = \emptyset \text{ for } i \neq j.$

Extend each subset N_i with its direct neighbors to form $N_i^{\delta=1}$. Let R_i be the restriction matrix from set N to the subset $N_i^{\delta=1}$ and D_i be a diagonal matrix of size $\#N_i^{\delta=1} \times \#N_i^{\delta=1}$, $1 \le i \le N$ such that for

$$\mathcal{M}_j := \{ 1 \le i \le N | j \in \mathcal{N}_i^{\delta=1} \}.$$

and $j \in \mathcal{N}_i^{\delta=1}$, we define $(D_i)_{jj} := 1/\#\mathcal{M}_j$.

Multi-D algebraic finite element decomposition

In a FE setting, the computational domain is the union of elements of the finite element mesh T_h .

It is possible to create overlapping subdomains resolved by the finite element meshes:

$$\Omega_i = \bigcup_{\tau \in \mathcal{T}_{i,h}} \tau \text{ for } 1 \le i \le N.$$
(5)

Let $\{\phi_k\}_{k \in \mathcal{N}}$ be a basis of the finite element space. For $1 \le i \le N$, we define

 $\mathcal{N}_i := \{k \in \mathcal{N} : \operatorname{supp}(\phi_k) \cap \Omega_i \neq \emptyset\}.$

For all degree of freedom $k \in \mathcal{N}$, let

 $\mu_k := \# \{ j : 1 \le j \le N \text{ and } \operatorname{supp}(\phi_k) \cap \Omega_j \ne \emptyset \}.$

Let R_i be the restriction matrix from set \mathcal{N} to the subset \mathcal{N}_i and D_i be a diagonal matrix of size $\#\mathcal{N}_i \times \#\mathcal{N}_i$, $1 \le i \le N$. Then, for $k \in \mathcal{N}_i$, we define $(D_i)_{kk} := 1/\mu_k$.

Define local unknowns $U_i := R_i U$ for i = 1, ..., N and local right handside $F_i := R_i F$.

$$\begin{array}{rcl} R_{i} A U &=& R_{i} A R_{i}^{T} (R_{i} U) + R_{i} A (Id - R_{i}^{T} R_{i}) U = F_{i} \\ &=& R_{i} A R_{i}^{T} U_{i} + R_{i} A (Id - R_{i}^{T} R_{i}) \sum_{j=1}^{N} R_{j}^{T} D_{j} R_{j} U \\ &=& R_{i} A R_{i}^{T} U_{i} + \sum_{j=1}^{N} R_{i} A (Id - R_{i}^{T} R_{i}) R_{j}^{T} D_{j} U_{j} \end{array}$$

Notice that $(Id - R_i^T R_i)R_i^T R_i = 0$ so we have

$$R_i A R_i^T U_i + \sum_{j \neq i} R_i A (Id - R_i^T R_i) R_j^T D_j U_j = F_i$$
(6)

Algebraic formulation - JSM

Let us define the block matrix \tilde{A} (extended matrix)

 $(\widetilde{A})_{ii} := R_i A R_i^T, (\widetilde{A})_{ij} := R_i A (Id - R_i^T R_i) R_j^T D_j, 1 \le i \ne j \le N$

Define (extended) unknown vector and right-hand side

$$\widetilde{U} := (U_1, \dots, U_i, \dots, U_N)^T \in \mathbb{R}^{\sum_{i=1}^N \#\mathcal{N}_i},$$

 $\widetilde{F} := (R_1 F, \dots, R_i F, \dots, R_N F)^T \in \mathbb{R}^{\sum_{i=1}^N \#\mathcal{N}_i}.$

Let $(M_{JSM})_{ii} := (\widetilde{A})_{ii} = R_i A R_i^T$. The block Jacobi method applied to the (extended) system

$$\widetilde{A} \, \widetilde{U} = \widetilde{F}$$

is the JSM:

$$\widetilde{U}^{n+1} = \widetilde{U}^n + M_{JSM}^{-1}\widetilde{r}^n, \widetilde{r}^n := \widetilde{F} - \widetilde{A}\,\widetilde{U}^n.$$
(7)

Algebraic formulation - RAS and ASM

As for (RAS), we give the following definition

$$M_{RAS}^{-1} := \sum_{i=1}^{N} R_i^T D_i (R_i A R_i^T)^{-1} R_i$$
(8)

so that the iterative RAS algorithm reads:

$$U^{n+1} = U^n + M_{RAS}^{-1}r^n, r^n := F - A U^n.$$

For (ASM), we give the following definition

$$M_{ASM}^{-1} := \sum_{i=1}^{N} R_i^T (R_i A R_i^T)^{-1} R_i$$

so that the iterative ASM algorithm reads:

$$U^{n+1}=U^n+M_{ASM}^{-1}r^n.$$

(9)

Let L > 0 and the domain $\Omega = (0, L)$ be decomposed into two subodmains $\Omega_1 := (0, L_1)$ and $\Omega_2 := (l_2, L)$ with $l_2 \le L_1$. The error $e_i^n := u_i^n - u_{|\Omega_i}$, i = 1, 2 satisfies

$$-\frac{d^{2}e_{1}^{n+1}}{dx^{2}} = 0 \quad \text{in } (0, L_{1}) \\ e_{1}^{n+1}(0) = 0 \\ e_{1}^{n+1}(L_{1}) = e_{2}^{n}(L_{1}) \qquad \text{then,} \qquad -\frac{d^{2}e_{2}^{n+1}}{dx^{2}} = 0 \quad \text{in } (l_{2}, L) \\ e_{2}^{n+1}(l_{2}) = e_{1}^{n+1}(l_{2}) \\ e_{2}^{n+1}(L) = 0.$$

$$(10)$$

Thus the errors are affine functions in each subdomain:

$$e_1^{n+1}(x) = e_2^n(L_1) \frac{x}{L_1}$$
 and $e_2^{n+1}(x) = e_1^{n+1}(l_2) \frac{L-x}{L-l_2}$.

Thus, we have

$$e_2^{n+1}(L_1) = e_1^{n+1}(I_2) \frac{L-L_1}{L-I_2} = e_2^n(L_1) \frac{I_2}{L_1} \frac{L-L_1}{L-I_2}.$$

Let $\delta := L_1 - I_2$ denote the size of the overlap, we have

$$e_2^{n+1}(L_1) = \frac{l_2}{l_2+\delta} \frac{L-l_2-\delta}{L-l_2} e_2^n(L_1) = \frac{1-\delta/(L-l_2)}{1+\delta/l_2} e_2^n(L_1).$$

It is clear that $\delta > 0$ is sufficient and necessary to have convergence.

Let \mathbb{R}^2 decomposed into two half-planes $\Omega_1 = (-\infty, \delta) \times \mathbb{R}$ and $\Omega_2 = (0, \infty) \times \mathbb{R}$ with an overlap of size $\delta > 0$ and the problem

$$(\eta - \Delta)(u) = f$$
 in \mathbb{R}^2 ,
 u is bounded at infinity.

By linearity, the errors $e_i^n := u_i^n - u|_{\Omega_i}$ satisfy the JSM f = 0:

$$(\eta - \Delta)(e_1^{n+1}) = 0 \text{ in } \Omega_1$$

$$e_1^{n+1} \text{ is bounded at infinity} \qquad (11)$$

$$e_1^{n+1}(\delta, y) = e_2^n(\delta, y),$$

$$(\eta - \Delta)(e_2^{n+1}) = 0 \text{ in } \Omega_2$$

$$e_2^{n+1} \text{ is bounded at infinity} \qquad (12)$$

$$e_2^{n+1}(0, y) = e_1^n(0, y).$$

Fourier analysis in 2d - II

By taking the partial Fourier transform of the equation in the y direction we get:

$$\left(\eta - \frac{\partial^2}{\partial x^2} + k^2\right) (\hat{e}_1^{n+1}(x,k)) = 0 \quad \text{in} \quad \Omega_1.$$

For a given k, the solution

$$\hat{e}_1^{n+1}(x,k) = \gamma_+^{n+1}(k) \exp(\lambda^+(k)x) + \gamma_-^{n+1}(k) \exp(\lambda^-(k)x).$$

must be bounded at $x = -\infty$. This implies

$$\hat{e}_1^{n+1}(x,k) = \gamma_+^{n+1}(k) \exp(\lambda^+(k)x)$$

and similarly,

$$\hat{e}_2^{n+1}(x,k) = \gamma_-^{n+1}(k) \exp(\lambda^-(k)x)$$
From the interface conditions we get

$$\gamma_+^{n+1}(k) = \gamma_-^n(k) \exp(\lambda^-(k)\delta), \ \gamma_-^{n+1}(k) = \gamma_+^n(k) \exp(-\lambda^+(k)\delta).$$

Combining these two and denoting $\lambda(k) = \lambda^+(k) = -\lambda^-(k)$, we get for i = 1, 2,

$$\gamma_{\pm}^{n+1}(k) = \rho(k; \alpha, \delta)^2 \gamma_{\pm}^{n-1}(k)$$

with ρ the convergence rate given by:

$$\rho(\mathbf{k};\alpha,\delta) = \exp(-\lambda(\mathbf{k})\delta), \tag{13}$$

where $\lambda(\mathbf{k}) = \sqrt{\eta + \mathbf{k}^2}$.

Fourier analysis in 2d - IV

Remark

We have the following properties:

- For all k ∈ ℝ, ρ(k) < exp(-√η δ) < 1 so that γⁿ_i(k) → 0 uniformly as n goes to infinity.
- *ρ* → 0 as k tends to infinity, high frequency modes of the error converge very fast.
- When there is no overlap ($\delta = 0$), $\rho = 1$ and there is stagnation of the method.

FreeFem++ allows a very simple and natural way to solve a great variety of variational problems (FEM, DG).

It is possible to have access to the underlying linear algebra such as the stiffness or mass matrices.

Tutorial: http://www.cmap.polytechnique.fr/spip. php?article239.

A very detailed documentation of FreeFem++ is available on the official website http://www.freefem.org/ff++

http://www.freefem.org/ff++/ftp/freefem++doc.pdf

Let a homogeneous Dirichlet boundary value problem for a Laplacian defined on a unit square $\Omega =]0, 1[^2]$:

$$\begin{cases} -\Delta u = f & \text{dans } \Omega \\ u = 0 & \text{sur } \partial \Omega \end{cases}$$
(14)

The variational formulation of the problem

Find $u \in H_0^1(\Omega) := \{ w \in H^1(\Omega) : w = 0, \text{ on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4 \}$ such that

$$\int_{\Omega} \nabla u . \nabla v dx - \int_{\Omega} f v \, dx = 0, \forall v \in H_0^1(\Omega).$$

Feature of Freefem++: penalization of Dirichlet BC. Let TGV (*Très Grande Valeur* in French) be a very large value, the above variational formulation is approximated by Find $u \in H^1(\Omega)$ such that

$$\int_{\Omega} \nabla u . \nabla v dx + TGV \int_{\bigcup_{i=1,\ldots,4} \Gamma_i} u \, v - \int_{\Omega} f v \, dx = 0, \forall v \in H^1(\Omega).$$

The following FreeFem++ script is solving this problem

// Number of mesh points in x and y directions
int Nbnoeuds=10;

The text after // symbols are comments ignored by the FreeFem++ language.
Each new variable must be declared with its type (here int designs integers).

```
//Mesh definition
mesh Th=square(Nbnoeuds,Nbnoeuds,[x,y]);
```

The function square returns a structured mesh of the square, the sides of the square are labelled from 1 to 4 in trigonometrical sense.

Define the function representing the right hand side

```
// Function of x and y
func f=x*y;
```

and the P_1 finite element space Vh over the mesh Th.

```
// Finite element space on the mesh Th
fespace Vh(Th,P1);
//uh and vh are of type Vh
Vh uh,vh;
```

The functions u_h and v_h belong to the P_1 finite element space V_h which is an approximation to $H^1(\Omega)$.

```
// variational problem definition
problem heat(uh,vh,solver=LU)=
    int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))
    -int2d(Th)(f*vh)
    +on(1,2,3,4,uh=0);
```

The keyword problem allows the definition of a variational problem (without solving it)

 $\int_{\Omega} \nabla u_h \cdot \nabla v_h dx + TGV \int_{\cup_{i=1,\dots,4} \Gamma_i} u_h v_h - \int_{\Omega} f v_h dx = 0, \forall v_h \in V_h.$

where TGV is equal to 10^{30} .

The parameter solver sets the method that will be used to solve the resulting linear system. To solve the problem we need

```
//Solving the problem
heat;
// Plotting the result
plot(uh,wait=1);
```

The Freefem++ script can be saved with your favourite text editor (e.g. under the name heat.edp). In order to execute the script write the shell command

```
FreeFem++ heat.edp
```

The result will be displayed in a graphic window.

Solve Neumann or Fourier boundary conditions such as

$$-\Delta u + u = f \quad \text{dans } \Omega$$

$$\frac{\partial u}{\partial n} = 0 \qquad \text{sur } \Gamma_1$$

$$u = 0 \qquad \text{sur } \Gamma_2$$

$$\frac{\partial u}{\partial n} + \alpha u = g \qquad \text{sur } \Gamma_3 \cup \Gamma_4$$
(15)

The new variational formulation consists in determining $u_h \in V_h$ such that

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h dx + \int_{\Gamma_3 \cup \Gamma_4} \alpha u_h v_h + TGV \int_{\Gamma_2} u_h \cdot v_h$$
$$- \int_{\Gamma_3 \cup \Gamma_4} gv_h - \int_{\Omega} fv_h dx = 0, \forall v_h \in V_h.$$

The Freefem++ definition of the problem

```
problem heat(uh,vh)=
int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))
+int1d(Th,3,4)(alpha*uh*vh)
-int1d(Th,3,4)(g*vh)
-int2d(Th)(f*vh)
+on(2,uh=0);
```

In order to use some **linear algebra** package, we need the matrices. The keyword varf allows the definition of a variational formulation

```
varf heat(uh,vh)=
int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))
+int1d(Th,3,4)(alpha*uh*vh)
-int1d(Th,3,4)(g*vh)
-int2d(Th)(f*vh)
+on(2,uh=0);
matrix Aglobal; // stiffness sparse matrix
Aglobal = heat(Vh,Vh,solver=UMFPACK);// UMFPACK solver
Vh rhsglobal; //right hand side vector
rhsglobal[] = heat(0,Vh);
```

Here rhsglobal is a FE function and the associated vector of d.o.f. is rhsglobal[]. The linear system is solved by using UMFPACK

```
// Solving the problem by a sparse LU sover
uh[] = Aglobal^-1*rhsglobal[];
```

Decomposition into overlapping domains I

Suppose we want a decomposition of a rectangle Ω into nn×mm domains with approximately nloc points in one direction.

```
int nn=4, mm=4;
int npart= nn*mm;
int nloc = 20;
real allong = 1;
allong = real(nn)/real(mm);
mesh Th=square(nn*nloc*allong,mm*nloc,[x*allong,y]);
fespace Vh(Th,P1);
fespace Ph(Th,P0);
Ph part;
Ph xx=x, yy=y;
part = int(xx/allong*nn)*mm + int(yy*mm);
plot(part,fill=1,value=1,wait=1,ps="decompunif.eps");
```

For arbitrary decompositions, use METIS or SCOTCH.

```
int nn=4, mm=4;
int npart= nn*mm;
int nloc = 20;
real allong = 1;
allong = real(nn)/real(mm);
mesh Th=square(nn*nloc*allong,mm*nloc,[x*allong,y]);
fespace Vh(Th,P1);
fespace Ph(Th,P0);
Ph part;
bool withmetis = 1;
if (withmetis) // Metis partition
    load "metis";
    int[int] nupart(Th.nt);
    metisdual(nupart, Th, npart);
    for(int i=0;i<nupart.n;++i)</pre>
      part[][i]=nupart[i];
  }
plot(part,fill=1,value=1,wait=1,ps="decompMetis.eps");
```

Decomposition into overlapping domains II

To build the overlapping decomposition and the associated algebraic call the routine SubdomainsPartitionUnity. Output:

- overlapping meshes aTh[i]
- the restriction/interpolation operators Rih[i] from the local finite element space Vh[i] to the global one Vh
- the diagonal local matrices Dih[i] from the partition of unity.

```
include "createPartition.edp";
include "decompMetis.edp";
// overlapping partition
int sizeovr = 3;
mesh[int] aTh(npart); // sequence of ovr. meshes
matrix[int] Rih(npart); // local restriction operators
matrix[int] Dih(npart); // partition of unity operators
```

SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rih,Dih);

RAS and ASM: global data

We first need to define the global data.

```
// Solve Dirichlet subproblem Delta (u) = f
// u = 1 on the global boundary
int[int] chlab=[1,1 ,2,1 ,3,1 ,4,1 ];
Th=change(Th, refe=chlab);
macro Grad(u) [dx(u), dy(u)]
                                    // EOM
                                    // right hand side
func f = 1;
func q = 1;
                                    // Dirichlet data
// global problem
Vh rhsqlobal,uqlob;
varf vaglobal(u, v) =
    int2d(Th)(Grad(u)'*Grad(v))
    +on(1, u=g) + int2d(Th)(f*v);
matrix Aglobal;
Aqlobal = vaqlobal (Vh, Vh, solver = UMFPACK); // matrix
rhsqlobal[] = vaglobal(0,Vh);
                                               // rhs
```

```
uglob[] = Aglobal^-1*rhsglobal[];
```

And then the local problems

```
// overlapping partition
int sizeovr = 4;
                               // overlapping meshes
mesh[int] aTh(npart);
matrix[int] Rih(npart);
                               // restriction operators
matrix[int] Dih(npart); // partition of unity
SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rih,Dih);
                               // Dirichlet matrices
matrix[int] aA(npart);
for(int i = 0; i < npart; ++i)
    cout << " Domain :" << i << "/" << npart << endl;</pre>
    matrix aT = Aglobal*Rih[i]';
    aA[i] = Rih[i] * aT;
    set(aA[i], solver = UMFPACK);// direct solvers
  }
```

RAS and ASM : Schwarz iteration

Convergence

Convergence history of the RAS solver for different values of the overlapping parameter.

Note that this convergence, not very fast even in a simple configuration of 4 subdomains.

The iterative version of ASM does not converge. For this reason, the ASM method is always used a preconditioner for a Krylov method such as CG, GMRES or BiCGSTAB.

Introduction

2) Schwarz algorithms as solvers

- Schwarz algorithms as preconditioners
 - Neumann series and Krylov spaces
 - Krylov methods
 - Application to DDM
 - Schwarz preconditioners using FreeFEM++

Optimized Interface Conditions for wave phenomena

5 Classical coarse space method

Coarse grid for heterogeneous problems

Fixed point method

Consider a well-posed but difficult to solve linear system

Ax = b

and *B* an "easy to invert" matrix of the same size than *A*. A possible iterative method is a fixed point algorithm

$$x^{n+1} = x^n + B^{-1}(b - Ax^n)$$

and x is a fixed point of the operator:

$$x \mapsto x + B^{-1}(b - Ax)$$
.

Let $r_0 := b - Ax^0$ and $C := B^{-1} A$, a direct computation shows that we have:

$$x^{n} = \sum_{i=0}^{n} (I_{d} - C)^{i} B^{-1} r_{0} + x^{0}.$$
 (16)

We have convergence iff the spectral radius of the matrix $I_d - C$ is smaller than one.

Why Krylov methods I

Consider now a preconditioned Krylov applied to the linear system:

$$B^{-1}Ax = B^{-1}b$$

Let us denote x^0 an initial guess and $r^0 := B^{-1} b - C x^0$ the initial residual. Then $y := x - x^0$ solves

$$C y = r^0$$
 .

The basis for Krylov methods is the following

Lemma

Let *C* be an invertible matrix of size $N \times N$. Then, there exists a polynomial \mathcal{P} of degree p < N such that

 $C^{-1}=\mathcal{P}(C).$

Proof.

Let be a minimal polynomial of *C* of degree $d \leq N$:

$$\mathcal{M}(X) := \sum_{i=0}^d a_i X^i$$

We have $\sum_{i=0}^{d} a_i C^i = 0$ and there is no non zero polynomial of lower degree that annihilates *C*. Thus, a_0 cannot be zero since

$$C \sum_{i=1}^{d} a_i C^{i-1} = 0 \Rightarrow \sum_{i=1}^{d} a_i C^{i-1} = 0.$$

Then, $\sum_{i=0}^{d-1} a_{i+1} X^i$ would be an annihiling polynomial of *C* of degree lower than *d*. This implies

$$I_d + C \sum_{i=1}^d \frac{a_i}{a_0} C^{i-1} = 0 \Rightarrow C^{-1} := -\sum_{i=1}^d \frac{a_i}{a_0} C^{i-1}.$$

Coming back to the linear system, we have

$$x = x^{0} + \sum_{i=1}^{d} (-\frac{a_{i}}{a_{0}}) C^{i-1} r^{0}.$$

Thus, it makes sense to introduce Krylov spaces, $\mathcal{K}^n(C, r^0)$

$$\mathcal{K}^{n}(C, r^{0}) := Span\{r^{0}, Cr^{0}, \dots, C^{n-1}r^{0}\}, n \geq 1$$

to seek y^n an approximation to y. Example: The CG methods applies to symmetric positive definite (SPD) matrices and minimizes the A^{-1} -norm of the residual when solving Ax = b:

$$\mathsf{C}G \left\{ \begin{array}{l} \mathsf{Find} \ y^n \in \mathcal{K}^n(A, r^0) \text{ such that} \\ \|A y^n - r^0\|_{A^{-1}} = \min_{w \in \mathcal{K}^n(A, r^0)} \|A w - r^0\|_{A^{-1}} \,. \end{array} \right.$$

A detailed analysis reveals that $x^n = y^n + x_0$ can be obtained by the quite cheap recursion formula:

for i = 1, 2, ... do $\rho_{i-1} = (r_{i-1}, r_{i-1})_2$ if i = 1 then $p_1 = r_0$ else $\beta_{i-1} = \rho_{i-1}/\rho_{i-2}$ $D_i = r_{i-1} + \beta_{i-1} D_{i-1}$ end if $q_i = Ap_{i-1}$ $\alpha_i = \frac{\dot{\rho}_{i-1}}{(p_i, q_i)_2}$ $X_i = X_{i-1} + \alpha_i D_i$ $\mathbf{r}_i = \mathbf{r}_{i-1} - \alpha_i \mathbf{q}_i$ check convergence; continue if necessary end for

By solving an optimization problem:

GMRES
$$\begin{cases} \text{Find } y^n \in \mathcal{K}^n(C, r^0) \text{ such that} \\ \|C y^n - r^0\|_2 = \min_{w \in \mathcal{K}^n(C, r^0)} \|C w - r^0\|_2 \end{cases}$$

a preconditioned Krylov solve will generate an optimal x_{k}^{n} in

$$\mathcal{K}^{n}(C, B^{-1}r_{0}) := x_{0} + Span\{B^{-1}r_{0}, CB^{-1}r_{0}, \ldots, C^{n-1}B^{-1}r_{0}\}.$$

This minimization problem is of size *n*. When *n* is small w.r.t. *N*, its solving has a marginal cost. Thus, x_K^n has a computing cost similar to that of x^n . But, since $x^n \in \mathcal{K}^n(B^{-1}A, B^{-1}r_0)$ as well but with "frozen" coefficients, we have that x_n is less optimal (actually much much less) than x_K^n .

In the previous Krylov methods we can use as preconditioner

• RAS (in conjunction with BiCGStab or GMRES)

$$B^{-1} := M_{RAS}^{-1} = \sum_{i=1}^{N} R_i^T D_i (R_i A R_i^T)^{-1} R_i$$

ASM (in a CG methods)

$$B^{-1} := M_{ASM}^{-1} = \sum_{i=1}^{N} R_i^T (R_i A R_i^T)^{-1} R_i$$

Preconditioner in CG

We use

- M_{ASM}^{-1} as a preconditioner
- a Krylov method: conjugate gradient since M_{ASM}^{-1} and A are symmetric.

At iteration *m* the error for the PCG method is bounded by:

$$||\bar{x} - x_m||_{M_{ASM}^{-\frac{1}{2}} A M_{ASM}^{-\frac{1}{2}}} \le 2 \left[\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right]^m ||\bar{x} - x_0||_{M_{ASM}^{-\frac{1}{2}} A M_{ASM}^{-\frac{1}{2}}}.$$

where κ is the condition number of $M_{ASM}^{-1}A$ and \bar{x} is the exact solution.

The CG with the ASM preconditioner becomes:

for
$$i = 1, 2, ...$$
 do
 $\rho_{i-1} = (r_{i-1}, M_{ASM}^{-1} r_{i-1})_2$
if $i = 1$ then
 $p_1 = M_{ASM}^{-1} r_0$
else
 $\beta_{i-1} = \rho_{i-1}/\rho_{i-2}$
 $p_i = M_{ASM}^{-1} r_{i-1} + \beta_{i-1} p_{i-1}$
end if
 $q_i = Ap_{i-1}$
 $\alpha_i = \frac{\rho_{i-1}}{(p_i, q_i)_2}$
 $x_i = x_{i-1} + \alpha_i p_i$
 $r_i = r_{i-1} - \alpha_i q_i$
check convergence; continue if necessary
end for

The action of the global operator is given by

```
Vh Ax;
func real[int] A(real[int] &x) // A*u
{
    Ax[]= Aglobal*x;
    return Ax[];
}
```

The preconditioning method can be Additive Schwarz (ASM)

```
func real[int] Mm1(real[int] &1)
  s = 0;
  for(int i=0;i<npart;++i)</pre>
      mesh Thi = aTh[i];
       real[int] bi = Rih[i]*l;
                                // restricts rhs
       real[int] ui = aA[i] ^-1 * bi; // local solves
       s[] += Rih[i]'*ui;
                                        // prolongation
  return s[];
```

The Krylov method applied in this case is the CG. The performance is now less sensitive to the overlap size.

We can also use RAS as a preconditioner, by taking into account the partition of unity

```
func real[int] Mm1(real[int] &1)
{
   s = 0;
   for(int i=0;i<npart;++i)</pre>
     {
       mesh Thi = aTh[i];
       real[int] bi = Rih[i]*l;  // restricts rhs
       real[int] ui = aA[i] ^-1 * bi; // local solves
       bi = Dih[i] * ui;
       s[] += Rih[i]'*bi;
                                        // prolongation
     }
   return s[];
}
```

this time in conjuction with BiCGStab since we deal with non-symmetric problems.

1 Introduction

- 2 Schwarz algorithms as solvers
- 3 Schwarz algorithms as preconditioners
- Optimized Interface Conditions for wave phenomena
 - Failure of the classical Schwarz method
 - Interface Conditions
 - Optimal Interface Conditions
 - Optimized interface conditions
 - Application to the Helmholtz equations
 - Optimized conditions at matrix level
 - Classical coarse space method

We want to solve

$$-\omega^2 u - \Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega.$$

The convergence rate of the classical Schwarz method is:

$$\rho = \boldsymbol{e}^{-\sqrt{-\omega^2 + k^2}} \delta$$

One possible Improvement: other interface conditions

(P.L. Lions, 1988)

$$-\Delta(u_1^{n+1}) = f \quad \text{in } \Omega_1, u_1^{n+1} = 0 \quad \text{on } \partial\Omega_1 \cap \partial\Omega, (\frac{\partial}{\partial n_1} + \alpha)(u_1^{n+1}) = (-\frac{\partial}{\partial n_2} + \alpha)(u_2^n) \quad \text{on } \partial\Omega_1 \cap \overline{\Omega_2},$$

 $(n_1 \text{ and } n_2 \text{ are the outward normal on the boundary of the subdomains})$

$$\begin{aligned} &-\Delta(u_2^{n+1}) = f & \text{in } \Omega_2, \\ &u_2^{n+1} = 0 & \text{on } \partial\Omega_2 \cap \partial\Omega \\ &(\frac{\partial}{\partial n_2} + \alpha)(u_2^{n+1}) = (-\frac{\partial}{\partial n_1} + \alpha)(u_1^n) & \text{on } \partial\Omega_2 \cap \overline{\Omega_1}. \end{aligned}$$

with $\alpha > 0$. Overlap is not necessary for convergence. Extended to the Helmholtz equation (B. DesprÃ^{*}s, 1991) a.k.a FETI 2 LM (Two-Lagrange Multiplier) Method, 1998.

Convergence with second order interface conditions

$$\left(\frac{\partial}{\partial n_{i}}+\alpha-\frac{\partial}{\partial au}\gamma\frac{\partial}{\partial au}\right)$$

Proof of convergence valid for a problem discretized by a finite volume scheme. At the continuous level we consider the following problem.

$$\eta(\mathbf{x})u - div(\kappa(\mathbf{x})\nabla u) = f \quad \text{in } \Omega, \\ u = 0 \quad \text{on } \partial\Omega,$$

with $\eta(\mathbf{x}), \kappa(\mathbf{x}) > C > 0$. The domain is decomposed into N subdomains $(\Omega_i)_{1 \le i \le N}$ without overlap. Let Γ_{ij} denote the interface $\Gamma_{ij} = \partial \Omega_i \cap \partial \Omega_j$.

Convergence

The interface condition is

$$\kappa(\mathbf{x})\frac{\partial u_i^{n+1}}{\partial n_i} + \alpha_{ij}(\mathbf{x})u_i^{n+1} - \frac{\partial}{\partial \tau_i}(\gamma_{ij}(\mathbf{x})\frac{\partial u_i^{n+1}}{\partial \tau_i})$$

= $-\kappa(\mathbf{x})\frac{\partial u_j^n}{\partial n_j} + \alpha_{ij}(\mathbf{x})u_j^n - \frac{\partial}{\partial \tau_j}(\gamma_{ij}(\mathbf{x})\frac{\partial u_j^n}{\partial \tau_j})$ on Γ_{ij} .

with

$$\alpha_{ij}(\mathbf{x}) = \alpha_{ji}(\mathbf{x}) \ge \alpha_0 > \mathbf{0},$$

$$\gamma(\mathbf{x})_{ij} = \gamma(\mathbf{x})_{ji} \ge 0$$
 et $\gamma_{ij}(\mathbf{x}) = 0$ sur $\partial \Gamma_{ij}$

Let us denote

$$\Lambda_{ij} = \alpha_{ij}(\mathbf{x}) - \frac{\partial}{\partial \tau_i} (\gamma_{ij}(\mathbf{x}) \frac{\partial}{\partial \tau_i}), \quad \mathbf{x} \in \Gamma_{ij}.$$

Lemma

The algorithm converges in H^1 (discrete norm).

(Hagstrom, 1988)

Constant coefficient Advection-Diffusion equation on a domain decomposed into two subdomains.

$$\begin{aligned} (\vec{a}\nabla - \nu\Delta)(u_1^{n+1}) &= f \quad \text{in } \Omega_1, \\ u_1^{n+1} &= 0 \quad \text{on } \partial\Omega_1 \cap \partial\Omega, \\ (\frac{\partial}{\partial n_1} + \mathcal{B}_1)(u_1^{n+1}) &= (-\frac{\partial}{\partial n_2} + \mathcal{B}_1)(u_2^n) \quad \text{on } \partial\Omega_1 \cap \overline{\Omega_2}, \end{aligned}$$

$$\begin{aligned} (\vec{a}\nabla - \nu\Delta)(u_2^{n+1}) &= f \quad \text{in } \Omega_2, \\ u_2^{n+1} &= 0 \quad \text{on } \partial\Omega_2 \cap \partial\Omega \\ (\frac{\partial}{\partial n_2} + \mathcal{B}_2)(u_2^{n+1}) &= (-\frac{\partial}{\partial n_1} + \mathcal{B}_2)(u_1^n) \quad \text{on } \partial\Omega_2 \cap \overline{\Omega_1}. \end{aligned}$$

where \mathcal{B}_i , i = 1, 2 are defined via a Fourier transform along the interface

Convergence in two iterations

Optimal Interface Conditions

Let us consider the problem

$$\mathcal{L}_i(P_i) = f \quad \text{in } \Omega_i, \quad i = 1, 2 P_1 = P_2 \quad \text{on } \Gamma_{12}, \\ \kappa_1 \frac{\partial P_1}{\partial n_1} + \kappa_2 \frac{\partial P_2}{\partial n_2} = 0 \quad \text{on } \Gamma_{12}.$$

where

$$\mathcal{L}_i = \eta_i - div(\kappa_i \nabla)$$

Could be as well Fluid/Structure interaction or Plate/beam coupling.
Let

$$u_i = \kappa_i \nabla P_i$$

Let us consider a Schwarz type method:

$$\begin{aligned} \mathcal{L}_1(P_1^{n+1}) &= f & \text{in } \Omega_1 \\ P_1^{n+1} &= 0 & \text{on } \partial \Omega_1 \cap \partial \Omega \\ u_1^{n+1}.\vec{n}_1 &+ \mathcal{B}_1(P_1^{n+1}) \\ &= -u_2^n.\vec{n}_2 + \mathcal{B}_1(P_2^n) & \text{on } \Gamma_1 \end{aligned} \qquad \begin{aligned} \mathcal{L}_2(P_2^{n+1}) &= f & \text{in } \Omega_2 \\ \mathcal{L}_2(P_2^{n+1}) &= f & \text{in } \Omega_2 \\ \mathcal{L}_2(P_2^{n+1}) &= 0 & \text{on } \partial \Omega_2 \cap \partial \Omega \\ u_2^{n+1}.\vec{n}_2 &+ \mathcal{B}_2(P_2^{n+1}) \\ &= -u_1^n.\vec{n}_1 + \mathcal{B}_2(P_1^n) & \text{on } \Gamma_2 \end{aligned}$$

We take

$$\mathcal{B}_1 = DtN_2$$
.

and have convergence in two iterations.

We introduce the DtN (Dirichlet to Neumann) map (a.k.a. Steklov-Poincaré):

Let
$$P_0: \Gamma_{12} \to \mathbb{R}$$
 (17)
 $DtN_2(P_0) \equiv \kappa_2 \frac{\partial}{\partial n_2}(P)_{|\Gamma_{12}}$

where n_2 is the outward normal to $\Omega_2 \setminus \overline{\Omega}_1$ and *P* satisfies the following boundary value problem:

 $\begin{aligned} \mathcal{L}(P) &= 0 \text{ in } \Omega_2 \\ P &= 0 \text{ on } \partial \Omega_2 \setminus \Gamma_i \\ P &= P_0 \text{ on } \Gamma_{12}. \end{aligned}$

We take

$$\mathcal{B}_1 = DtN_2.$$

(Rogier, de Sturler and Nataf, 1993) The result can be generalized to variable coefficients operators and a decomposition of the domain Ω in more than two subdomains. For the following geometries,

one can define interface conditions such as to have convergence in a number of iterations equals to the number of subdomains.

For arbitrary decompositions, negative conjectures have been formulated (F. Nier, *Séminaire X-EDP*, 1998).

The Steklov-Poincaré *DtN* is not a partial differential operator:

it is non local

its explicit form is not known in the general case
 It is approximated by a partial differential operator

$$\mathsf{DtN}\simeq lpha_{\mathsf{opt}}-rac{\partial}{\partial au}(\gamma_{\mathsf{opt}}rac{\partial}{\partial au})$$

trying to minimize the convergence rate of the algorithm. We speak of optimized of order 2 (opt2) interface conditions If we take $\gamma = 0$ and optimize only with respect to α , we speak of optimized of order 0 (opt0)

$$\mathcal{L}(u) := \eta u - \Delta u = f \text{ in } \mathbb{R}^2, \ \eta > 0$$

The plane \mathbb{R}^2 is divided into two half-planes with an overlap of size $\delta \ge 0$ and the algorithm writes:

$$\mathcal{L}(u_1^{n+1}) = f \quad \text{in } \Omega_1 :=] - \infty, \delta[\times \mathbb{R}, \\ (\frac{\partial}{\partial n_1} + \alpha)(u_1^{n+1}) = (-\frac{\partial}{\partial n_2} + \alpha)(u_2^n) \quad \text{at } x = \delta \\ \mathcal{L}(u_2^{n+1}) = f \quad \text{in } \Omega_2 :=]0, \infty[\times \mathbb{R}, \\ (\frac{\partial}{\partial n_2} + \alpha)(u_2^{n+1}) = (-\frac{\partial}{\partial n_1} + \alpha)(u_1^n) \quad \text{at } x = 0$$

A Fourier analysis leads to the following convergence rate (k is the dual variable):

$$\rho(\mathbf{k}; \delta, \alpha) = \left| \frac{\sqrt{\eta + \mathbf{k}^2} - \alpha}{\sqrt{\eta + \mathbf{k}^2} + \alpha} \right| \, \mathbf{e}^{-\sqrt{\eta + \mathbf{k}^2}} \, \delta$$

Optimizing the interface condition

In the physical space:

$$\rho(\delta, \alpha) = \max_{|k| \le 1/h} \left| \frac{\sqrt{\eta + k^2} - \alpha}{\sqrt{\eta + k^2} + \alpha} \right| e^{-\sqrt{\eta + k^2}} \delta$$

When there is no overlap ($\delta = 0$):

- if α is *h* independent, then $\rho \simeq 1 C^t h$
- if α varies like 1/h, then $\rho \simeq 1 C^t h$
- if α solves the min-max problem:

$$\rho(\alpha_{opt}) := \min_{\alpha > 0} \max_{|k| \le 1/h} \rho(k; 0, \alpha)$$

then α_{opt} varies like $1/\sqrt{h}$ and $\rho_{opt} \simeq 1 - C^t \sqrt{h}$ With overlap

- Classical Schwarz: $\alpha = \infty$, $\rho_{Scwharz} > \rho_{\alpha}$, $\forall \alpha$
- Optimization for small *h* with $\delta = C h$, (Gander, SISC, 2006)

$1/\Delta y$	10	20	40	80
$\alpha_{\rm opt}^{\rm sc}$	6	7	10	16
$\alpha = 1$	27	51	104	231

Table: Number of iterations for different values of the mesh size and two possible choices for α , no overlap

Application: the Helmholtz Equation

M. Gander, F. Nataf, F. Magoulès SIAM J. Sci. Comp., 2002.

We want to solve

 $-\omega^2 u - \Delta u = f \quad \text{in } \Omega$ $u = 0 \quad \text{on } \partial \Omega.$

The relaxation algorithm is : $(u_1^p, u_2^p) \rightarrow (u_1^{p+1}, u_2^{p+1})$ with $(i \neq j, i = 1, 2)$

$$(-\omega^{2} - \Delta)(u_{i}^{p+1}) = f \quad \text{in } \Omega_{i}$$

$$(\frac{\partial}{\partial n_{i}} + S)(u_{i}^{p+1}) = (-\frac{\partial}{\partial n_{j}} + S)(u_{j}^{p}) \quad \text{on } \Gamma_{ij}.$$

$$u_{i}^{p+1} = 0 \text{ on } \partial\Omega_{i} \cap \partial\Omega$$

The operator \mathcal{S} has the form

$$\mathcal{S} = \alpha - \gamma \frac{\partial^2}{\partial \tau^2} \qquad \alpha, \gamma \in \mathbb{C}$$

Application: the Helmholtz Equation

By choosing carefully the coefficients α and γ , it is possible to optimize the convergence rate of the iterative method which in the Fourier space is given by

$$\rho(k;\alpha,\gamma) \equiv \begin{cases} \left| \frac{I\sqrt{\omega^2 - k^2} - (\alpha + \gamma k^2)}{I\sqrt{\omega^2 - k^2} + (\alpha + \gamma k^2)} \right| & \text{if } |k| < \omega \quad (I^2 = -1) \\ \left| \frac{\sqrt{k^2 - \omega^2} - (\alpha + \gamma k^2)}{\sqrt{k^2 - \omega^2} + (\alpha + \gamma k^2)} \right| & \text{if } |k| > \omega \end{cases}$$

Finally, we get analytic formulas for α and γ (*h* is the mesh size):

$$\alpha_{opt} = \alpha(\omega, h)$$
 and $\gamma_{opt} = \gamma(\omega, h)$,

Moreover, a Krylov method (GC, GMRES, BICGSTAB, ...) replaces the fixed point algorithm.

The Helmholtz Equation – Numerical Results

Waveguide: Optimized Schwarz method with QMR compared to ABC0 ($\partial_n + I\omega$) with relaxation on the interface

Discretization of the two-field formulation

A direct discretization would require the computation of the normal derivatives along the interfaces in order to evaluate the right handsides. We introduce two new variables

$$\lambda^1 = -\frac{\partial u_2}{\partial n_2} + S(u_2) \text{ and } \lambda^2 = -\frac{\partial u_1}{\partial n_1} + S(u_1).$$

The algorithm reads now

$$-\Delta u_{1}^{n+1} + \omega^{2} u_{1}^{n+1} = f \text{ in } \Omega_{1}$$
$$\frac{\partial u_{1}^{n+1}}{\partial n_{1}} + S(u_{1}^{n+1}) = \lambda^{1^{n}} \text{ on } \Gamma_{12}$$
$$-\Delta u_{2}^{n+1} + \omega^{2} u_{2}^{n+1} = f \text{ in } \Omega_{2}$$
$$\frac{\partial u_{2}^{n+1}}{\partial n_{2}} + S(u_{2}^{n+1}) = \lambda^{2^{n}} \text{ on } \Gamma_{12}$$
$$\lambda^{1^{n+1}} = -\lambda^{2^{n}} + (S + S)(u_{2}^{n+1}(\lambda^{1^{p}}, f))$$
$$\lambda^{2^{n+1}} = -\lambda^{1^{n}} + (S + S)(u_{1}^{n+1}(\lambda^{2^{p}}, f)).$$

Finite Element Discretization

A finite element discretization leads to the following linear system:

$$\lambda^{1} = -\lambda^{2} + (S+S)B^{2}u^{2}$$

$$\lambda^{2} = -\lambda^{1} + (S+S)B^{1}u^{1}$$

$$\widetilde{K}^{1}u^{1} = f^{1} + B^{1^{T}}\lambda^{1}$$

$$\widetilde{K}^{2}u^{2} = f^{2} + B^{2^{T}}\lambda^{2}$$
(18)

where B^1 (resp. B^2) is the trace operator of domain Ω^1 (resp. Ω^2) on the interface Γ_{12} . Matrix \widetilde{K}^i , i = 1, 2 arises from the discretization of the local Helmholtz subproblems along with the interface condition $\partial_n + \alpha - \gamma \partial_{\tau\tau}$.

$$\widetilde{K}^{i} = K^{i} - \omega^{2} M^{i} + B^{i^{T}} (\alpha M_{\Gamma_{12}} + \gamma K_{\Gamma_{12}}) B^{i}$$
(19)

where K^i is the stiffness matrix, M^i the mass matrix, $M_{\Gamma_{12}}$ is the interface mass matrix and $K_{\Gamma_{12}}$ is the interface stiffness matrix.

More precisely, the interface mass matrix $M_{\Gamma_{12}}$ and the interface stiffness matrix $K_{\Gamma_{12}}$ are defined by

$$[M_{\Gamma_{12}}]_{lm} = \int_{\Gamma_{12}} \phi_l \phi_m d\xi \text{ and } [K_{\Gamma_{12}}]_{lm} = \int_{\Gamma_{12}} \nabla_\tau \phi_l \nabla_\tau \phi_m d\xi$$
 (20)

where ϕ_I et ϕ_m are the basis functions associated to nodes *I* and *m* on the interface Γ_{12} and $\nabla_{\tau}\phi$ is the tangential component of $\nabla\phi$ on the interface. We have

 $\boldsymbol{S} = \alpha \boldsymbol{M}_{\Gamma_{12}} + \gamma \boldsymbol{K}_{\Gamma_{12}}.$

The substructured linear system of the two-field formulation has the form

$$F\lambda = d \tag{21}$$

where $\lambda = (\lambda^1, \lambda^2)$, *F* is a matrix and *d* is the right handside

$$F = \begin{bmatrix} I & I - (S+S)B^{2}\widetilde{K}^{2^{-1}}B^{2^{T}} \\ I - (S+S)B^{1}\widetilde{K}^{1^{-1}}B^{1^{T}} & I \end{bmatrix}$$
$$d = \begin{bmatrix} (S+S)B^{1}\widetilde{K}^{1^{-1}}f^{1} \\ (S+S)B^{2}\widetilde{K}^{2^{-1}}f^{2} \end{bmatrix}$$

The linear system is solved by a Krylov type method, here the ORTHODIR algorithm. The matrix vector product amounts to solving a subproblem in each subdomain and to send interface data between subdomains.

General Interface Conditions for the Helmholtz Equation Numerical Results

Waveguide: Optimized Schwarz method with QMR and ABC0 $(\partial_n + I\omega)$ with relaxation on the interface

General Interface Conditions for the Helmholtz Equation Numerical Results

Acoustic in a Car : Iteration Counts for various interface conditions

Ns	ABC 0	ABC 2	Optimized
2	16 it	16 it	<mark>9</mark> it
4	50 it	52 it	15 it
8	83 it	93 it	<mark>25</mark> it
16	105 it	133 it	34 it

ABC 0: Absorbing Boundary Conditions of Order 0 $(\partial_n + I\omega)$ ABC 2: Absorbing Boundary Conditions of Order 2 $(\partial_n + I\omega - 1/(2I\omega)\partial_{y^2})$ Optimized: Optimized Interface Conditions The same ideas apply to Maxwell's equations Desprès, ; Joly, ; Roberts, A domain decomposition method for the harmonic Maxwell equations. Iterative methods in linear algebra , 1992.

Dolean, ; Gander, ; Gerardo-Giorda, Optimized Schwarz methods for Maxwell's equations. SISC, 2009

They are currently used in electromagnetic simulations: LEE Jin-Fa - Ohio State University, ECE Department, USA:

Z. Peng, K. H. Lim, and J. F. Lee, Computations of Electromagnetic Wave Scattering from Penetrable Composite Targets using a Surface Integral Equation Method with Multiple Traces, IEEE T. ANTENNA PROPAG., 2012.

Z. Peng, K. H. Lim, and J. F. Lee, Non-conformal Domain Decomposition Methods for Solving Large Multi-scale

Electromagnetic Scattering Problems, Proceeding of IEEE, 2012.

When a finite element method, for instance, is used it yields a linear system of the form AU = F, where *F* is a given right-hand side and *U* is the set of unknowns. Corresponding to a domain decomposition, the set of unknowns *U* is decomposed into interior nodes of the subdomains U_1 and U_2 , and to unknowns, U_{Γ} , associated to the interface Γ . This leads to a block decomposition of the linear system

$$\begin{pmatrix} A_{11} & A_{1\Gamma} & 0\\ A_{\Gamma 1} & A_{\Gamma\Gamma} & A_{\Gamma 2}\\ 0 & A_{2\Gamma} & A_{22} \end{pmatrix} \begin{pmatrix} U_1\\ U_{\Gamma}\\ U_2 \end{pmatrix} = \begin{pmatrix} F_1\\ F_{\Gamma}\\ F_2 \end{pmatrix}.$$
 (22)

Optimal Interface Condition at the matrix level

The DDM method reads:

$$\begin{pmatrix} A_{11} & A_{1\Gamma} \\ A_{\Gamma 1} & A_{\Gamma\Gamma} + S_2 \end{pmatrix} \begin{pmatrix} U_1^{n+1} \\ U_{\Gamma,1}^{n+1} \end{pmatrix} = \begin{pmatrix} F_1 \\ F_{\Gamma} + S_2 U_{\Gamma,2}^n - A_{\Gamma 2} U_2^n \end{pmatrix}$$
(23)

$$\begin{pmatrix} A_{22} & A_{2\Gamma} \\ A_{\Gamma 2} & A_{\Gamma\Gamma} + S_1 \end{pmatrix} \begin{pmatrix} U_2^{n+1} \\ U_{\Gamma,2}^{n+1} \end{pmatrix} = \begin{pmatrix} F_2 \\ F_{\Gamma} + S_1 U_{\Gamma,1}^n - A_{\Gamma 1} U_1^n \end{pmatrix}$$
(24)

where

$$S_1 = -A_{\Gamma 1}A_{11}^{-1}A_{1\Gamma}$$

and

$$S_2 = -A_{\Gamma 2}A_{22}^{-1}A_{2\Gamma}$$

Convergence in two iterations

The matrices $S_1 = -A_{\Gamma 1}A_{11}^{-1}A_{1\Gamma}$ and $S_2 = -A_{\Gamma 2}A_{22}^{-1}A_{2\Gamma}$ are full interface matrices ($\Gamma \times \Gamma$). Cons

- Costly to compute
- The subdomain matrix is partly full
- Approximate S_1 and S_2 by sparse matrices
 - e.g. via sparse approximations to A_{ii}^{-1} : SPAI
 - 2 via local Schur complements on successive reduced "outer" domains ($\gamma \times \delta$), "patches", (Roux et al., 2006)

The first approach gives mild results. The second one is not better than using an overlap of depth δ but is cheaper.

Very anisotropic and heterogeneous media, $\kappa_M/\kappa_m = 10^7$

Table: Gmres solve with $TOL = 10^{-6}$

	Cond. Nb	lter	<i>e</i>
RAS (Schwarz)	1.99 10 ⁶	37	3.6 10 ⁻²
Patch	5.29 10 ⁵	15	6.1 10 ⁻⁵
Best IC	2.1	9	1.5 10 ⁻⁷

Condition number of Patch method is very bad but only one eigenvalue is very small, thus iteration count is good.

1 Introduction

- 2 Schwarz algorithms as solvers
- 3 Schwarz algorithms as preconditioners
- Optimized Interface Conditions for wave phenomena
- 5 Classical coarse space method
 - Coarse grid correction
 - Theoretical convergence result
 - Deflation and coarse grid
 - Classical coarse grid using FreeFEM++
 - Coarse grid for heterogeneous problems

How to evaluate the efficiency of a domain decomposition?

Weak scalability - definition

"How the solution time varies with the number of processors for a fixed problem size per processor."

It is not achieved with the one level method

Number of subdomains	8	16	32	64
ASM	18	35	66	128

The iteration number increases linearly with the number of subdomains in one direction.

Convergence curves- more subdomains

Plateaus appear in the convergence of the Krylov methods.

Stagnation corresponds to a few very low eigenvalues in the spectrum of the preconditioned problem. They are due to the lack of a global exchange of information in the preconditioner.

 $-\Delta u = f \text{ in } \Omega$ $u = 0 \text{ on } \partial \Omega$

The mean value of the solution in domain i depends on the value of f on all subdomains.

A classical remedy consists in the introduction of a coarse grid problem that couples all subdomains. This is closely related to deflation technique classical in linear algebra (see Nabben and Vuik's papers in SIAM J. Sci. Comp, 200X).

Adding a coarse grid

We add a coarse space correction (*aka* second level) Let V_H be the coarse space and *z* be a basis, $V_H = \operatorname{span} z$, writing $R_0 = Z^T$ we define the two level preconditioner as:

$$M_{ASM,2}^{-1} := R_0^T (R_0 A R_0^T)^{-1} R_0 + \sum_{i=1}^N R_i^T A_i^{-1} R_i.$$

The Nicolaides approach is to use the kernel of the operator as a coarse space, this is the constant vectors, in local form this writes:

 $Z := (R_i^T D_i R_i \mathbf{1})_{1 \le i \le N}$

where D_i are chosen so that we have a partition of unity:

$$\sum_{i=1}^{N} R_i^{\mathsf{T}} D_i R_i = I d.$$

Theorem (Widlund, Sarkis)

Let $M_{ASM,2}^{-1}$ be the two-level additive Schwarz method:

$$\kappa(M_{ASM,2}^{-1}A) \leq C\left(1+rac{H}{\delta}
ight)$$

where δ is the size of the overlap between the subdomains and *H* the subdomain size.

This do	This does indeed work very well				
	Number of subdomains	8	16	32	64
	ASM	18	35	66	128
	ASM + Nicolaides	20	27	28	27

Idea of the proof (Upper bound)

Lemma

If each point in Ω belongs to at most k_0 of the subdomains Ω_j , then the largest eigenvalue of $M_{ASM,2}^{-1}$ A satisfies

$$\lambda_{max}(M_{ASM,2}^{-1}A) \leq k_0 + 1.$$

Assumption (Stable decomposition)

There exists a constant C_0 , such that every $u \in V$ admits a decomposition $u = \sum_{i=0}^{N} R_i^T u_i$, $u_i \in V_i$, i = 0, ..., N that satisfies:

$$\sum_{i=0}^{N} \tilde{a}_i(u_i, u_i) \leq C_0^2 a(u, u).$$

Theorem

If every $v \in V$ admits a C_0 -stable decomposition (with uniform C_0), then the smallest eigenvalue of $M_{AS,2}^{-1}$ A satisfies

 $\lambda_{\min}(M_{ASM,2}^{-1}A) \geq C_0^{-2}.$

Therefore, the condition number of the two-level Schwarz preconditioner can be bounded by

 $\kappa(M_{ASM,2}^{-1}A) \leq C_0^2(k_0+1).$

Deflation and Coarse grid correction

Let A be a SPD matrix, we want to solve

Ax = b

with a preconditioner M (for example the Schwarz method). Let Z be a rectangular matrix so that the "bad eigenvectors" belong to the space spanned by its columns. Define

 $P:=I-AQ, \quad Q:=ZE^{-1}Z^{T}, \quad E:=Z^{T}AZ,$

Examples of coarse grid preconditioners

 $\mathcal{P}_{A-DEF2} := P^T M^{-1} + Q, \quad \mathcal{P}_{BNN} := P^T M^{-1} P + Q \text{ (Mandel, 1993)}$

Some properties: QAZ = Z, $P^TZ = 0$ and $P^TQ = 0$. Let r_n be the residual at step n of the algorithm: $Z^T r_n = 0$.

How to choose *Z*?

Coarse grid correction for smooth problems

For a Poisson like problem, Nicolaides (1987), Sarkis (2002). Let $(\chi_i)_{1 \le i \le N}$ denote a partition of unity :

Coarse grid implementation - I

It is enough to replace the Schwarz preconditioner by P_{BNN} as follows. First build $E = Z^T A Z$

```
Vh[int] Z(npart);
for(int i=0;i<npart;++i)</pre>
{ Z[i]=1.;
real[int] zit = Rih[i]*Z[i][];
real[int] zitemp = Dih[i]*zit;
Z[i][]=Rih[i]'*zitemp;
}
real[int, int] Ef(npart, npart); // E = Z^T*A*Z
for(int i=0;i<npart;++i)</pre>
{ real[int] vaux = A(Z[i][]);
   for(int j=0; j<npart;++j)</pre>
  Ef(j,i) = Z[j][]' * vaux;
}
matrix E;
E = Ef;
set(E, solver=UMFPACK);
```

Coarse grid implementation - II

```
Then the coarse space correction Q = ZE^{-1}Z^{T}:
```

```
func real[int] Q(real[int] &l) // Q = Z*E^-1*Z^T
   real[int] res(l.n);
   res=0.;
   real[int] vaux(npart);
   for(int i=0;i<npart;++i)</pre>
     vaux[i]=Z[i][]'*l;
   real[int] zaux=E^-1*vaux; // zaux=E^-1*Z^T*l
   for(int i=0;i<npart;++i) // Z*zaux</pre>
      res +=zaux[i]*Z[i][];
   return res;
}
```

Coarse grid implementation - III

The projector out of the coarse space P = I - QA and its transpose P^{T} :

```
func real[int] P(real[int] &l) // P = I - A*O
   real[int] res=Q(1);
   real[int] res2=A(res);
   res2 -= 1;
   res2 *= -1.;
   return res2;
}
func real[int] PT(real[int] &l) // P^T = I-Q*A
   real[int] res=A(1);
   real[int] res2=0(res);
   res2 -= 1;
   res2 *= -1.;
   return res2;
}
```

And finally the preconditioner $P_{BNN} = P^T M^{-1} P + Q$:

```
int j;
func real[int] BNN(real[int] &u) // precond BNN
{
    real[int] aux1 = Q(u);
    real[int] aux2 = P(u);
    real[int] aux3 = Mm1(aux2);
    aux2 = PT(aux3);
    aux2 += aux1;
    ++j;
return aux2;
}
```

1 Introduction

- 2 Schwarz algorithms as solvers
- 3 Schwarz algorithms as preconditioners
- Optimized Interface Conditions for wave phenomena
- 5 Classical coarse space method
- 6 Coarse grid for heterogeneous problems
 - The heterogeneous coefficient case
 - Coarse grid for problems with high heterogeneities
 - The DtN algorithm
 - Theoretical and numerical results
Large discretized system of PDEs strongly heterogeneous coefficients (high contrast, nonlinear, multiscale)

E.g. Darcy pressure equation, P^1 -finite elements:

Au = f

 ${
m cond}({f A})\sim rac{lpha_{
m max}}{lpha_{
m min}} \, h^{-2}$

Goal:

iterative solvers robust in size and heterogeneities

Applications:

flow in heterogeneous / stochastic / layered media structural mechanics electromagnetics etc.

Darcy equation with heterogeneities

 $\alpha(\mathbf{x},\mathbf{y})$

Jump	1	10	10 ²	10 ³	10 ⁴
ASM	39	45	60	72	73
ASM + Nicolaides	30	36	50	61	65

IsoVali

Objectives

Strategy

Define an appropriate coarse space $V_{H2} = \text{span}(z_2)$ and use the framework previously introduced, writing $R_0 = Z_2^T$ the two level preconditioner is:

$$P_{ASM2}^{-1} := R_0^T (R_0 A R_0^T)^{-1} R_0 + \sum_{i=1}^N R_i^T A_i^{-1} R_i.$$

The coarse grid must be

- Local (calculated on each subdomain) \rightarrow parallel
- Adaptive (calculated automatically)
- Easy and cheap to compute (on the boundary for instance)
- Robust (must lead to an algorithm whose convergence does not depend on the partition or the jumps in coefficients)

Heuristic approach: what functions should be in \mathbb{Z}_2 ?

The error satisfies the Schwarz algorithm, it is harmonic, so it satisfies a maximum principle.

Ensuring that the error decreases quickly on the subdomain boundaries

The Dirichlet to Neumann operator is defined as follows: Let $g: \Gamma_i \mapsto \mathbb{R}$,

$$\mathsf{DtN}_{\Omega_i}(g) = \alpha \left. \frac{\partial \mathbf{v}}{\partial n_i} \right|_{\Gamma_i},$$

where v satisfies

$$\begin{cases} (-\operatorname{div}(\alpha\nabla))\mathbf{v} = \mathbf{0}, & \text{in } \Omega_i, \\ \mathbf{v} = \mathbf{g}, & \text{on } \partial\Omega_i. \end{cases}$$

To construct the coarse space, we use the low frequency modes associated with the DtN operator:

$$\mathsf{DtN}_{\Omega_i}(v_i^\lambda) = \lambda \, \alpha \, v_i^\lambda$$

with λ small. The functions v_i^{λ} are extended harmonically to the subdomains.

Theoretical convergence result

Suppose we have $(v_i^{\lambda_k}, \lambda_i^k)_{1 \le k \le n_{\Gamma_i}}$ the eigenpairs of the local DtN maps $(\lambda_i^1 \le \lambda_i^2 \le ...)$ and that we have selected m_i in each subdomain. Then let *Z* be the coarse space built via the local DtN maps:

$$Z := (R_i^T D_i \tilde{V}_i^{\lambda_i^k})_{1 \le i \le N; \ 1 \le k \le m_i}$$

Theorem (D., Nataf, Scheichl and Spillane 2010)

Under the monotonicity of α in the overlapping regions:

$$\kappa(M_{ASM,2}^{-1}A) \leq C(1+\max_{1\leq i\leq N}\frac{1}{\delta_i\lambda_i^{m_i+1}})$$

where δ_i is the size of the overlap of domain Ω_i and *C* is independent of the jumps of α .

If m_i is chosen so that, $\lambda_i^{m_i+1} \ge 1/H_i$ the convergence rate will be analogous to the constant coefficient case.

Results with the new DtN method

1	10	102	10°	104
39	45	60	72	73
30	36	50	61	65
31	35	36	36	36
	39 30 31	1 10 39 45 30 36 31 35	10 10 39 45 60 30 36 50 31 35 36	1 10 10 ⁻ 10 ⁻ 39 45 60 72 30 36 50 61 31 35 36 36

Decomposition

 $\alpha(\mathbf{x}, \mathbf{y})$

With DtN the jumps do not affect convergence We put at most two modes per subdomain in the coarse grid (using the automatic selection process)

Numerical results

Channels and inclusions: $1 \le \alpha \le 1.5 \times 10^6$, the solution and partitionings (Metis or not)

Numerical results

ASM convergence for channels and inclusions – 4×4 Metis partitioning

Numerical results

subdomain <i>i</i>	m _i	total number of eigenvalues
1	3	155
2	1	109
3	5	175
10	4	174
11	2	71
12	2	128
13	3	166
14	3	127
15	3	188
16	3	106

Metis 4 by 4 decomposition

	ASM	ASM+Nico	ASM+DtN
2 × 2	103	110	22
2×2 Metis	76	76	22
4 × 4	603	722	26
4×4 Metis	483	425	36
8 × 8	461	141	34
8 × 8 Metis	600	542	31

Convergence results for the "hard" test case

#Z per subd.	ASM	ASM+Z _{Nico}	$ASM + Z_{D2N}$
$max(m_i - 1, 1)$			273
<i>m_i</i>	614	543	36
<i>m_i</i> + 1			32

 m_i is given automatically by the strategy.

- Taking one fewer eigenvalue has a huge influence on the iteration count
- Taking one more has only a small influence

Results for elasticity (Problem)

Young's modulus ($1 \le E \le 10^6$) Poisson's ratio ($0.35 \le \nu \le 0.48$)

Results for 2d elasticity (Solution)

Overlap is two grid cells

1 Introduction

- 2 Schwarz algorithms as solvers
- 3 Schwarz algorithms as preconditioners
- Optimized Interface Conditions for wave phenomena
- 5 Classical coarse space method
- 6 Coarse grid for heterogeneous problems

7 An abstract 2-level Schwarz - the GenEO algorithm

- Schwarz abstract setting
- Numerical results

Given $f \in (V^h)^*$ find $u \in V^h$

Assumption throughout: A *symmetric positive definite (SPD)*

Examples:

- Darcy $a(u, v) = \int_{\Omega} \kappa \nabla u \cdot \nabla v \, dx$
- Elasticity $a(\boldsymbol{u}, \boldsymbol{v}) = \int_{\Omega} \boldsymbol{C} \boldsymbol{\varepsilon}(\boldsymbol{u}) : \boldsymbol{\varepsilon}(\boldsymbol{v}) \, dx$
- Eddy current $a(\boldsymbol{u}, \boldsymbol{v}) = \int_{\Omega} \boldsymbol{v} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v} + \boldsymbol{\sigma} \boldsymbol{u} \cdot \boldsymbol{v} \, dx$

Heterogeneities / high contrast / nonlinearities in parameters

Problem setting – II

- $V^h \dots$ FE space of functions in Ω based on mesh $\mathcal{T}^h = \{\tau\}$
- A given as set of element stiffness matrices
 + connectivity (list of DOF per element)

Assembling property:

$$a(\mathbf{v}, \mathbf{w}) = \sum_{\tau} a_{\tau}(\mathbf{v}_{|\tau}, \mathbf{w}_{|\tau})$$

where $a_{\tau}(\cdot, \cdot)$ symm. pos. semi-definite

• $\{\phi_k\}_{k=1}^n$ (FE) basis of V^h on each element: *unisolvence*

set of non-vanishing basis functions linearly independent

fulfilled by standard FE

continuous, Nédélec, Raviart-Thomas of low/high order

Two more assumptions on a(·, ·) later!

Schwarz setting – I

Overlapping partition: $\Omega = \bigcup_{j=1}^{N} \Omega_j$ (Ω_j union of elements) $V_j := \operatorname{span} \{ \phi_k : \operatorname{supp}(\phi_k) \subset \overline{\Omega}_j \}$

such that every ϕ_k contained in one of those spaces, i.e.

$$V^h = \sum_{j=1}^N V_j$$

Example: adding "layers" to non-overlapping partition

(partition and adding layers based on matrix information only!)

Local subspaces:

$$V_j \subset V^h$$
 $j = 1, \ldots, N$

Coarse space (defined later):

 $V_0 \subset V^h$

Additive Schwarz preconditioner:

$$\mathbf{M}_{ASM,2}^{-1} = \sum_{j=0}^{N} \mathbf{R}_{j}^{\top} \mathbf{A}_{j}^{-1} \mathbf{R}_{j}$$

where
$$\mathbf{A}_j = \mathbf{R}_j^\top \mathbf{A} \mathbf{R}_j$$

and $\mathbf{R}_j^\top \leftrightarrow R_j^\top : V_j \to V^h$ natural embedding

Partition of unity

Definitions:

 $dof(\Omega_j) := \{k : \operatorname{supp}(\phi_k) \cap \Omega_j \neq \emptyset\}$ $idof(\Omega_j) := \{k : \operatorname{supp}(\phi_k) \subset \overline{\Omega}_j\} \qquad V_j = \operatorname{span}\{\phi_k\}_{k \in idof(\Omega_j)}$ $imult(k) := \#\{j : k \in idof(\Omega_j)\}$

Partition of unity:

(used for design of coarse space and for stable splitting)

$$\Xi_j v = \sum_{k \in idof(\Omega_j)} \frac{1}{imult(k)} v_k \phi_k \quad \text{for } v = \sum_{k=1}^n v_k \phi_k$$

Properties:

$$\sum_{j=1}^{N} \Xi_j \boldsymbol{v} = \boldsymbol{v} \qquad \quad \Xi_j \boldsymbol{v} \in V_j$$

Overlapping zone / Choice of coarse space

Overlapping zone: $\Omega_i^\circ = \{x \in \Omega_j : \exists i \neq j : x \in \Omega_i\}$

Observation: $\Xi_{j|\Omega_j \setminus \Omega_j^\circ} = \operatorname{id}$

Coarse space should be local:

$$V_0 = \sum_{j=1}^N V_{0,j}$$

E.g. $V_{0,j} = \text{span}\{\Xi_j \rho_{j,k}\}_{k=1}^{m_j}$

where $V_{0,j} \subset V_j$

Abstract eigenvalue problem

Gen.EVP per subdomain:

Find $p_{j,k} \in V_{h|\Omega_j}$ and $\lambda_{j,k} \ge 0$: $a_{\Omega_j}(p_{j,k}, v) = \lambda_{j,k} a_{\Omega_j^\circ}(\Xi_j p_{j,k}, \Xi_j v) \quad \forall v \in V_{h|\Omega_j}$ $A_j \mathbf{p}_{j,k} = \lambda_{j,k} \mathbf{X}_j \mathbf{A}_j^\circ \mathbf{X}_j \mathbf{p}_{j,k}$ ($\mathbf{X}_j \dots$ diagonal)

(properties of eigenfunctions discussed soon) $a_D \dots$ restriction of a to D

In the two-level ASM:

Choose first *m_i* eigenvectors per subdomain:

$$V_0 = \operatorname{span}\{\Xi_j p_{j,k}\}_{k=1,...,m_j}^{j=1,...,N}$$

Theory

Two technical assumptions.

Theorem (D., Hauret, Nataf, Pechstein, Scheichl, Spillane)

If for all j: $0 < \lambda_{j,m_{j+1}} < \infty$:

$$\kappa(\mathbf{M}_{ASM,2}^{-1}\mathbf{A}) \leq (1+k_0) \Big[2+k_0 (2k_0+1) \max_{j=1}^N \Big(1+\frac{1}{\lambda_{j,m_j+1}}\Big) \Big]$$

Possible criterion for picking *m*_i:

(used in our Numerics)

$$\lambda_{j,m_j+1} < \frac{\delta_j}{H_j}$$

 H_i ... subdomain diameter, δ_i ... overlap

Numerics – Darcy – I

Iterations (CG) vs. jumps

Code: Matlab & FreeFem++

κ <u>2</u>	ASM-1	ASM-2-low	dim(V _H)	GenEO	dim(V _H)
1	22	16	(8)	16	(8)
10 ²	31	24	(8)	17	(15)
10 ⁴	37	30	(8)	21	(15)
10 ⁶	36	29	(8)	18	(15)

ASM-1: 1-level ASM

ASM-2-low: $m_i = 1$

NEW: $\lambda_{j,m_j+1} < \delta_j/H_j$

Iterations (CG) vs. number of subdomains

regular partition

subd.	dofs	ASM-1	ASM-2-low	$dim(V_H)$	GenEO	dim(V
4	4840	14	15	(4)	10	(6)
8	9680	26	22	(8)	11	(14)
16	19360	51	36	(16)	13	(30)
32	38720	> 100	61	(32)	13	(62)

METIS partition

subd.	dofs	ASM-1	ASM-2-low	$dim(V_H)$	GenEO	dim(V
4	4840	21	18	(4)	15	(7)
8	9680	36	29	(8)	18	(15)
16	19360	65	45	(16)	22	(31)
32	38720	>100	79	(32)	34	(63)

Iterations (CG) vs. overlap

(added) layers	ASM-1	ASM-2-low	(V_H)	GenEO	(V_H)
1	26	22	(8)	11	(14)
2	22	18	(8)	9	(14)
3	16	15	(8)	9	(14)

Numerics – 2D Elasticity

Ε

$$E_1 = 2 \cdot 10^{11}$$

 $\nu_1 = 0.3$
 $E_2 = 2 \cdot 10^7$
 $\nu_2 = 0.45$

METIS partitions with 2 layers added

subd.	dofs	ASM-1	ASM-2-low	(V_H)	GenEO	(V_H)
4	13122	93	134	(12)	42	(42)
16	13122	164	165	(48)	45	(159)
25	13122	211	229	(75)	47	(238)
64	13122	279	167	(192)	45	(519)

Numerics – 3D Elasticity

Iterations (CG) vs. number of subdomains

$$E_1 = 2 \cdot 10^{11}$$

Relative error vs. iterations 16 regular subdomains

subd.	dofs	ASM-1	ASM-2-low	(V _H)	GenEO	(V_H)
4	1452	79	54	(24)	16	(46)
8	29040	177	87	(48)	16	(102)
16	58080	378	145	(96)	16	(214)

1 Introduction

- 2 Schwarz algorithms as solvers
- 3 Schwarz algorithms as preconditioners
- Optimized Interface Conditions for wave phenomena
- 5 Classical coarse space method
- 6 Coarse grid for heterogeneous problems
- 7 An abstract 2-level Schwarz the GenEO algorithm

8 Parallel issues in FreeFem++