Entropy-based artificial viscosity Parabolic regularization and related topics

Jean-Luc Guermond

Department of Mathematics Texas A&M University

CEMRACS'12 CIRM, Marseille July 16-20, 2012

EULER EQUATIONS

EULER, NUMERICAL ILLUSTRATIONS

Acknowledgments

Collaborators:

Andrea Bonito (Texas A&M) Jim Morel (Texas A&M) Murtazo Nazarov (post-doc Texas&M, PhD KTH) Richard Pasquetti (Univ. Nice) Bojan Popov (Texas A&M) Guglielmo Scovazzi (Sandia Natl. Lab.) Valentin Zingan (Post-doc Univ. Alberta, PhD Texas A&M)

Support:

2 SCALAR CONSERVATION

3 NUMERICAL ILLUSTRATIONS

2 SCALAR CONSERVATION

3 NUMERICAL ILLUSTRATIONS

EULER EQUATIONS

2 SCALAR CONSERVATION

3 NUMERICAL ILLUSTRATIONS

EULER EQUATIONS

5 EULER, NUMERICAL ILLUSTRATIONS

EULER EQUATIONS

EULER, NUMERICAL ILLUSTRATIONS

Introduction

INTRODUCTION

SCALAR CONSERVATION NUMERICAL ILLUSTRATIONS EULER EQUATIONS EULER, NUMERICAL ILLUSTRATIONS

Introduction

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

• Nonlinear hyperbolic conservation laws (Euler equations)

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

- Nonlinear hyperbolic conservation laws (Euler equations)
- Nonlinear hyperbolic problems produce discontinuities (shock waves, contacts)

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

- Nonlinear hyperbolic conservation laws (Euler equations)
- Nonlinear hyperbolic problems produce discontinuities (shock waves, contacts)
- High-order linear methods introduce spurious oscillations in the regions of discontinuities (Gibbs)

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

- Nonlinear hyperbolic conservation laws (Euler equations)
- Nonlinear hyperbolic problems produce discontinuities (shock waves, contacts)
- High-order linear methods introduce spurious oscillations in the regions of discontinuities (Gibbs)
- These unphysical oscillations propagate everywhere

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

- Nonlinear hyperbolic conservation laws (Euler equations)
- Nonlinear hyperbolic problems produce discontinuities (shock waves, contacts)
- High-order linear methods introduce spurious oscillations in the regions of discontinuities (Gibbs)
- These unphysical oscillations propagate everywhere
- Use artificial viscosity to suppress oscillations

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

- Nonlinear hyperbolic conservation laws (Euler equations)
- Nonlinear hyperbolic problems produce discontinuities (shock waves, contacts)
- High-order linear methods introduce spurious oscillations in the regions of discontinuities (Gibbs)
- These unphysical oscillations propagate everywhere
- Use artificial viscosity to suppress oscillations

The (not so new) idea

• Regularize the PDE from the start.

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

- Nonlinear hyperbolic conservation laws (Euler equations)
- Nonlinear hyperbolic problems produce discontinuities (shock waves, contacts)
- High-order linear methods introduce spurious oscillations in the regions of discontinuities (Gibbs)
- These unphysical oscillations propagate everywhere
- Use artificial viscosity to suppress oscillations

The (not so new) idea

- Regularize the PDE from the start.
- Clearly identify the viscous regularization.

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

- Nonlinear hyperbolic conservation laws (Euler equations)
- Nonlinear hyperbolic problems produce discontinuities (shock waves, contacts)
- High-order linear methods introduce spurious oscillations in the regions of discontinuities (Gibbs)
- These unphysical oscillations propagate everywhere
- Use artificial viscosity to suppress oscillations

The (not so new) idea

- Regularize the PDE from the start.
- Clearly identify the viscous regularization.
- Discretize ⇒ artificial viscosity should be independent of discretization (except for a notion of mesh-size). Should work for finite diff, finite elements, DG, spectral method, spectral finite elements, etc.

INTRODUCTION SCALAR CONSERVATION NUMERICAL ILLUSTRATIONS EULER EQUATIONS EULER, NUMERICAL ILLUSTRATIONS

The (not so new) idea

• Viscous regularization gives μ_{max} (First-order viscosity. Low order method).

The (not so new) idea

- Viscous regularization gives μ_{max} (First-order viscosity. Low order method).

The (not so new) idea

- Viscous regularization gives μ_{max} (First-order viscosity. Low order method).
- Use the physical principle of entropy production to limit the amount of artificial viscosity: μ_E
- Entropy Viscosity: $\mu = \min(\mu_{\max}, \mu_E)$.

• The use of a residual to construct an artificial viscosity is not new

- The use of a residual to construct an artificial viscosity is not new
- For instance, the so-called PDE-based artificial viscosity (Hughes-Mallet (1986), Johnson-Szepessy (1990))

- The use of a residual to construct an artificial viscosity is not new
- For instance, the so-called PDE-based artificial viscosity (Hughes-Mallet (1986), Johnson-Szepessy (1990))

PDE-residual is less robust than entropy residual

• The residual of the PDE goes to zero in the distribution sense (solve the PDE!)

- The use of a residual to construct an artificial viscosity is not new
- For instance, the so-called PDE-based artificial viscosity (Hughes-Mallet (1986), Johnson-Szepessy (1990))

PDE-residual is less robust than entropy residual

- The residual of the PDE goes to zero in the distribution sense (solve the PDE!)
- The entropy residual converges to a Dirac measure supported in the physical shocks.

Example (Riemann problem for 1D Burgers' equation)

IVP:

$$\begin{cases} \partial_t u + \partial_x \left(\frac{u^2}{2}\right) = 0, \quad (x,t) \in \mathbb{R} \times \mathbb{R}_+ \\ u(x,0) = u_0(x) = \begin{cases} 1 & \text{if } x < 0 \\ 0 & \text{if } x > 0 \end{cases} \end{cases}$$

Solution:

$$u(x,t) = 1 - H\left(x - \frac{1}{2}t\right)$$

PDE Residual:

$$\partial_t u + \partial_x \left(\frac{u^2}{2}\right) = \frac{1}{2}H' - \frac{1}{2}H' = 0$$

Example (Riemann problem for 1D Burgers' equation)

IVP:

$$\begin{cases} \partial_t u + \partial_x \left(\frac{u^2}{2}\right) = 0, \quad (x,t) \in \mathbb{R} \times \mathbb{R}_+ \\ u(x,0) = u_0(x) = \begin{cases} 1 & \text{if } x < 0 \\ 0 & \text{if } x > 0 \end{cases} \end{cases}$$

Solution:

$$u(x,t) = 1 - H\left(x - \frac{1}{2}t\right)$$

PDE Residual:

$$\partial_t u + \partial_x \left(\frac{u^2}{2} \right) = \frac{1}{2}H' - \frac{1}{2}H' = 0$$

If $E(u) = \frac{u^2}{2}$ and $F(u) = \frac{u^3}{3}$, then the Entropy Residual:

$$\partial_t \left(\frac{u^2}{2}\right) + \partial_x \left(\frac{u^3}{3}\right) = \frac{1}{4}H' - \frac{1}{3}H' = -\frac{1}{12}H' = -\frac{1}{12}\delta\left(x - \frac{1}{2}t\right) < 0$$

INTRODUCTION SCALAR CONSERVATION NUMERICAL ILLUSTRATIONS EULER EQUATIONS EULER, NUMERICAL ILLUST

Contact and other waves

• The residual of an entropy equation is large in shocks

Contact and other waves

- The residual of an entropy equation is large in shocks
- But it goes to zero in contacts

Contact and other waves

- The residual of an entropy equation is large in shocks
- But it goes to zero in contacts
- Automatic distinction between shock and other waves

EULER EQUATIONS

EULER, NUMERICAL ILLUSTRATIONS

Nonlinear scalar conservation equations

INTRODUCTION SCALAR CONSERVATION NUMERICAL ILLUSTRATIONS EULER EQUATIONS

Transport, mixing

Entropy inequality $\partial_t E(u) + \nabla \cdot \mathbf{F}(u) \leq 0$ $\mathbf{F}'(u) = E'(u)\mathbf{f}'(u)$

$$\begin{aligned} u(\mathbf{x}, 0) &= u_0(\mathbf{x}) \\ u(\mathbf{x}, t)|_{\Gamma} &= g \end{aligned}$$

$$\begin{cases} \partial_t u + \nabla \cdot \mathbf{f}(u) = 0, \quad (\mathbf{x}, t) \in \Omega \times (0, T] \\ u(\mathbf{x}, 0) = u_0(\mathbf{x}) \\ u(\mathbf{x}, t)|_{\Gamma} = g \end{cases}$$

Model problem

Regularized model problem

Add viscous dissipation to stabilize the model problem:

$$\begin{cases} \partial_t u + \nabla \cdot \mathbf{f}(u) = -\nabla \cdot \mathbf{q}, & (\mathbf{x}, t) \in \Omega \times (0, T] \\ u(\mathbf{x}, 0) = u_0(\mathbf{x}) \\ u(\mathbf{x}, t)|_{\Gamma} = g \end{cases}$$

- $\mathbf{q} = -\mu \nabla u$ is a viscous flux.
- μ will be the entropy viscosity (will depend on u).

Space discretization

- Discretize the domain Ω into $\cup_{K \in \mathbb{T}_{h}} K = \overline{\Omega}$
- K is assumed to be either a polygon or a polyhedron
- Finite element space \mathcal{V}_h^p consists of continuous polynomials of degree $p \ge 0$
- $h: \Omega \longrightarrow \mathbb{R}_+$ is defined by $\forall K \in \mathbb{T}_h : h|_K \equiv h_K = diam(K)/p^2$.

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

Key idea 1: Entropy viscosity should not exceed $\frac{1}{2}|\mathbf{f}'|h$

• Numerical analysis 101: Up-winding=centered approx + $\frac{1}{2}|\beta|h$ viscosity

• 1D Proof: Assume $f'_i \ge 0$

$$f'_{i} \frac{u_{i} - u_{i-1}}{h_{i}} = f'_{i} \frac{u_{i+1} - u_{i-1}}{2h_{i}} - \frac{1}{2}f'_{i}h_{i} \frac{u_{i+1} - 2u_{i} + u_{i-1}}{h_{i}^{2}}$$

In 1D

$$\mu_{\max} = \frac{1}{2} |f'| h$$

Key idea 2: Use entropy residual to construct viscosity

• Evaluate entropy residual

$$D_h := \partial_t E(u_h) + \mathbf{f}'(u_h) \cdot \nabla E(u_h)$$

at each time step

Set

$$\mu_E = h^2 \frac{D_h}{\text{normalization}(E(u_h))}.$$

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

The algorithm

Choose one entropy functional (or more).
EX: E(u) = |u - u_0|, E(u) = (u - u_0)^2, etc.

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

The algorithm

- Choose one entropy functional (or more). EX: $E(u) = |u - \overline{u_0}|, E(u) = (u - \overline{u_0})^2$, etc.
- Compute volume residual $D_{h|K} := \partial_t E(u_h) + \mathbf{f}'(u_h) \cdot \nabla E(u_h)$,

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

- Choose one entropy functional (or more). EX: $E(u) = |u - \overline{u_0}|$, $E(u) = (u - \overline{u_0})^2$, etc.
- Compute volume residual $D_{h|K} := \partial_t E(u_h) + \mathbf{f}'(u_h) \cdot \nabla E(u_h)$,
- Compute interface residual J_{h|∂K} := [[∇F(u_h) : (n⊗n)]],

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

- Choose one entropy functional (or more). EX: $E(u) = |u - \overline{u_0}|, E(u) = (u - \overline{u_0})^2$, etc.
- Compute volume residual $D_{h|K} := \partial_t E(u_h) + \mathbf{f}'(u_h) \cdot \nabla E(u_h)$,
- Compute interface residual J_{h|∂K} := [[∇F(u_h) : (n ⊗ n)]],
- Construct viscosity associated with entropy residual over each mesh cell K:

$$\mu_{E,K} := c_E h_K^2 \frac{\max(\|D_h\|_{L^{\infty}(K)}, \|J_h\|_{L^{\infty}(\partial K)})}{\overline{E(u_h)}}$$

- Choose one entropy functional (or more). EX: $E(u) = |u - \overline{u_0}|$, $E(u) = (u - \overline{u_0})^2$, etc.
- Compute volume residual $D_{h|K} := \partial_t E(u_h) + \mathbf{f}'(u_h) \cdot \nabla E(u_h)$,
- Compute interface residual J_{h|∂K} := [[∇F(u_h) : (n ⊗ n)]],
- Construct viscosity associated with entropy residual over each mesh cell K:

$$\mu_{E,K} := c_E h_K^2 \frac{\max(\|D_h\|_{L^{\infty}(K)}, \|J_h\|_{L^{\infty}(\partial K)})}{\overline{E(u_h)}}$$

• Compute maximum upwind viscosity over each mesh cell K:

$$\mu_{\max,K} = c_{\max}h_K \|\mathbf{f}'(u_h)\|_{L^{\infty}(K)}$$

- Choose one entropy functional (or more). EX: $E(u) = |u - \overline{u_0}|$, $E(u) = (u - \overline{u_0})^2$, etc.
- Compute volume residual D_{h|K} := ∂_tE(u_h) + f'(u_h)·∇E(u_h),
- Compute interface residual J_{h|∂K} := [[∇F(u_h) : (n ⊗ n)]],
- Construct viscosity associated with entropy residual over each mesh cell K:

$$\mu_{E,K} := c_E h_K^2 \frac{\max(\|D_h\|_{L^{\infty}(K)}, \|J_h\|_{L^{\infty}(\partial K)})}{\overline{E(u_h)}}$$

• Compute maximum upwind viscosity over each mesh cell K:

$$\mu_{\max,K} = c_{\max}h_K \|\mathbf{f}'(u_h)\|_{L^{\infty}(K)}$$

• Compute viscosity over each mesh cell K by comparing $\mu_{\max,K}$ and $\mu_{E,K}$:

$$\mu_{K} := \min(\mu_{\max,K}, \mu_{E,K})$$

 c_{\max} and c_E

• Definition of μ_K can be localized when polynomial degree p is large.

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

c_{\max} and c_E

• Definition of μ_K can be localized when polynomial degree *p* is large.

•
$$c_{\max} = \frac{1}{2}$$
 in 1D, with $p = 1$.

c_{max} and c_E

- Definition of μ_K can be localized when polynomial degree p is large.
- $c_{\max} = \frac{1}{2}$ in 1D, with p = 1.
- c_{max} can be theoretically estimated (depends on space dimension, p, and type of mesh).

c_{max} and c_E

- Definition of μ_K can be localized when polynomial degree *p* is large.
- $c_{\max} = \frac{1}{2}$ in 1D, with p = 1.
- c_{max} can be theoretically estimated (depends on space dimension, p, and type of mesh).
- $c_E \approx 1$ in applications.

• Space approximation: Galerkin + entropy viscosity:

$$\underbrace{\int_{\Omega} (\partial_t u_h + \nabla \cdot (\mathbf{f}(u_h))) v_h d\mathbf{x}}_{\text{Galerkin(centered approximation)}} + \underbrace{\sum_{K} \int_{K} \mu_K \nabla u_h \nabla v_h d\mathbf{x}}_{\text{Foregousiescentry}} = 0, \quad \forall v_h \in \mathcal{V}_h^{\mathcal{P}}$$

Entropy viscosity

• Space approximation: Galerkin + entropy viscosity:

$$\underbrace{\int_{\Omega} (\partial_t u_h + \nabla \cdot (\mathbf{f}(u_h))) v_h d\mathbf{x}}_{\text{Galerkin(centered approximation)}} + \underbrace{\sum_{K} \int_{K} \mu_K \nabla u_h \nabla v_h d\mathbf{x}}_{\text{Entropy viscosity}} = 0, \quad \forall v_h \in \mathcal{V}_h^{\mathcal{P}}$$

• Time approximation: Use an explicit time stepping: BDF2, RK3, RK4, etc.

• Space approximation: Galerkin + entropy viscosity:

$$\underbrace{\int_{\Omega} (\partial_t u_h + \nabla \cdot (\mathbf{f}(u_h))) v_h d\mathbf{x}}_{\text{Galerkin(centered approximation)}} + \underbrace{\sum_{K} \int_{K} \mu_K \nabla u_h \nabla v_h d\mathbf{x}}_{\text{Entropy viscosity}} = 0, \quad \forall v_h \in \mathcal{V}_h^{\mathcal{P}}$$

- Time approximation: Use an explicit time stepping: BDF2, RK3, RK4, etc.
- Make the viscosity explicit \Rightarrow Stability under CFL condition.

• (u^n, μ^n) Given. Advance half time step to get w^n

$$w_i^n = u_i^n - \frac{1}{2}\Delta t \frac{f(u_{i+1}^n) - f(u_{i-1}^n)}{2\overline{h_i}} + \left(\mu_i^n \frac{u_{i+1}^n - u_i^n}{h_i} - \mu_{i-1}^n \frac{u_i^n - u_{i-1}^n}{h_{i-1}}\right)$$

• (u^n, μ^n) Given. Advance half time step to get w^n

$$w_i^n = u_i^n - \frac{1}{2}\Delta t \frac{f(u_{i+1}^n) - f(u_{i-1}^n)}{2\overline{h_i}} + \left(\mu_i^n \frac{u_{i+1}^n - u_i^n}{h_i} - \mu_{i-1}^n \frac{u_i^n - u_{i-1}^n}{h_{i-1}}\right)$$

• Compute entropy residuals (volume and interface)

$$D_{i} := \frac{E(w_{i}^{n}) - E(u_{i}^{n})}{\Delta t/2} + \frac{F(w_{i+1}^{n}) - F(w_{i}^{n})}{h_{i}}$$
$$D_{i+1} := \frac{E(w_{i+1}^{n}) - E(u_{i+1}^{n})}{\Delta t/2} + \frac{F(w_{i+1}^{n}) - F(w_{i}^{n})}{h_{i}}$$
$$J_{i} := \frac{F(w_{i+1}^{n}) - F(w_{i}^{n})}{h_{i}} - \frac{F(w_{i}^{n}) - F(w_{i-1}^{n})}{h_{i-1}}$$

• Compute entropy viscosity μ^{n+1}

$$\mu_{i,\max} = \frac{1}{2} \|f'\|_{L^{\infty}(x_{i-1},x_{i+1})} \overline{h_i}$$
$$\mu_{i,E} = \overline{h_i}^2 \frac{\max(|D_i|, |D_{i+1}|, |J_i|)}{\overline{E(w^n)}}$$
$$\mu_i^{n+1} = \min(\mu_{i,\max}, \mu_{i,E}).$$

• Compute entropy viscosity μ^{n+1}

$$\mu_{i,\max} = \frac{1}{2} ||f'||_{L^{\infty}(x_{i-1}, x_{i+1})} \overline{h_i}$$
$$\mu_{i,E} = \overline{h_i}^2 \frac{\max(|D_i|, |D_{i+1}|, |J_i|)}{\overline{E(w'')}}$$

$$\mu_i^{n+1} = \min(\mu_{i,\max},\mu_{i,E}).$$

• Compute *uⁿ⁺¹*

$$\mu_i^{n+1} = u_i^n - \Delta t \frac{f(w_{i+1}^n) - f(w_{i-1}^n)}{2\overline{h_i}} + \left(\mu_i^{n+1} \frac{w_{i+1}^n - w_i^n}{h_i} - \mu_{i-1}^{n+1} \frac{w_i^n - w_{i-1}^n}{h_{i-1}}\right)$$

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

Theorem (AB,JLG,BP (2012))

The RK2 time approximation with finite element approximation is stable under CFL condition for all polynomial degrees. (Better than usual $\delta < ch^{\frac{4}{3}}$ condition for piecewise linear approximation.)

Theorem (AB,JLG,BP (2012))

The RK2 time approximation with finite element approximation is stable under CFL condition for all polynomial degrees. (Better than usual $\delta < ch^{\frac{4}{3}}$ condition for piecewise linear approximation.)

Conjecture

Convergence to the entropy solution is under way for convex, Lipschitz flux.

Theorem (AB,JLG,BP (2012))

The RK2 time approximation with finite element approximation is stable under CFL condition for all polynomial degrees. (Better than usual $\delta < ch^{\frac{4}{3}}$ condition for piecewise linear approximation.)

Conjecture

Convergence to the entropy solution is under way for convex, Lipschitz flux.

Why convergence is so difficult to prove?

Key a priori estimate

$$\int_0^ au \mu(u) |
abla u|^2 \mathrm{d} \mathbf{x} \leq c$$

- Ok in $\{\mu(u)(\mathbf{x},t) = \frac{1}{2} \|\mathbf{f}'\|_{L^{\infty}} h\}$ (non-smooth region)
- The estimate is useless in smooth region.
- Explicit time stepping makes the viscosity depend on the past.

Extensions

- Algorithm extends naturally to Discontinuous Galerkin setting (PhD thesis Valentin Zingan (2011) Texas A&M).
- Lagrangian formulation under way (PhD thesis Vladimir Tomov, Texas A&M).

EULER EQUATIONS

EULER, NUMERICAL ILLUSTRATIONS

Nonlinear scalar conservation equations

SCALAR CONSERVATION NUMERICAL ILLUSTRATIONS EULER EQUATIONS EULER, NUMERICAL ILLUSTRATIONS

Johannes Martinus Burgers

Example (1D scalar transport)

- $\partial_t u + \partial_x u = 0$, periodic BCs.
- \mathbb{P}_1 finite elements, RKx ($x \ge 2$).
- Using very nonlinear entropies help to satisfy the maximum principle for scalar conservation and steepen contacts.

Example (2D scalar transport)

- $\partial_t u + \beta \cdot \nabla u = 0$, (β solid rotation).
- \mathbb{Q}_1 finite elements, RKx ($x \ge 2$).
- Using very nonlinear entropies help to satisfy the maximum principle for scalar conservation and steepen contacts.

Example (3D scalar transport)

- $\partial_t u + \beta \cdot \nabla u = 0$, (β solid rotation about *Oz*)
- \mathbb{Q}_1 finite elements, RKx ($x \ge 2$).
- Level sets of a cube in rotation on a $(100)^3$ grid in the original configuration and after 1, 10, and 100 rotations. $E(u) = (u \frac{1}{2})^{20}, 0 \le u \le 1$.

- Second-order Finite Differences + RKx
- Burgers, *t* = 0.25, *N* = 50, 100, and 200 grid points.

- Fourier approximation + RKx
- Burgers at *t* = 0.25 with *N* = 50, 100, and 200.

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

- DG1 + RKx (V. Zingan)
- Entropy viscosity preserve accuracy outside shocks.
- Compute error in $[0, 0.5 0.025] \cup [0.5 + 0.025]$ at t = 0.25 with DG1

cells	dofs	h	L ₁ -error	R ₁	L ₂ -error	R ₂
5	10	2e-01	1.677e-01	-	2.450e-01	-
10	20	1e-01	7.866e-02	1.09	1.420e-01	0.79
20	40	5e-02	2.133e-02	1.88	4.891e-02	1.54
40	80	2.5e-02	1.779e-03	3.58	4.918e-03	3.31
80	160	1.25e-02	1.517e-04	3.55	1.894e-04	4.69
160	320	6.25e-03	2.989e-05	2.34	4.075e-05	2.22
320	640	3.125e-03	6.903e-06	2.11	9.832e-06	2.05
640	1280	1.5625e-03	1.720e-06	2.01	2.464e-06	2.00

- DG2 + RKx (V. Zingan)
- Entropy viscosity preserve accuracy outside shocks.
- Compute error in $[0, 0.5 0.025] \cup [0.5 + 0.025]$ at t = 0.25 with DG2.

cells	dofs	h	L ₁ -error	R ₁	L ₂ -error	R ₂
5	15	2e-01	4.039e-02	-	8.362e-02	-
10	30	1e-01	8.040e-03	2.33	1.398e-02	2.58
20	60	5e-02	2.242e-03	1.84	6.584e-03	1.08
40	120	2.5e-02	2.149e-04	3.38	5.229e-04	3.65
80	240	1.25e-02	1.366e-05	3.98	1.621e-05	5.01
160	480	6.25e-03	1.644e-06	3.06	1.949e-06	3.06
320	960	3.125e-03	2.018e-07	3.03	2.410e-07	3.02
640	1920	1.5625e-03	2.505e-08	3.01	3.003e-08	3.01

- DG3 + RKx (V. Zingan)
- Entropy viscosity preserve accuracy outside shocks.
- Compute error in $[0, 0.5 0.025] \cup [0.5 + 0.025]$ at t = 0.25 with DG3.

cells	dofs	h	L ₁ -error	R ₁	L ₂ -error	R ₂
5	20	2e-01	1.678e-02	-	2.556e-02	-
10	40	1e-01	9.932e-03	0.76	2.445e-02	0.10
20	80	5e-02	2.019e-03	2.30	6.712e-03	1.86
40	160	2.5e-02	1.761e-04	3.52	6.608e-04	3.35
80	320	1.25e-02	5.716e-06	4.95	7.317e-06	6.50
160	640	6.25e-03	5.791e-07	3.30	7.531e-07	3.28
320	1280	3.125e-03	6.225e-08	3.22	7.843e-08	3.26
640	2560	1.5625e-03	7.485e-09	3.06	9.052e-09	3.12

Example (1D Nonconvex flux)

• Fourier approximation

1D equation

$$\partial_t u + \partial_x f(u) = 0, u(x,0) = u_0(x)$$

Flux

$$f(u) = \begin{cases} \frac{1}{4}u(1-u) & \text{if } u < \frac{1}{2}, \\ \frac{1}{2}u(u-1) + \frac{3}{16} & \text{if } u \ge \frac{1}{2}, \end{cases}$$

Initial data

$$u_0(x) = \begin{cases} 0, & x \in (0, 0.25], \\ 1, & x \in (0.25, 1] \end{cases}$$

t = 1 with N = 200, 400, 800, and 1600.

• \mathbb{P}_1 finite elements.

2D Burgers

 $\partial_t u + \partial_x(\frac{1}{2}u^2) + \partial_y(\frac{1}{2}u^2) = 0$

Initial data

ι	$v^0(x,y)$	=
	(-0.2	if $x < 0.5, y > 0.5$
	-1	if $x > 0.5, y > 0.5$
	0.5	if $x < 0.5, y < 0.5$
	0.8	if $x > 0.5, y < 0.5$

Solution at
$$t = \frac{1}{2}$$
, 3×10^4 nodes.

• \mathbb{P}_1 and \mathbb{P}_2 finite elements.

\mathbb{P}_1 approximation

Γ	b	₽1				
l		L ²	rate	L ¹	rate	
Γ	5.00E-2	2.3651E-1	-	9.3661E-2	-	
Γ	2.50E-2	1.7653E-1	0.422	4.9934E-2	0.907	
	1.25E-2	1.2788E-1	0.465	2.5990E-2	0.942	
	6.25E-3	9.3631E-2	0.449	1.3583E-2	0.936	
	3.12E-3	6.7498E-2	0.472	6.9797E-3	0.961	

\mathbb{P}_2 approximation

Γ	b	₽2				
l		L ²	rate	L ¹	rate	
Γ	5.00E-2	1.8068E-1	-	5.2531E-2	-	
Γ	2.50E-2	1.2956E-1	0.480	2.7212E-2	0.949	
Γ	1.25E-2	9.5508E-2	0.440	1.4588E-2	0.899	
Γ	6.25E-3	6.8806E-2	0.473	7.6435E-3	0.932	

Example (Buckley Leverett)

• \mathbb{P}_2 finite elements.

The equation

 $\partial_t u + \partial_x f(u) + \partial_y g(u) = 0.$

Flux

$$\begin{split} f(u) &= \frac{u^2}{u^2 + (1-u)^2},\\ g(u) &= f(u)(1-5(1-u)^2)\\ \text{Non-convex fluxes (composite waves)} \end{split}$$

Initial data

$$u(x,y,0) = \begin{cases} 1, & \sqrt{x^2 + y^2} \le 0.5 \\ 0, & \text{else} \end{cases}$$

Example (KPP)

• \mathbb{P}_2 and \mathbb{Q}_4 finite elements.

The equation

 $\partial_t u + \partial_x f(u) + \partial_y g(u) = 0.$

Flux

 $f(u) = \sin(u), g(u) = \cos(u),$ Non-convex fluxes (composite waves)

Initial data

$$u(x,y,0) = \begin{cases} \frac{7}{2}\pi, & \sqrt{x^2 + y^2} \le 1\\ \frac{1}{4}\pi, & \text{else} \end{cases}$$

EULER EQUATIONS

EULER, NUMERICAL ILLUSTRATIONS

Compressible Euler equations

INTRODUCTION SCALAR CONSERVATION NUMERICAL ILLUSTRATIONS EULER EQUATIONS EULER, NUMERICAL ILLUSTRATIONS

Leonhard Euler

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

Compressible Euler equations
$$\partial_t \mathbf{c} + \nabla \cdot \mathbf{F}(\mathbf{c}) = 0,$$
 $\mathbf{c} = \begin{pmatrix} \rho \\ \mathbf{m} \\ E \end{pmatrix},$ $\mathbf{F}(\mathbf{c}) = \begin{pmatrix} \mathbf{m} \\ \frac{1}{\rho} \mathbf{m} \otimes \mathbf{m} \\ \frac{1}{\rho} \mathbf{m}(E+\rho) \end{pmatrix}$

Equation of state

ldeal gas e.g.

$$p = (\gamma - 1)(E - \frac{1}{2\rho}\mathbf{m}^2).$$

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

Compressible Euler equations $\partial_t \mathbf{c} + \nabla \cdot \mathbf{F}(\mathbf{c}) = 0,$ $\mathbf{c} = \begin{pmatrix} \rho \\ \mathbf{m} \\ E \end{pmatrix},$ $\mathbf{F}(\mathbf{c}) = \begin{pmatrix} \mathbf{m} \\ \frac{1}{\rho} \mathbf{m} \otimes \mathbf{m} \\ \frac{1}{\rho} \mathbf{m}(E+\rho) \end{pmatrix}$

Equation of state

Ideal gas e.g.

$$\rho = (\gamma - 1)(E - \frac{1}{2\rho}\mathbf{m}^2).$$

Entropy inequality

$$\partial S + \nabla \cdot (\mathbf{u}S) \ge 0, \qquad \mathbf{u} := \frac{\mathbf{m}}{\rho}$$

 $S = \rho \log(e \rho^{1-\gamma}), \qquad e := \frac{1}{\rho} (E - \frac{1}{2\rho} \mathbf{m}^2)$

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

Viscous regularization?

• Entropy viscosity = min(μ_{max}, μ_E).

Viscous regularization?

- Entropy viscosity = min(μ_{max}, μ_E).
- What is a good viscous regularization of Euler? μmax?

Lax-Friedrich regularization (parabolic regularization)

In 1D, LxF is an approximation of

$$\partial_t \mathbf{c} + \nabla \cdot \mathbf{F}(\mathbf{c}) - \frac{1}{2}(|\mathbf{u}| + a)h\nabla^2 \mathbf{c} = 0$$

where h is the mesh size, a is the speed of sound (Perthame, CW Shu (1996)).

Lax-Friedrich regularization (parabolic regularization)

In 1D, LxF is an approximation of

$$\partial_t \mathbf{c} + \nabla \cdot \mathbf{F}(\mathbf{c}) - \frac{1}{2}(|\mathbf{u}| + a)h\nabla^2 \mathbf{c} = 0$$

where h is the mesh size, a is the speed of sound (Perthame, CW Shu (1996)).

• Not Gallilean/rotational invariant.

$$\partial_t \mathbf{c} + \nabla \cdot \mathbf{F}(\mathbf{c}) - \nabla \cdot \mathbf{q} = 0, \qquad \mathbf{q} = \begin{pmatrix} 0 \\ \mu \nabla^s \mathbf{u} \\ \kappa \nabla T \end{pmatrix}$$

- T is the temperature.
- $\mu > 0, \kappa > 0.$

INTRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL ILLUSTRATIONS

$$\partial_t \mathbf{c} + \nabla \cdot \mathbf{F}(\mathbf{c}) - \nabla \cdot \mathbf{q} = 0, \qquad \mathbf{q} = \begin{pmatrix} 0 \\ \mu \nabla^s \mathbf{u} \\ \kappa \nabla T \end{pmatrix}$$

/ -

- T is the temperature.
- $\mu > 0, \kappa > 0.$
- No regularization on the mass. Discrete positivity of ρ?

$$\partial_t \mathbf{c} + \nabla \cdot \mathbf{F}(\mathbf{c}) - \nabla \cdot \mathbf{q} = 0, \qquad \mathbf{q} = \begin{pmatrix} 0 \\ \mu \nabla^s \mathbf{u} \\ \kappa \nabla T \end{pmatrix}$$

- T is the temperature.
- $\mu > 0, \kappa > 0.$
- No regularization on the mass. Discrete positivity of ρ?

Case $\kappa \neq 0,$ ideal gas

$$\rho(\partial_t s + \mathbf{u} \cdot \nabla s) - \nabla \cdot (\kappa e^{-1} \nabla T) = \frac{\mu}{e} |\nabla^s \mathbf{u}|^2 + \frac{\kappa}{e^2} \nabla T \cdot \nabla e$$

$$\partial_t \mathbf{c} + \nabla \cdot \mathbf{F}(\mathbf{c}) - \nabla \cdot \mathbf{q} = 0, \qquad \mathbf{q} = \begin{pmatrix} 0 \\ \mu \nabla^s \mathbf{u} \\ \kappa \nabla T \end{pmatrix}$$

- T is the temperature.
- $\mu > 0, \kappa > 0.$
- No regularization on the mass. Discrete positivity of ρ?

Case $\kappa \neq$ 0, ideal gas

$$\rho(\partial_t s + \mathbf{u} \cdot \nabla s) - \nabla \cdot (\kappa e^{-1} \nabla T) = \frac{\mu}{e} |\nabla^s \mathbf{u}|^2 + \frac{\kappa}{e^2} \nabla T \cdot \nabla e$$

Sets {s(ρ, e) > s₀} are not positively invariant if κ ≠ 0. (See e.g. Serre (1999)
 Discrete positivity of e?

• Formally, solutions to Euler equations should satisfy

 $\rho(\partial_t s + u \cdot \nabla s) \geq 0.$

• Formally, solutions to Euler equations should satisfy

$$\rho(\partial_t s + u \cdot \nabla s) \geq 0$$

• Minimum principle (assuming $\rho > 0$, no vacuum)

$$s(x,t) \geq \min_{z} s(z,0), \quad a.e. \ x, \ t.$$

• Formally, solutions to Euler equations should satisfy

$$\rho(\partial_t s + u \cdot \nabla s) \geq 0$$

• Minimum principle (assuming $\rho > 0$, no vacuum)

$$s(x,t) \geq \min_{z} s(z,0), \quad a.e. \ x, \ t.$$

• Provided $\rho > 0 \Rightarrow e > 0$ (minimum principle on e).

• Formally, solutions to Euler equations should satisfy

$$\rho(\partial_t s + u \cdot \nabla s) \ge 0$$

• Minimum principle (assuming $\rho > 0$, no vacuum)

$$s(x,t) \geq \min_{z} s(z,0), \quad a.e. \ x, \ t.$$

- Provided $\rho > 0 \Rightarrow e > 0$ (minimum principle on *e*).
- Is there a viscous regularization that can reproduce this property?

Minimum entropy preserving regularization $\partial_t \mathbf{c} + \nabla \cdot \mathbf{F}(\mathbf{c}) - \nabla \cdot \mathbf{q} = 0, \quad \mathbf{q} = \begin{pmatrix} \mathbf{f} \\ \mathbf{g} \\ \mathbf{h} + \mathbf{g} \cdot \mathbf{u} \end{pmatrix}$

Minimum entropy preserving regularization

$$\partial_t \mathbf{c} + \nabla \cdot \mathbf{F}(\mathbf{c}) - \nabla \cdot \mathbf{q} = 0, \qquad \mathbf{q} = \begin{pmatrix} \mathbf{f} \\ \mathbf{g} \\ \mathbf{h} + \mathbf{g} \cdot \mathbf{u} \end{pmatrix}$$

• f, g, h to be determined so that

$$\rho(\partial_t s + \mathbf{u} \cdot \nabla s) - \nabla \cdot (\kappa(\rho, e) \nabla \phi(s)) + \text{conservative} \ge 0,$$

/

and

$$\partial_t S + \nabla \cdot (\mathbf{u}S) \geq 0.$$

Minimum entropy preserving regularization

$$\partial_t \mathbf{c} + \nabla \cdot \mathbf{F}(\mathbf{c}) - \nabla \cdot \mathbf{q} = 0, \qquad \mathbf{q} = \begin{pmatrix} \mathbf{f} \\ \mathbf{g} \\ \mathbf{h} + \mathbf{g} \cdot \mathbf{u} \end{pmatrix}$$

• f, g, h to be determined so that

$$\rho(\partial_t s + \mathbf{u} \cdot \nabla s) - \nabla \cdot (\kappa(\rho, e) \nabla \phi(s)) + \text{conservative} \geq 0,$$

/ \

and

$$\partial_t S + \nabla \cdot (\mathbf{u}S) \geq 0.$$

Key hypotheses

• $f{\cdot}\nabla\rho\geq 0\Rightarrow\{\rho>0\}$ positively invariant set.

Minimum entropy preserving regularization

$$\partial_t \mathbf{c} + \nabla \cdot \mathbf{F}(\mathbf{c}) - \nabla \cdot \mathbf{q} = 0, \qquad \mathbf{q} = \begin{pmatrix} \mathbf{f} \\ \mathbf{g} \\ \mathbf{h} + \mathbf{g} \cdot \mathbf{u} \end{pmatrix}$$

• f, g, h to be determined so that

$$p(\partial_t s + \mathbf{u} \cdot \nabla s) - \nabla \cdot (\kappa(\rho, e) \nabla \phi(s)) + \text{conservative} \ge 0,$$

and

$$\partial_t S + \nabla \cdot (\mathbf{u}S) \geq 0.$$

Key hypotheses

- $f \cdot \nabla \rho \ge 0 \Rightarrow \{\rho > 0\}$ positively invariant set.
- $\phi'(s) \ge 0, \kappa(\rho, e) \ge 0 \Rightarrow \{s(\rho, e) > s_0\}$ positively invariant sets.

Strategy

- $\rho s_{\rho} \times \text{mass balance} + s_{e} \times \text{internal energy balance}$
- Recombine the terms so that conservative term is $-\nabla \cdot \kappa \nabla s$, rhs is positive, and hope for the best.

Simple choice

$$\begin{split} \mathbf{f} &= \kappa \frac{s_{\rho}}{\rho s_{\rho} - e s_{e}} \nabla \rho. \\ \mathbf{g} &= \mu \nabla^{s} \mathbf{u} + \mathbf{u} \otimes \mathbf{f}. \\ \mathbf{h} &= \kappa \nabla e - \frac{1}{2} \mathbf{u}^{2} \mathbf{f}. \end{split}$$

Simple choice

$$\begin{split} \mathbf{f} &= \kappa \frac{s_{\rho}}{\rho s_{\rho} - e s_{e}} \nabla \rho, \\ \mathbf{g} &= \mu \nabla^{s} \mathbf{u} + \mathbf{u} \otimes \mathbf{f}, \\ \mathbf{h} &= \kappa \nabla e - \frac{1}{2} \mathbf{u}^{2} \mathbf{f}. \end{split}$$

Proposition (JLG-BP (2012))

Assume ideal gas, $\gamma>1.$ Assume existence of a smooth solution. The sets $\{s(\rho,e)>s_0\}$ are positively invariant and

$$\rho(\partial_t s + u\nabla s) - \nabla \cdot (\kappa \nabla s) = \frac{\mu}{e} |\nabla^s \mathbf{u}|^2 + \frac{\kappa}{e^2} \nabla T \cdot \nabla e.$$
$$\partial_t S + \nabla \cdot (\mathbf{u}S + \kappa (\nabla s + \frac{\gamma - 1}{s} s\nabla \log(a))) \ge 0.$$

Similar properties hold for a stiffened gas (conjecture: holds on a large class of eos)

INIT			CT I	$\cap \mathbb{N}$
	nO	D O		

TRODUCTION	SCALAR CONSERVATION	NUMERICAL ILLUSTRATIONS	EULER EQUATIONS	EULER, NUMERICAL	ILLUSTRATIONS
	Connection with a	phenomenological mod	el by H. Brenner (2006)	
	Seems a bit co	ontroversial in the physics	literature		
	 Seems to give (Feireisl-Vasse 	some leeway in the analy eur (2008))	sis of Navier-Stoke	s?	

Brenner's model (ideal gas)	Our regularization (ideal gas)
$\mathbf{u}_m = \mathbf{u} - \rho^{-1} \mathbf{f}$	$\mathbf{u}_m = \mathbf{u} - \rho^{-1} \mathbf{f}$
$\mathbf{f} = \frac{\kappa}{c_{\rho}} \frac{\nabla \rho}{\rho}$	$\mathbf{f} = \frac{\kappa}{c_{\rho}} \frac{1}{\gamma - 1} \frac{\nabla \rho}{\rho}$
$\partial_t \rho + \nabla \cdot (\mathbf{u}_m \rho) = 0$	$\partial_t \rho + \nabla \cdot (\mathbf{u}_m \rho) = 0$
$\partial_t(\rho \mathbf{u}) + \nabla \cdot (\mathbf{u} \otimes \rho \mathbf{u}_m) + \nabla \rho - \nabla \cdot \tau_v = 0$	$\partial_t(\rho \mathbf{u}) + \nabla \cdot (\mathbf{u} \otimes \rho \mathbf{u}_m) + \nabla p - \nabla \cdot \tau_v = 0$
$\partial_t(\rho e) + \nabla \cdot (\mathbf{u}_m e) + p \nabla \cdot \mathbf{u} - \nabla \cdot (\kappa \nabla T) - \nabla \cdot (\tau_v \cdot v) = 0$	$\partial_t(\rho e) + \nabla \cdot (\mathbf{u} e) + \rho \nabla \cdot \mathbf{u} - \nabla \cdot (\kappa \nabla T) - \nabla \cdot (\tau_v \cdot v) = 0$

The algorithm, $S = \frac{\rho}{\log} (e \rho^{1-\gamma})$

- Compute cell entropy residual, $D_{h|K} := \partial_t S + \nabla \cdot (\mathbf{u}S)$
- Compute interface entropy residual J_{h|∂K} = [[(∇uS) : (n ⊗ n)]]
- Define

$$\mu_{E|K} = c_E h_K^2 \max(\|D_{h|K}\|_{L^{\infty}(K)}, \|J_{h|\partial K}\|_{L^{\infty}(\partial K)})$$

- Compute maximum local viscosity: $\mu_{\max,K} = c_{\max}h_k\rho |||\mathbf{u}|| + (\gamma T)^{\frac{1}{2}}||_{\infty,K}$
- Compute entropy viscosity

$$\mu_{K} = \min(\mu_{\max,K}, \mu_{E|K}).$$

• Define artificial thermal diffusivity

$$\kappa_{K} = \mathcal{P}\mu_{K}, \qquad \mathcal{P} \approx 0.2.$$

The algorithm (continued)

- Use Galerkin for space approximation (use your favorite method: FE, FD, Fourier, Spectral, DG, etc.)
- Use explicit RK to step in time.

1D Euler flows + Fourier

• Solution method: Fourier + RK4 + entropy viscosity

1D Euler flows + Fourier

• Solution method: Fourier + RK4 + entropy viscosity

Figure: Lax shock tube, t = 1.3, 50, 100, 200 points. Shu-Osher shock tube, t = 1.8, 400, 800 points. Right: Woodward-Collela blast wave, t = 0.038, 200, 400, 800, 1600 points.

DG, 2D Riemann problem

Density Q_1 , Q_2 , and Q_3

DG, 2D Riemann problem

INTRODUCTION

EULER EQUATIONS

EULER, NUMERICAL ILLUSTRATIONS

Cylinder in a channel, Mach 2, \mathbb{P}_1 FE (By M. Nazarov)

EULER, NUMERICAL ILLUSTRATIONS

Bubble, density ratio 10^{-1} , Mach 1.65, \mathbb{P}_1 FE (by M. Nazarov)

Mach 3 Wind Tunnel with a Step, \mathbb{P}_1 finite elements, 1.3 10⁵ nodes

EULER, NUMERICAL ILLUSTRATIONS

Mach 10 Double Mach reflection, \mathbb{P}_1 finite elements

 \mathbb{P}_1 FE, 4.5 10⁵ nodes, t = 0.2Movie, density field

EULER, NUMERICAL ILLUSTRATIONS

Sod shocktube. Lagrangian hydro. \mathbb{Q}_1 FEM, 1 \times 1024 (V. Tomov)

EULER, NUMERICAL ILLUSTRATIONS

Riemann pb. Lagrangian hydro. \mathbb{Q}_2 FEM, 32 \times 32, (V. Tomov)

Sedov explosion. Lagrangian hydro. \mathbb{Q}_3 FEM, 32 \times 32, (V. Tomov)

