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1. Introduction
Ubiquitous need:

Efficient methods to solve large sparse linear systems

In many cases, the design of an appropriate iterative
linear solver is much easier if one has at hand a library
able to efficiently solve linear (sub)systems

Au = b

where A corresponds to the discretization of

−div(D grad (u)) + v grad (u) + c u = f (+B.C.)

(or closely related).

Efficiently:
robustly (stable performances)

in linear time: elapsed
n×#proc roughly constant Aggregation-based algebraic multigrid – p.3



1. Introduction
� From Martin Gander talk:

Krylov subspace method needed for robustness
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1. Introduction
� From Martin Gander talk:

Krylov subspace method needed for robustness
� From Ulrich Rüde talk:

multigrid needed for linear time
� Here: use multigrid as a preconditioner for Krylov

(combine multigrid with Krylov acceleration)

Why algebraic multigrid (AMG)?
� Geometric multigrid: needs a predefined set of grids
� AMG attempts to obtain the same effect using only the

information present in the system matrix A

(Reminder: effect = efficient damping of “smooth” error
components, that can be seen only from large scale)
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1. Introduction
Two-grid Algorithm
(as in Ulrich Rüde talk)
(1) Relax several times on grid

h , obtaining ũh with a
smooth corresponding error

(2) Calculate the residual:
rh = fh − Lh

ũ
h

(3) Solve approximate error-
equation on the coarse grid:
LHvH = fH ≡ IH

h
rh

(4) Interpolate and add
correction: ũh ← ũh + Ih

H
vH

(5) Relax again on h
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smooth corresponding error

(2) Calculate the residual:
rh = fh − Lh

ũ
h

(3) Solve approximate error-
equation on the coarse grid:
LHvH = fH ≡ IH

h
rh

(4) Interpolate and add
correction: ũh ← ũh + Ih

H
vH

(5) Relax again on h

(algebraic notation for linear
system Au = b with smoother M ;
uk is the current approximation)

(1) ũ = uk +M−1(b− Auk)

(2)
r̃ = b−A ũ

(3) Acvc = rc ≡ R r̃

(R : restriction, nc × n)

(4) ũ ← ũ+ P vc

(P : prolongation, n× nc)

(5) uk+1 = ũ+M−1(b− A ũ)
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smooth corresponding error

(2) Calculate the residual:
rh = fh − Lh

ũ
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(2)
r̃ = b−A ũ

(3) Acvc = rc ≡ R r̃
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Two-grid Algorithm
(as in Ulrich Rüde talk)
(1) Relax several times on grid

h , obtaining ũh with a
smooth corresponding error

(2) Calculate the residual:
rh = fh − Lh

ũ
h

(3) Solve approximate error-
equation on the coarse grid:
LHvH = fH ≡ IH

h
rh

(4) Interpolate and add
correction: ũh ← ũh + Ih

H
vH

(5) Relax again on h

(algebraic notation for linear
system Au = b with smoother M ;
uk is the current approximation)

(1) ũ = uk +M−1(b− Auk)

(2)
r̃ = b−A ũ

(3) Acvc = rc ≡ R r̃

(R : restriction, nc × n)
R = P T , Ac = RAP = P TAP

(4) ũ ← ũ+ P vc

(P : prolongation, n× nc)

(5) uk+1 = ũ+M−1(b− A ũ)

→ Try to obtain P from A
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1. Intro: Why aggregation-basedAMG?
Classical AMG
� Heuristic algorithms to mimic geometric multigrid

(Connectivity → set of coarse nodes;
Matrix entries→ interpolation rules)

� Need to be used recursively:
Ac = P TAP→ Acc = P T

c Ac Pc , etc
Is a good algorithm for A also good for Ac ?

� Several variants and parameters;
relevant choices depend on applications

� Main difficulty:
Find a good tradeoff between accuracy and the
mastering of “complexity” (i.e., the control of the
sparsity in successive coarse grid matrices)
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1. Intro: Aggregation-based AMG
Group nodes into aggregates Gi (partitioning of [1 , n])
Each set corresponds to 1 coarse variable
(and vice-versa)

G
1

G
2

G
3

G
4
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1. Intro: Aggregation-based AMG

Prolongation P : Pij =

{
1 if i ∈ Gj

0 otherwise
Example

uc =




1

2

3

4


 →

G
1

G
2

G
3

G
4

1

1

1

2

2

2

2

3

3 3

3

4

4
4

4

4
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1. Intro: Aggregation-based AMG
Coarse grid matrix: Ac = P T AP given by

(Ac)ij =
∑

k∈Gi

∑

ℓ∈Gj

akℓ

G
1

G
2

G
3

G
4

→
Tends to reproduce the stencil from the fine grid
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1. Intro: Aggregation-based AMG
Coarse grid matrix: Ac = P T AP given by

(Ac)ij =
∑

k∈Gi

∑

ℓ∈Gj

akℓ

G
1

G
2

G
3

G
4

→
Tends to reproduce the stencil from the fine grid

Recursive use raises no difficulties
Low setup cost & memory requirements
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1. Intro: Aggregation-based AMG
� Does not mimic any classical multigrid method
� Not efficient if the piecewise constant P just

substitutes the classical prolongation in a standard
multigrid scheme

→ has been overlooked for a long time
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1. Intro: Aggregation-based AMG
� Does not mimic any classical multigrid method
� Not efficient if the piecewise constant P just

substitutes the classical prolongation in a standard
multigrid scheme

→ has been overlooked for a long time

Recent revival:
� Proper convergence theory (mimicry not

essential for a good interplay with the smoother)
� Efficient when combined with specific components:

preconditioner for a Krylov method, cheap smoother &
K-cycle (Krylov for coarse problems – all levels)

� Theory and efficient solver developed hand in hand
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2. AMG preconditioning and K-cycle
Reminder:
Stationary iteration: uk+1 = uk +M−1(b− Auk)

Corresponding preconditioning step:
vk = M−1

rk (rk = b− Auk)
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2. AMG preconditioning and K-cycle
Reminder:
Stationary iteration: uk+1 = uk +M−1(b− Auk)

Corresponding preconditioning step:
vk = M−1

rk (rk = b− Auk)

→ for multigrid, rewrite the algorithm above as

uk+1 = uk + B(b− Auk) ;

B is the inverse of the preconditioner and

vk = B rk

the corresponding preconditioning step
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2. AMG preconditioning and K-cycle
Benefit of Krylov
� Relaxed convergence conditions
� Scaling-independent convergence,

characterized by the condition number (λi eig of BA) :

SPD: κ =
maxi λi

mini λi
=

λmax(BA)

λmin(BA)

General:
maxi |λi|

miniℜe(λi)
or

1

miniℜe(1/λi) miniℜe(λi)

(All eigs with positive real part)
� Accelerated convergence
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� Relaxed convergence conditions
� Scaling-independent convergence,

characterized by the condition number (λi eig of BA) :

SPD: κ =
maxi λi

mini λi
=

λmax(BA)

λmin(BA)

General:
maxi |λi|

miniℜe(λi)
or

1

miniℜe(1/λi) miniℜe(λi)

(All eigs with positive real part)
� Accelerated convergence

Fast convergence:
if all λi bounded & substantially away from 0Aggregation-based algebraic multigrid – p.13



2. AMG preconditioning and K-cycle
K-cycle
� Reminder: recursive use of the two-grid scheme:

� Acvc = rc not solved exactly
� vc ← approximate solution from multigrid

step(s) to solve the coarse system
� 1 step → V-cycle

2 steps→W-cycle
� K-cycle: solve Acvc = rc with 2 steps of a Krylov

method with multigrid preconditioner at coarser level

(essentially: W-cycle with Krylov acceleration)
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2. AMG preconditioning and K-cycle
K-cycle -vs- V- & W-cycles

Number of iterations to reduce
relative residual error by 10−12

as a function of the number of
levels and of the convergence
factor of the two grid method
at each level

7 levels 14 levels
0.49 < ρTG < 0.50

(1.99 < κTG < 2.00)
V 188 > 999

W 37 50
K 20 20

0.79 < ρTG < 0.80

(4.86 < κTG < 4.92)
V 256 > 999

W 108 315
K 42 44
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2. AMG preconditioning and K-cycle
� Performances remain stable for a wide range of κ :

the number of iterations is (near) independent of the
number of levels
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2. AMG preconditioning and K-cycle
� Performances remain stable for a wide range of κ :

the number of iterations is (near) independent of the
number of levels

� Hence analyzing the two-grid method is enough
� 6= from classical multigrid theory,

based on a global view of all levels (or scales)
� Classical multigrid: use “enough” smoothing steps to

have spectral radius as small as desired

Aggregation-based AMG:
compensate for the larger condition number with
Krylov, but also cheap smoothing stage
(typically: one Gauss-Seidel sweep for pre- and
post-smoothing)
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2. AMG preconditioning and K-cycle
Computational complexity

Work ∼ CW =

∑ℓ
k=0 2

k nnz(Ak)

nnz(A)

(A0 = A , A1 = Ac , etc; ℓ = number of levels)

→ ensure
nnz(Ak)

nnz(Ak−1)
.

1

4

(then 2knnz(Ak) . 2−knnz(A) and CW . 2 )
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2. AMG preconditioning and K-cycle
Computational complexity

Work ∼ CW =

∑ℓ
k=0 2

k nnz(Ak)

nnz(A)

(A0 = A , A1 = Ac , etc; ℓ = number of levels)

→ ensure
nnz(Ak)

nnz(Ak−1)
.

1

4

(then 2knnz(Ak) . 2−knnz(A) and CW . 2 )

With aggregation-based methods:

nnz(Ak)

nnz(Ak−1)
≈

1

Mean aggregates’ size
Aggregation-based algebraic multigrid – p.17
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3. Two-grid analysis
The algebraic convergence theory:
� yields meaningful bounds

(actual convergence as proved often OK)
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3. Two-grid analysis
The algebraic convergence theory:
� yields meaningful bounds

(actual convergence as proved often OK)
� is compatible with irregular geometries, unstructured

grids, jumps in coefficients, etc
(guarantees essentially the same bound)

� requires M-matrix, but has natural heuristic extensions
� whenever applicable, holds at every level of the

hierarchy
� covers symmetric and nonsymmetric problems in a

uniform fashion

The aggregation algorithm we use is entirely based on the
theory and its heuristic extensions Aggregation-based algebraic multigrid – p.19



3. Two-grid analysis
� Method used as a preconditioner for CG or GCR

→ Fast convergence if the eigenvalues λi of the
preconditioned matrix are:

� bounded
� substantially away from 0

� Using a standard smoother (e.g., Gauss-Seidel),
the eigenvalues are bounded independently of P

� If P = 0 the eigenvalues associated with “smooth”
modes are in general very small
� → Main difficulty: λi substantially away from 0
� Role of the coarse grid correction: move the small

eigenvalues enough to the right
(Guideline for the choice of P ) Aggregation-based algebraic multigrid – p.20



3. Two-grid analysis: λi away from 0
SPD case
Main identity [Falgout, Vassilevski & Zikatanov (2005)]:

λmin =
1

κ(A , P )

with

κ(A,P ) = ω−1 sup
v 6=0

v
TD

(
I − P (P TDP )−1P TD

)
v

vTAv
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3. Two-grid analysis: λi away from 0
SPD case
Main identity [Falgout, Vassilevski & Zikatanov (2005)]:

λmin =
1

κ(A , P )

with

κ(A,P ) = ω−1 sup
v 6=0

v
TD

(
I − P (P TDP )−1P TD

)
v

vTAv

General case [YN (2010)]
For any λi :

ℜe(λi) ≥
1

κ(AS , P )
with AS = 1

2(A+ AT )

The analysis of the SPD case can be sufficient
Aggregation-based algebraic multigrid – p.21



3. Two-grid analysis: λi away from 0

κ(AS, P ) = ω−1 sup
v 6=0

v
TD

(
I − P (P TDP )−1P TD

)
v

vTASv

Aggregation-based methods

P =




1n(1)

. . .

1n(nc)


 , D = diag(A) =




D1

. . .

Dnc




→ D
(
I − P (P TDP )−1P TD

)

= blockdiag
(
Di

(
I − 1n(i)(1T

n(i)Di 1n(i))−11T
n(i)Di

))
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κ(AS, P ) = ω−1 sup
v 6=0

v
TD

(
I − P (P TDP )−1P TD

)
v

vTASv

Aggregation-based methods

P =




1n(1)

. . .

1n(nc)


 , D = diag(A) =




D1

. . .

Dnc




→ D
(
I − P (P TDP )−1P TD

)

= blockdiag
(
Di

(
I − 1n(i)(1T

n(i)Di 1n(i))−11T
n(i)Di

))

→ find Ab , Ar nonnegative definite s.t. AS = Ab +Ar with

Ab =




A
(S)
G1

. . .

A
G

(S)
nc



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3. Two-grid analysis: λi away from 0
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3. Two-grid analysis: λi away from 0
Aggregate Quality

µG = ω−1 sup
v/∈N (A

(S)
G )

v
TDG(I − 1G(1

T
GDG1G)

−1
1
T
GDG)v

vTA
(S)
G v

,

Then: κ(AS , P ) ≤ maxi µGi

Controlling µGi
ensures that eigenvalues are away from 0
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3. Two-grid analysis: λi away from 0
Aggregate Quality

µG = ω−1 sup
v/∈N (A

(S)
G )

v
TDG(I − 1G(1

T
GDG1G)

−1
1
T
GDG)v

vTA
(S)
G v

,

Then: κ(AS , P ) ≤ maxi µGi

Controlling µGi
ensures that eigenvalues are away from 0

A
(S)
G : Computed from AS = Ab + Ar with Ar1 = 0

� Rigorous for M-matrices s.t. AS1 ≥ 0
(then Ab , Ar guaranteed nonnegative definite)

� Heuristic in other cases
(Ar could have negative eigenvalue(s))
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4. Aggregation procedure
κ(AS , P ) ≤ maxi µGi

� A posteriori control of given aggregation scheme:
limited utility (often a few aggregates with large µG)
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4. Aggregation procedure
κ(AS , P ) ≤ maxi µGi

� A posteriori control of given aggregation scheme:
limited utility (often a few aggregates with large µG)

� → Aggregation algorithm based on the control of µGi

� Problem: repeated assessment of µG is costly
� For a pair {i, j} , µ{i,j} is a simple function of the

“local” entries & the row and column sum

� µG = ω−1 sup
z/∈N (A

(S)
G )

z
T DG(I−1G

(
1
T
GDG1G

)
−1

1
T
GDG) z

zT A
(S)
G z

It is always cheap to check that µG < κTG holds:

ZG = κTG A
(S)
G − ω−1DG(I − 1G

(
1
T
GDG1G

)
−1
1
T
GDG)

is nonnegative definite if no negative pivot occurs while
performing an LDLT factorization Aggregation-based algebraic multigrid – p.25



4. Pairwise aggregation
Input: threshold κ̄TG

Output:
nc and aggregates Gi , i = 1 . . . , nc

Initialization: U = [1 , n]\G0 , nc = 0

Algorithm: While U 6= ∅ do

1. Select i ∈ U ; nc = nc + 1

2. Select j ∈ U such that
µ{i,j} is minimal

3. If µ{i,j} < κTG then Gnc
= {i, j}

else Gnc
= {i}

4. U = U\Gnc

Aggregation-based algebraic multigrid – p.26
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4. RepeatedPairwise aggregation

s = 1 ; A(s) = A

nnz(A(s+1)) <
nnz(A)

τ

or s==npass ?

Apply pairwise aggregation to A(s)

Form aggregated matrix A(s+1)

s← s+ 1

Ac = A(s+1)

no

yes
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4. Aggregation procedure: Illustration
Upwind FD approximation of

−ν∆u + v · grad (u) = f in Ω = unit square

with u = g on ∂Ω , v(x , y) =


 x(1−x)(2 y − 1)

−(2x− 1)y(1−y)


 :
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1
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1
0

0.05
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Direction of the flow Magnitude
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4. Aggregation procedure: Illustration
ν = 1 : diffusion dominating (near symmetric)

Aggregation Spectrum

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

+ : σ(I − T ) — : theory
¨¨ : σ(ωD−1A) (convex hull)
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4. Aggregation procedure: Illustration
ν = 10−3 : convection dominating (strongly nonsymmetric)

Aggregation Spectrum

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

+ : σ(I − T ) — : theory
¨¨ : σ(ωD−1A) (convex hull)
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5. Multi -level analysis
Requires to exchange the K-cycle (Krylov acceleration)
for the AMLI-cycle (polynomial acceleration; i.e., frozen
coefficients)
� less flexible: requires a known bound ρ on the two-grid

convergence factor
� less efficient in practice
� avoid nonlinearities→ convergence proof easier
� upper bound on the convergence rate independent of

the number of levels can be guaranteed with the sole
assumption that ρ is below a given threshold
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5. Multi -level analysis
Requires to exchange the K-cycle (Krylov acceleration)
for the AMLI-cycle (polynomial acceleration; i.e., frozen
coefficients)
� less flexible: requires a known bound ρ on the two-grid

convergence factor
� less efficient in practice
� avoid nonlinearities→ convergence proof easier
� upper bound on the convergence rate independent of

the number of levels can be guaranteed with the sole
assumption that ρ is below a given threshold

Our aggregation procedure: allows to choose ρ
(for symmetric M-matrices with nonnegative row sum)
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5. Multi -level analysis:final result
� The method is purely algebraic and applies to any

symmetric M-matrix with nonnegative row-sum
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� The method is purely algebraic and applies to any

symmetric M-matrix with nonnegative row-sum
� The condition number is bounded

� independently of mesh or problem size
� independently of the number of levels
� independently of matrix coefficients

(jumps, anisotropy, etc)
� independently of the regularity of the grid
� independently of the type of refinement

(quasi uniformity, etc)
� independently of any regularity assumption
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5. Multi -level analysis:final result
Why ?
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5. Multi -level analysis:final result
Why ?

. . . because the upper bound is 27.056

Optimality requires in addition bounded complexity:
� can be proved for model problems on regular grids;
� no proof in general, but, in practice, no more

complexity issues than with other AMG schemes:
coarsening parameters selected for this.
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6. Parallelization
� Partitioning of the unknowns

→ partitioning of matrix rows
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6. Parallelization
� Partitioning of the unknowns

→ partitioning of matrix rows
� We apply exactly the same aggregation algorithm

except that aggregates can only contain unknowns in a
same partition.
Hence, one needs only to know the local matrix rows
(no communication except upon forming the next
coarse grid matrix)

� The prolongations & restrictions are then purely local
� Smoother: Gauss-Seidel, ignoring connections

between different partitions → inherently parallel
� During iterations: communications only for matvec and

inner product computation
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7. Numerical results
Classical AMG talk on application
� Description of the application (beautiful pictures)
� Description of the AMG strategy and needed tuning
� Numerical results, often not fully informative:

� no robustness study on a comprehensive test suite;
� no comparison with state of the art competitors.
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7. Numerical results
This talk
� Most applications ran by people downloading the code.

Some of those I am aware of: CFD, electrocardiology
(in general, I don’t have the beautiful pictures at hand).

� The code is used black box
(adaptation neither sought nor needed)

� I think the most important is the robustness on a
comprehensive test suite

� I like comparison with state of the art competitors
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7. Numerical results
� Iterations stopped when ‖rk‖‖r0‖ < 10−6

� Times reported are total elapsed times in seconds
(including set up) per 106 unknowns

� Test suite: discrete scalar elliptic PDEs
� SPD problems with jumps and all kind of anisotropy

in the coefficients (some with reentering corner)
� convection-diffusion problems with viscosity from
1 → 10−6 and highly varying recirculating flow

� FD on regular grids; 3 sizes:
2D: h−1 = 600 , 1600 , 5000
3D: h−1 = 80 , 160 , 320

� FE on (un)structured meshes (with different levels of
local refinement); 2 sizes: n = 0.15e6 → n = 7.1e6
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7. Numerical results
2D symmetric problems
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7. Numerical results
3D symmetric problems
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7. Numerical results
2D nonsymmetric problems
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7. Numerical results
3D nonsymmetric problems
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7. Numerical results
Comparison with other methods
� AMG(Hyp): classical AMG method as implemented in

the Hypre library (Boomer AMG)
� AMG(HSL): the classical AMG method as

implemented in the HSL library
� ILUPACK: efficient threshold-based ILU preconditioner
� Matlab \: Matlab sparse direct solver (UMFPACK)

All methods but the last with Krylov subspace acceleration
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7. Numerical results

POISSON 2D, FD LAPLACE 2D, FE(P3)
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33% of nonzero offdiag > 0
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7. Numerical results

Poisson 2D, L-shaped, FE Convection-Diffusion 2D, FD
Unstructured, Local refin. ν = 10−6
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51% of nonzero offdiag > 0
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7. Numerical results
Parallel run: with direct coarsest grid solver
Cray, 32 cores/node with 1GB/node
Poisson, 3D trilinear hexahedral FE

#Nodes #Cores n/106 #Iter. Setup Time Solve Time
1 32 31 17 5.9 40.4
2 64 63 17 6.2 40.8
4 128 125 17 6.9 41.5
8 256 251 17 9.5 41.8

16 512 501 17 14.8 42.5
32 1024 1003 17 27.3 44.0
64 2048 2007 17 69.0 48.2

128 4096 4014 17 383.0 59.4
(By courtesy of Mark Walkley, Univ. of Leeds) Aggregation-based algebraic multigrid – p.49



7. Numerical results
Parallel run: with (new) iterative coarsest grid solver
Intel(R) Xeon(R) CPU E5649 @ 2.53GHz
3D problem with jumps, FD

#Nodes #Cores n/106 #Iter. Setup Time Solve Time
1 8 64 12 14.9 89.

16 128 1026 16 17.4 191.
48 384 3065 14 18.0 165.
96 768 6155 13 17.4 170.
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8. Conclusions
� Robust method for scalar elliptic PDEs

Aggregation-based algebraic multigrid – p.51



8. Conclusions
� Robust method for scalar elliptic PDEs
� Purely algebraic convergence theory:

do not depend on FE spaces, regularity assumption;
applies also to the nonsymmetric case.

Aggregation-based algebraic multigrid – p.51



8. Conclusions
� Robust method for scalar elliptic PDEs
� Purely algebraic convergence theory:

do not depend on FE spaces, regularity assumption;
applies also to the nonsymmetric case.

� Can be used (and is used!) black box
(does not require tuning or adaptation)

Aggregation-based algebraic multigrid – p.51



8. Conclusions
� Robust method for scalar elliptic PDEs
� Purely algebraic convergence theory:

do not depend on FE spaces, regularity assumption;
applies also to the nonsymmetric case.

� Can be used (and is used!) black box
(does not require tuning or adaptation)

� Faster than some solvers based on classical AMG

Aggregation-based algebraic multigrid – p.51



8. Conclusions
� Robust method for scalar elliptic PDEs
� Purely algebraic convergence theory:

do not depend on FE spaces, regularity assumption;
applies also to the nonsymmetric case.

� Can be used (and is used!) black box
(does not require tuning or adaptation)

� Faster than some solvers based on classical AMG
� Fairly small setup time: especially well suited when

only a modest accuracy is needed
(e.g., linear solve within Newton steps)

Aggregation-based algebraic multigrid – p.51



8. Conclusions
� Robust method for scalar elliptic PDEs
� Purely algebraic convergence theory:

do not depend on FE spaces, regularity assumption;
applies also to the nonsymmetric case.

� Can be used (and is used!) black box
(does not require tuning or adaptation)

� Faster than some solvers based on classical AMG
� Fairly small setup time: especially well suited when

only a modest accuracy is needed
(e.g., linear solve within Newton steps)

� Efficient parallelization

Aggregation-based algebraic multigrid – p.51



8. Conclusions
� Robust method for scalar elliptic PDEs
� Purely algebraic convergence theory:

do not depend on FE spaces, regularity assumption;
applies also to the nonsymmetric case.

� Can be used (and is used!) black box
(does not require tuning or adaptation)

� Faster than some solvers based on classical AMG
� Fairly small setup time: especially well suited when

only a modest accuracy is needed
(e.g., linear solve within Newton steps)

� Efficient parallelization
� Professional code available, free academic license
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AGMG software: Google AGMG
(http://homepages.ulb.ac.be/~ynotay/AGMG)

Thank you for your attention !
Aggregation-based algebraic multigrid – p.52
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