Aggregation-based algebraic multigrid *from theory to fast solvers*

Yvan Notay*

Université Libre de Bruxelles Service de Métrologie Nucléaire

CEMRACS, Marseille, July 18, 2012

* Supported by the Belgian FNRS http://homepages.ulb.ac.be/~ynotay

Outline

- 1. Introduction
- 2. AMG preconditioning and K-cycle
- 3. Two-grid analysis
- 4. Aggregation procedure
 - Repeated pairwise aggregation
- 5. Multi-level analysis
- 6. Parallelization
- 7. Numerical results
- 8. Conclusions

Ubiquitous need: Efficient methods to solve large sparse linear systems

In many cases, the design of an appropriate iterative linear solver is much easier if one has at hand a library able to efficiently solve linear (sub)systems

$A\mathbf{u} = \mathbf{b}$

where A corresponds to the discretization of $-\operatorname{div}(D\operatorname{grad}(u)) + \operatorname{v}\operatorname{grad}(u) + c u = f \quad (+B.C.)$

(or closely related).

Efficiently: robustly (stable performances) in linear time: $\frac{\text{elapsed}}{n \times \# \text{proc}}$ roughly constant

From Martin Gander talk: Krylov subspace method needed for robustness

JR

- From Martin Gander talk: Krylov subspace method needed for robustness
- From Ulrich Rüde talk: multigrid needed for linear time

- From Martin Gander talk: Krylov subspace method needed for robustness
- From Ulrich Rüde talk: multigrid needed for linear time
- Here: use multigrid as a preconditioner for Krylov (combine multigrid with Krylov acceleration)

- From Martin Gander talk: Krylov subspace method needed for robustness
- From Ulrich Rüde talk: multigrid needed for linear time
- Here: use multigrid as a preconditioner for Krylov (combine multigrid with Krylov acceleration)

Why algebraic multigrid (AMG)?

- Geometric multigrid: needs a predefined set of grids
- AMG attempts to obtain the same effect using only the information present in the system matrix A

(Reminder: effect = efficient damping of "smooth" error components, that can be seen only from large scale)

Two-grid Algorithm

(as in Ulrich Rüde talk)

- (1) Relax several times on grid h, obtaining \tilde{u}^h with a smooth corresponding error
- (2) Calculate the residual:

 $r^h = f^h - L^h \widetilde{\mathbf{u}}^h$

- (3) Solve approximate errorequation on the coarse grid: $L^{H}v^{H} = f^{H} \equiv I_{h}^{H}r^{h}$
- (4) Interpolate and add correction: $\widetilde{u}^h \leftarrow \widetilde{u}^h + I_H^h v^H$
- (5) Relax again on h

Two-grid Algorithm

(as in Ulrich Rüde talk)

- (1) Relax several times on grid h, obtaining \tilde{u}^h with a smooth corresponding error
- (2) Calculate the residual: $r^{h} = f^{h} - L^{h} \widetilde{\mathbf{u}}^{h}$
- (3) Solve approximate errorequation on the coarse grid: $L^{H}v^{H} = f^{H} \equiv I_{h}^{H}r^{h}$
- (4) Interpolate and add correction: $\widetilde{u}^h \leftarrow \widetilde{u}^h + I_H^h v^H$
- (5) Relax again on h

(algebraic notation for linear system $A \mathbf{u} = \mathbf{b}$ with smoother M; \mathbf{u}_k is the current approximation)

(1)
$$\widetilde{\mathbf{u}} = \mathbf{u}_k + M^{-1}(\mathbf{b} - A \mathbf{u}_k)$$

(2) $\widetilde{\mathbf{r}} = \mathbf{b} - A \widetilde{\mathbf{u}}$

3)
$$A_c \mathbf{v}_c = \mathbf{r}_c \equiv R \,\widetilde{\mathbf{r}}$$

(*R*: restriction, $n_c \times n$)

(4) $\widetilde{\mathbf{u}} \leftarrow \widetilde{\mathbf{u}} + P \mathbf{v}_c$ (*P*: prolongation, $n \times n_c$) (5) $\mathbf{u}_{k+1} = \widetilde{\mathbf{u}} + M^{-1}(\mathbf{b} - A \widetilde{\mathbf{u}})$

Two-grid Algorithm

(as in Ulrich Rüde talk)

- (1) Relax several times on grid h, obtaining \tilde{u}^h with a smooth corresponding error
- (2) Calculate the residual: $r^{h} = f^{h} - L^{h} \widetilde{\mathbf{u}}^{h}$
- (3) Solve approximate errorequation on the coarse grid: $L^{H}v^{H} = f^{H} \equiv I_{h}^{H}r^{h}$
- (4) Interpolate and add correction: $\widetilde{u}^h \leftarrow \widetilde{u}^h + I_H^h v^H$
- (5) Relax again on h

(algebraic notation for linear system $A \mathbf{u} = \mathbf{b}$ with smoother M; \mathbf{u}_k is the current approximation)

(1)
$$\widetilde{\mathbf{u}} = \mathbf{u}_k + M^{-1}(\mathbf{b} - A \mathbf{u}_k)$$

(2) $\widetilde{\mathbf{r}} = \mathbf{b} - A \widetilde{\mathbf{u}}$

3)
$$A_c \mathbf{v}_c = \mathbf{r}_c \equiv R \,\widetilde{\mathbf{r}}$$

(*R*: restriction, $n_c \times n$)
 $R = P^T$

(4)
$$\widetilde{\mathbf{u}} \leftarrow \widetilde{\mathbf{u}} + P \mathbf{v}_c$$

(*P*: prolongation, $n \times n_c$)

(5)
$$\mathbf{u}_{k+1} = \widetilde{\mathbf{u}} + M^{-1}(\mathbf{b} - A \widetilde{\mathbf{u}})$$

Two-grid Algorithm

(as in Ulrich Rüde talk)

- (1) Relax several times on grid h, obtaining \tilde{u}^h with a smooth corresponding error
- (2) Calculate the residual: $r^{h} = f^{h} - L^{h} \widetilde{\mathbf{u}}^{h}$
- (3) Solve approximate errorequation on the coarse grid: $L^{H}v^{H} = f^{H} \equiv I_{h}^{H}r^{h}$
- (4) Interpolate and add correction: $\widetilde{u}^h \leftarrow \widetilde{u}^h + I_H^h v^H$
- (5) Relax again on h

(algebraic notation for linear system $A \mathbf{u} = \mathbf{b}$ with smoother M; \mathbf{u}_k is the current approximation)

(1)
$$\widetilde{\mathbf{u}} = \mathbf{u}_k + M^{-1}(\mathbf{b} - A \mathbf{u}_k)$$

(2) $\widetilde{\mathbf{r}} = \mathbf{b} - A \widetilde{\mathbf{u}}$

B)
$$A_c \mathbf{v}_c = \mathbf{r}_c \equiv R \, \widetilde{\mathbf{r}}$$

 $(R: \text{ restriction, } n_c \times n)$
 $R = P^T$, $A_c = R \, A \, P = P^T A \, P$

(4)
$$\widetilde{\mathbf{u}} \leftarrow \widetilde{\mathbf{u}} + P \mathbf{v}_c$$

(*P*: prolongation, $n \times n_c$)
(5) $\mathbf{u}_{k+1} = \widetilde{\mathbf{u}} + M^{-1}(\mathbf{b} - A \widetilde{\mathbf{u}})$

Two-grid Algorithm

(as in Ulrich Rüde talk)

- (1) Relax several times on grid h, obtaining \tilde{u}^h with a smooth corresponding error
- (2) Calculate the residual: $r^{h} = f^{h} - L^{h} \widetilde{\mathbf{u}}^{h}$
- (3) Solve approximate errorequation on the coarse grid: $L^{H}v^{H} = f^{H} \equiv I_{h}^{H}r^{h}$
- (4) Interpolate and add correction: $\widetilde{u}^h \leftarrow \widetilde{u}^h + I_H^h v^H$
- (5) Relax again on h

(algebraic notation for linear system $A \mathbf{u} = \mathbf{b}$ with smoother M; \mathbf{u}_k is the current approximation)

(1)
$$\widetilde{\mathbf{u}} = \mathbf{u}_k + M^{-1}(\mathbf{b} - A \mathbf{u}_k)$$

(2) $\widetilde{\mathbf{r}} = \mathbf{b} - A \widetilde{\mathbf{u}}$

B)
$$A_c \mathbf{v}_c = \mathbf{r}_c \equiv R \, \widetilde{\mathbf{r}}$$

(*R*: restriction, $n_c \times n$)
 $R = P^T$, $A_c = R \, A \, P = P^T A \, P$

(4)
$$\widetilde{\mathbf{u}} \leftarrow \widetilde{\mathbf{u}} + P \mathbf{v}_c$$

(*P*: prolongation,
$$n \times n_c$$
)

(5) $\mathbf{u}_{k+1} = \widetilde{\mathbf{u}} + M^{-1}(\mathbf{b} - A \widetilde{\mathbf{u}})$ $\rightarrow \text{Try to obtain } P \text{ from } A$ Aggregation-based algebraic multigrid - p.5

1. Intro: Why aggregation-based AMG? ULB

Classical AMG

- Heuristic algorithms to mimic geometric multigrid (Connectivity
 → set of coarse nodes; Matrix entries
 → interpolation rules)
- Need to be used recursively: $A_c = P^T A P \rightarrow A_{cc} = P_c^T A_c P_c \text{, etc}$ Is a good algorithm for A also good for A_c ?
- Several variants and parameters; relevant choices depend on applications
- Main difficulty:

Find a good tradeoff between accuracy and the mastering of "complexity" (i.e., the control of the sparsity in successive coarse grid matrices)

ULB

Group nodes into aggregates G_i (partitioning of [1, n]) Each set corresponds to 1 coarse variable (and vice-versa)

ULB

3 ۲G3 G₄ 3 3 $\mathbf{u}_c = \begin{bmatrix} 2\\ 3 \end{bmatrix}$ G, 4

ULB

$$(A_c)_{ij} = \sum_{k \in G_i} \sum_{\ell \in G_j} a_k$$

Tends to reproduce the stencil from the fine grid

ULB

$$(A_c)_{ij} = \sum_{k \in G_i} \sum_{\ell \in G_i} a_{k,\ell}$$

Tends to reproduce the stencil from the fine grid Recursive use raises no difficulties Low setup cost & memory requirements

- Does not mimic any classical multigrid method
- Not efficient if the piecewise constant *P* just substitutes the classical prolongation in a standard multigrid scheme
- \rightarrow has been overlooked for a long time

- Does not mimic any classical multigrid method
- Not efficient if the piecewise constant *P* just substitutes the classical prolongation in a standard multigrid scheme
- \rightarrow has been overlooked for a long time

Recent revival:

- Proper convergence theory (mimicry not essential for a good interplay with the smoother)
- Efficient when combined with specific components: preconditioner for a Krylov method, cheap smoother & K-cycle (Krylov for coarse problems – all levels)
- Theory and efficient solver developed hand in hand

Outline

1. Introduction

- 3. Two-grid analysis
- 4. Aggregation procedure Repeated pairwise aggregation
- 5. Multi-level analysis
- 6. Parallelization
- 7. Numerical results
- 8. Conclusions

ULB

Reminder: Stationary iteration: $\mathbf{u}_{k+1} = \mathbf{u}_k + M^{-1}(\mathbf{b} - A \mathbf{u}_k)$

Corresponding preconditioning step:

$$\mathbf{v}_k = M^{-1}\mathbf{r}_k \quad (\mathbf{r}_k = \mathbf{b} - A\mathbf{u}_k)$$

ULB

Reminder: Stationary iteration: $\mathbf{u}_{k+1} = \mathbf{u}_k + M^{-1}(\mathbf{b} - A \mathbf{u}_k)$

Corresponding preconditioning step:

$$\mathbf{v}_k = M^{-1}\mathbf{r}_k \quad (\mathbf{r}_k = \mathbf{b} - A\,\mathbf{u}_k)$$

 \rightarrow for multigrid, rewrite the algorithm above as

$$\mathbf{u}_{k+1} = \mathbf{u}_k + B(\mathbf{b} - A \mathbf{u}_k);$$

B is the inverse of the preconditioner and

$$\mathbf{v}_k = B \mathbf{r}_k$$

the corresponding preconditioning step

Benefit of Krylov

- Relaxed convergence conditions
- Scaling-independent convergence, characterized by the condition number (λ_i eig of B A):

Accelerated convergence

Benefit of Krylov

- Relaxed convergence conditions
- Scaling-independent convergence, characterized by the condition number (λ_i eig of B A):

ΤR

(All eigs with positive real part)

Accelerated convergence

Fast convergence: if all λ_i bounded & substantially away from $0_{\text{Aggregation-based algebraic multigrid - p.13}}$

ULB

K-cycle

- Reminder: recursive use of the two-grid scheme:
 - $A_c \mathbf{v}_c = \mathbf{r}_c$ not solved exactly
 - v_c

 approximate solution from multigrid step(s) to solve the coarse system
 - 1 step \rightarrow V-cycle 2 steps \rightarrow W-cycle

K-cycle: solve A_cv_c = r_c with 2 steps of a Krylov method with multigrid preconditioner at coarser level (essentially: W-cycle with Krylov acceleration)

ULB

K-cycle -vs- V- & W-cycles

Number of iterations to reduce relative residual error by 10^{-12} as a function of the number of levels and of the convergence factor of the two grid method at each level

7 levels | 14 levels $0.49 <
ho_{
m tg} < 0.50$ $(1.99 < \kappa_{
m TG} < 2.00)$ 188 > 999V W 37 50 K 20 20 $0.79 <
ho_{
m tg} < 0.80$ $(4.86 < \kappa_{\rm trg} < 4.92)$ 256 > 999 315 108 W 42 44

- ULB
- Performances remain stable for a wide range of *k*: the number of iterations is (near) independent of the number of levels

- Performances remain stable for a wide range of *k*: the number of iterations is (near) independent of the number of levels
- Hence analyzing the two-grid method is enough

- Performances remain stable for a wide range of *k*: the number of iterations is (near) independent of the number of levels
- Hence analyzing the two-grid method is enough
- from classical multigrid theory, based on a global view of all levels (or scales)

ULB

- Performances remain stable for a wide range of *k*: the number of iterations is (near) independent of the number of levels
- Hence analyzing the two-grid method is enough
- from classical multigrid theory, based on a global view of all levels (or scales)
- Classical multigrid: use "enough" smoothing steps to have spectral radius as small as desired

Aggregation-based AMG:

compensate for the larger condition number with Krylov, but also cheap smoothing stage (typically: one Gauss-Seidel sweep for pre- and post-smoothing)

Computational complexity

Work ~
$$C_W = \frac{\sum_{k=0}^{\ell} 2^k \operatorname{nnz}(A_k)}{\operatorname{nnz}(A)}$$

 $(A_0 = A, A_1 = A_c, \text{ etc}; \ell = \text{number of levels})$

 $\rightarrow \text{ ensure } \frac{nnz(A_k)}{nnz(A_{k-1})} \lesssim \frac{1}{4}$ (then $2^k nnz(A_k) \lesssim 2^{-k} nnz(A)$ and $C_W \lesssim 2$)

ILR

Computational complexity

Work ~
$$C_W = \frac{\sum_{k=0}^{\ell} 2^k \operatorname{nnz}(A_k)}{\operatorname{nnz}(A)}$$

 $(A_0 = A, A_1 = A_c, \text{ etc}; \ell = \text{number of levels})$

 $\rightarrow \text{ ensure } \frac{nnz(A_k)}{nnz(A_{k-1})} \lesssim \frac{1}{4}$ (then $2^k nnz(A_k) \lesssim 2^{-k} nnz(A)$ and $C_W \lesssim 2$)

With aggregation-based methods:

$$\frac{nnz(A_k)}{nnz(A_{k-1})} \approx \frac{1}{\text{Mean aggregates' size}}$$

Outline

- 1. Introduction
- 2. AMG preconditioning and K-cycle
- 3. Two-grid analysis
- 4. Aggregation procedure Repeated pairwise aggregation
- 5. Multi-level analysis
- 6. Parallelization
- 7. Numerical results
- 8. Conclusions

3. Two-grid analysis

The algebraic convergence theory:

 yields meaningful bounds (actual convergence as proved often OK)

3. Two-grid analysis

The algebraic convergence theory:

- yields meaningful bounds (actual convergence as proved often OK)
- is compatible with irregular geometries, unstructured grids, jumps in coefficients, etc (guarantees essentially the same bound)

3. Two-grid analysis

The algebraic convergence theory:

- yields meaningful bounds (actual convergence as proved often OK)
- is compatible with irregular geometries, unstructured grids, jumps in coefficients, etc (guarantees essentially the same bound)
- requires M-matrix, but has natural heuristic extensions
The algebraic convergence theory:

- yields meaningful bounds (actual convergence as proved often OK)
- is compatible with irregular geometries, unstructured grids, jumps in coefficients, etc (guarantees essentially the same bound)
- requires M-matrix, but has natural heuristic extensions
- whenever applicable, holds at every level of the hierarchy

The algebraic convergence theory:

- yields meaningful bounds (actual convergence as proved often OK)
- is compatible with irregular geometries, unstructured grids, jumps in coefficients, etc (guarantees essentially the same bound)
- requires M-matrix, but has natural heuristic extensions
- whenever applicable, holds at every level of the hierarchy
- covers symmetric and nonsymmetric problems in a uniform fashion

The algebraic convergence theory:

- yields meaningful bounds (actual convergence as proved often OK)
- is compatible with irregular geometries, unstructured grids, jumps in coefficients, etc (guarantees essentially the same bound)
- requires M-matrix, but has natural heuristic extensions
- whenever applicable, holds at every level of the hierarchy
- covers symmetric and nonsymmetric problems in a uniform fashion

The aggregation algorithm we use is entirely based on the theory and its heuristic extensions

- Method used as a preconditioner for CG or GCR
 - \rightarrow Fast convergence if the eigenvalues λ_i of the preconditioned matrix are:
 - bounded
 - substantially away from 0
- Using a standard smoother (e.g., Gauss-Seidel), the eigenvalues are bounded independently of P
- If P = 0 the eigenvalues associated with "smooth" modes are in general very small
 - $\bullet \rightarrow$ Main difficulty: λ_i substantially away from 0
 - Role of the coarse grid correction: move the small eigenvalues enough to the right (Guideline for the choice of P)

3. Two-grid analysis: λ_i away from **(**) ULB

SPD case Main identity [Falgout, Vassilevski & Zikatanov (2005)]:

$$\lambda_{\min} = \frac{1}{\kappa(A, P)}$$

with

$$\kappa(A,P) = \omega^{-1} \sup_{\mathbf{v}\neq 0} \frac{\mathbf{v}^T D \left(I - P(P^T D P)^{-1} P^T D\right) \mathbf{v}}{\mathbf{v}^T A \mathbf{v}}$$

3. Two-grid analysis: λ_i away from **(**) **U**

SPD case Main identity [Falgout, Vassilevski & Zikatanov (2005)]:

$$\Lambda_{\min} = \frac{1}{\kappa(A, P)}$$

with

$$\kappa(A,P) = \omega^{-1} \sup_{\mathbf{v}\neq 0} \frac{\mathbf{v}^T D \left(I - P(P^T D P)^{-1} P^T D\right) \mathbf{v}}{\mathbf{v}^T A \mathbf{v}}$$

General case [YN (2010)] For any λ_i : $\Re e(\lambda_i) \ge \frac{1}{\kappa(A_S, P)}$ with $A_S = \frac{1}{2}(A + A^T)$

The analysis of the SPD case can be sufficient

Aggregation-based algebraic multigrid – p.21

3. Two-grid analysis: λ_i away from 0 $\kappa(A_S, P) = \omega^{-1} \sup_{\mathbf{v} \neq 0} \frac{\mathbf{v}^T D \left(I - P (P^T D P)^{-1} P^T D \right) \mathbf{v}}{\mathbf{v}^T A_S \mathbf{v}}$ **Aggregation-based methods** $P = \begin{pmatrix} \mathbf{1}_{n^{(1)}} & & \\ & \ddots & \\ & & \mathbf{1}_{n^{(n_c)}} \end{pmatrix} , \quad D = \operatorname{diag}(A) = \begin{pmatrix} D_1 & & \\ & \ddots & \\ & & D_{n_c} \end{pmatrix}$ $\rightarrow D\left(I - P(P^T D P)^{-1} P^T D\right)$ $= \mathsf{blockdiag} \left(D_i \left(I - \mathbf{1}_{n^{(i)}} (\mathbf{1}_{n^{(i)}}^T D_i \mathbf{1}_{n^{(i)}})^{-1} \mathbf{1}_{n^{(i)}}^T D_i \right) \right)$

3. Two-grid analysis: λ_i away from 0 $\kappa(A_S, P) = \omega^{-1} \sup_{\mathbf{v} \neq 0} \frac{\mathbf{v}^T D \left(I - P (P^T D P)^{-1} P^T D \right) \mathbf{v}}{\mathbf{v}^T A_S \mathbf{v}}$ **Aggregation-based methods** $P = \begin{pmatrix} \mathbf{1}_{n^{(1)}} \\ & \ddots \\ & & \mathbf{1}_{n^{(n_c)}} \end{pmatrix}, \quad D = \operatorname{diag}(A) = \begin{pmatrix} D_1 \\ & \ddots \\ & & D_{n_c} \end{pmatrix}$ $\rightarrow D \left(I - P (P^T D P)^{-1} P^T D \right)$ = blockdiag $(D_i(I - \mathbf{1}_{n^{(i)}}(\mathbf{1}_{n^{(i)}}^T D_i \mathbf{1}_{n^{(i)}})^{-1}\mathbf{1}_{n^{(i)}}^T D_i))$ \rightarrow find A_b , A_r nonnegative definite s.t. $A_S = A_b + A_r$ with $A_b = \begin{pmatrix} A_{G_1}^{(S)} & & \\ & \ddots & \\ & & A_{G_{n_c}}^{(S)} \end{pmatrix}$

3. Two-grid analysis: λ_i away from 0 ULR $\kappa(A_S, P) \leq \omega^{-1} \sup_{\mathbf{v} \neq 0} \frac{\mathbf{v}^T D \left(I - P (P^T D P)^{-1} P^T D \right) \mathbf{v}}{\mathbf{v}^T A_b \mathbf{v}}$ **Aggregation-based methods** $P = \begin{pmatrix} \mathbf{1}_{n^{(1)}} & & \\ & \ddots & \\ & & \mathbf{1}_{n^{(n_c)}} \end{pmatrix} , \quad D = \operatorname{diag}(A) = \begin{pmatrix} D_1 & & \\ & \ddots & \\ & & D_{n_c} \end{pmatrix}$ $\rightarrow D \left(I - P (P^T D P)^{-1} P^T D \right)$ = blockdiag $(D_i(I - \mathbf{1}_{n^{(i)}}(\mathbf{1}_{n^{(i)}}^T D_i \mathbf{1}_{n^{(i)}})^{-1}\mathbf{1}_{n^{(i)}}^T D_i))$ \rightarrow find A_b , A_r nonnegative definite s.t. $A_S = A_b + A_r$ with $A_b = \begin{pmatrix} A_{G_1}^{(S)} & & \\ & \ddots & \\ & & A_{G_{n_c}}^{(S)} \end{pmatrix}$

3. Two-grid analysis: λ_i away from **(**) **ULB**

Aggregate Quality

$$\mu_G = \omega^{-1} \sup_{\mathbf{v} \notin \mathcal{N}(A_G^{(S)})} \frac{\mathbf{v}^T D_G (I - \mathbf{1}_G (\mathbf{1}_G^T D_G \mathbf{1}_G)^{-1} \mathbf{1}_G^T D_G) \mathbf{v}}{\mathbf{v}^T A_G^{(S)} \mathbf{v}} ,$$

Then: $\kappa(A_S, P) \leq \max_i \mu_{G_i}$

Controlling μ_{G_i} ensures that eigenvalues are away from **0**

3. Two-grid analysis: λ_i away from **(**) **ULB**

Aggregate Quality

$$\mu_G = \omega^{-1} \sup_{\mathbf{v} \notin \mathcal{N}(A_G^{(S)})} \frac{\mathbf{v}^T D_G (I - \mathbf{1}_G (\mathbf{1}_G^T D_G \mathbf{1}_G)^{-1} \mathbf{1}_G^T D_G) \mathbf{v}}{\mathbf{v}^T A_G^{(S)} \mathbf{v}} ,$$

Then: $\kappa(A_S, P) \leq \max_i \mu_{G_i}$

Controlling μ_{G_i} ensures that eigenvalues are away from **0**

- $A_G^{(S)}$: Computed from $A_S = A_b + A_r$ with $A_r \mathbf{1} = 0$
 - Rigorous for M-matrices s.t. $A_S \mathbf{1} \ge 0$ (then A_b , A_r guaranteed nonnegative definite)
 - Heuristic in other cases (A_r could have negative eigenvalue(s))

Outline

- 1. Introduction
- 2. AMG preconditioning and K-cycle
- 3. Two-grid analysis
- 4. Aggregation procedure Repeated pairwise aggregation
- 5. Multi-level analysis
- 6. Parallelization
- 7. Numerical results
- 8. Conclusions

ULB

$\kappa(A_S, P) \leq \max_i \mu_{G_i}$

A posteriori control of given aggregation scheme: limited utility (often a few aggregates with large μ_G)

ULB

$\kappa(A_S, P) \leq \max_i \mu_{G_i}$

- A posteriori control of given aggregation scheme: limited utility (often a few aggregates with large µ_G)
- \blacksquare \rightarrow Aggregation algorithm based on the control of μ_{G_i}

ULB

$\kappa(A_S, P) \leq \max_i \mu_{G_i}$

- A posteriori control of given aggregation scheme: limited utility (often a few aggregates with large µ_G)
- $\blacksquare \rightarrow$ Aggregation algorithm based on the control of μ_{G_i}
- Problem: repeated assessment of μ_G is costly

$\kappa(A_S, P) \leq \max_i \mu_{G_i}$

- A posteriori control of given aggregation scheme: limited utility (often a few aggregates with large µ_G)
- $\blacksquare \rightarrow$ Aggregation algorithm based on the control of μ_{G_i}
- Problem: repeated assessment of μ_G is costly
- For a pair {i, j}, μ_{{i,j} is a simple function of the "local" entries & the row and column sum

$\kappa(A_S, P) \leq \max_i \mu_{G_i}$

- A posteriori control of given aggregation scheme: limited utility (often a few aggregates with large μ_G)
- $\blacksquare \rightarrow$ Aggregation algorithm based on the control of μ_{G_i}
- Problem: repeated assessment of μ_G is costly
- For a pair $\{i, j\}$, $\mu_{\{i, j\}}$ is a simple function of the "local" entries & the row and column sum

 $\mu_G = \omega^{-1} \sup_{\mathbf{z} \notin \mathcal{N}(A_G^{(S)})} \frac{\mathbf{z}^T D_G (I - \mathbf{1}_G (\mathbf{1}_G^T D_G \mathbf{1}_G)^{-1} \mathbf{1}_G^T D_G) \mathbf{z}}{\mathbf{z}^T A_G^{(S)} \mathbf{z}}$ It is always cheap to check that $\mu_G < \overline{\kappa}_{\mathsf{TG}}$ holds: $Z_G = \overline{\kappa}_{\mathsf{TG}} A_G^{(S)} - \omega^{-1} D_G (I - \mathbf{1}_G (\mathbf{1}_G^T D_G \mathbf{1}_G)^{-1} \mathbf{1}_G^T D_G)$ is nonnegative definite if no negative pivot occurs while performing an LDL^T factorization

Output:

- n_c and aggregates G_i , $i=1\ldots,n_c$
- Initialization: $U = [1 , n] \setminus G_0$, $n_c = 0$
- Algorithm: While $U \neq \emptyset$ do
 - 1. Select $i \in U$; $n_c = n_c + 1$
- 2. Select $j \in U$ such that $\mu_{\{i,j\}}$ is minimal

4. $U = U \setminus G_{n_c}$

3. If
$$\mu_{\{i,j\}} < \overline{\kappa}_{TG}$$
 then $G_{n_c} = \{i,j\}$
else $G_{n_c} = \{i\}$

Aggregation-based algebraic multigrid – p.26

Output:

- n_c and aggregates G_i , $i=1\ldots,n_c$
- Initialization: $U = [1 , n] ackslash G_0$, $n_c = 0$
- Algorithm: While $U \neq \emptyset$ do
 - 1. Select $i \in U$; $n_c = n_c + 1$
- 2. Select $j \in U$ such that $\mu_{\{i,j\}}$ is minimal
- 3. If $\mu_{\{i,j\}} < \overline{\kappa}_{TG}$ then $G_{n_c} = \{i, j\}$ else $G_{n_c} = \{i\}$

Output:

- n_c and aggregates G_i , $i=1\ldots,n_c$
- Initialization: $U = [1 , n] ackslash G_0$, $n_c = 0$

Algorithm: While $U \neq \emptyset$ do

- 1. Select $i \in U$; $n_c = n_c + 1$
- 2. Select $j \in U$ such that $\mu_{\{i,j\}}$ is minimal

3. If
$$\mu_{\{i,j\}} < \overline{\kappa}_{TG}$$
 then $G_{n_c} = \{i,j\}$
else $G_{n_c} = \{i\}$

4. $U = U \setminus G_{n_c}$

Output:

- n_c and aggregates G_i , $i=1\ldots,n_c$
- Initialization: $U = [1 , n] ackslash G_0$, $n_c = 0$
- Algorithm: While $U \neq \emptyset$ do
 - 1. Select $i \in U$; $n_c = n_c + 1$
- 2. Select $j \in U$ such that $\mu_{\{i,j\}}$ is minimal
- 3. If $\mu_{\{i,j\}} < \overline{\kappa}_{TG}$ then $G_{n_c} = \{i, j\}$ else $G_{n_c} = \{i\}$
- 4. $U = U \backslash G_{n_c}$

Output:

- n_c and aggregates G_i , $i=1\ldots,n_c$
- Initialization: $U = [1 , n] ackslash G_0$, $n_c = 0$
- Algorithm: While $U \neq \emptyset$ do
 - 1. Select $i \in U$; $n_c = n_c + 1$
- 2. Select $j \in U$ such that $\mu_{\{i,j\}}$ is minimal
- 3. If $\mu_{\{i,j\}} < \overline{\kappa}_{TG}$ then $G_{n_c} = \{i,j\}$ else $G_{n_c} = \{i\}$
- 4. $U = U \backslash G_{n_c}$

Output:

- n_c and aggregates G_i , $i=1\ldots,n_c$
- Initialization: $U = [1 , n] \setminus G_0$, $n_c = 0$

Algorithm: While $U \neq \emptyset$ do

- 1. Select $i \in U$; $n_c = n_c + 1$
- 2. Select $j \in U$ such that $\mu_{\{i,j\}}$ is minimal

4. $U = U \setminus G_{n_c}$

3. If
$$\mu_{\{i,j\}} < \overline{\kappa}_{TG}$$
 then $G_{n_c} = \{i, j\}$
else $G_{n_c} = \{i\}$

Aggregation-based algebraic multigrid – p.26

Output:

- n_c and aggregates G_i , $i=1\ldots,n_c$
- Initialization: $U = [1\,,\,n] ackslash G_0$, $n_c = 0$

Algorithm: While $U \neq \emptyset$ do

- 1. Select $i \in U$; $n_c = n_c + 1$
- 2. Select $j \in U$ such that $\mu_{\{i,j\}}$ is minimal

4. $U = U \setminus G_{n_c}$

3. If
$$\mu_{\{i,j\}} < \overline{\kappa}_{TG}$$
 then $G_{n_c} = \{i,j\}$
else $G_{n_c} = \{i\}$

Aggregation-based algebraic multigrid – p.26

4. Aggregation procedure: Illustration ULB

Upwind FD approximation of

 $-\nu \Delta u + \overline{v} \cdot \operatorname{grad}(u) = f$ in Ω = unit square

with u = g on $\partial \Omega$, $\overline{v}(x, y) =$

$$\begin{pmatrix} x(1-x)(2y-1) \\ -(2x-1)y(1-y) \end{pmatrix}:$$

Direction of the flow

Magnitude Aggregation-based algebraic multigrid – p.27

4. Aggregation procedure: Illustration ULB

$\nu = 1$: diffusion dominating (near symmetric)

Aggregation

Spectrum

4. Aggregation procedure: Illustration ULB

 $\nu = 10^{-3}$: convection dominating (strongly nonsymmetric) Aggregation Spectrum

Outline

1. Introduction

- 2. AMG preconditioning and K-cycle
- 3. Two-grid analysis
- 4. Aggregation procedure Repeated pairwise aggregation
- 5. Multi-level analysis
- 6. Parallelization
- 7. Numerical results
- 8. Conclusions

5. Multi-level analysis

Requires to exchange the K-cycle (Krylov acceleration) for the AMLI-cycle (polynomial acceleration; i.e., frozen coefficients)

- Iess flexible: requires a known bound p on the two-grid convergence factor
- less efficient in practice
- upper bound on the convergence rate independent of the number of levels can be guaranteed with the sole assumption that p is below a given threshold

5. Multi-level analysis

Requires to exchange the K-cycle (Krylov acceleration) for the AMLI-cycle (polynomial acceleration; i.e., frozen coefficients)

- Iess flexible: requires a known bound p on the two-grid convergence factor
- less efficient in practice

upper bound on the convergence rate independent of the number of levels can be guaranteed with the sole assumption that p is below a given threshold

Our aggregation procedure: allows to choose $\overline{\rho}$ (for symmetric M-matrices with nonnegative row sum)

5. Multi-level analysis:final result

The method is purely algebraic and applies to any symmetric M-matrix with nonnegative row-sum
- The method is purely algebraic and applies to any symmetric M-matrix with nonnegative row-sum
- The condition number is bounded

 $\mathbf{T}\mathbf{R}$

- The method is purely algebraic and applies to any symmetric M-matrix with nonnegative row-sum
- The condition number is bounded
 - independently of mesh or problem size

- The method is purely algebraic and applies to any symmetric M-matrix with nonnegative row-sum
- The condition number is bounded
 - independently of mesh or problem size
 - independently of the number of levels

- The method is purely algebraic and applies to any symmetric M-matrix with nonnegative row-sum
- The condition number is bounded
 - independently of mesh or problem size
 - independently of the number of levels
 - independently of matrix coefficients (jumps, anisotropy, etc)

- The method is purely algebraic and applies to any symmetric M-matrix with nonnegative row-sum
- The condition number is bounded
 - independently of mesh or problem size
 - independently of the number of levels
 - independently of matrix coefficients (jumps, anisotropy, etc)
 - independently of the regularity of the grid

- The method is purely algebraic and applies to any symmetric M-matrix with nonnegative row-sum
- The condition number is bounded
 - independently of mesh or problem size
 - independently of the number of levels
 - independently of matrix coefficients (jumps, anisotropy, etc)
 - independently of the regularity of the grid
 - independently of the type of refinement (quasi uniformity, etc)

- The method is purely algebraic and applies to any symmetric M-matrix with nonnegative row-sum
- The condition number is bounded
 - independently of mesh or problem size
 - independently of the number of levels
 - independently of matrix coefficients (jumps, anisotropy, etc)
 - independently of the regularity of the grid
 - independently of the type of refinement (quasi uniformity, etc)
 - independently of any regularity assumption

Why?

TTR

Why?

... because the upper bound is 27.056

IIIR

Why?

... because the upper bound is 27.056

Optimality requires in addition bounded complexity:

- can be proved for model problems on regular grids;
- no proof in general, but, in practice, no more complexity issues than with other AMG schemes: coarsening parameters selected for this.

Outline

- 1. Introduction
- 2. AMG preconditioning and K-cycle
- 3. Two-grid analysis
- 4. Aggregation procedure Repeated pairwise aggregation
- 5. Multi-level analysis
- 6. Parallelization
- 7. Numerical results
- 8. Conclusions

Partitioning of the unknowns partitioning of matrix rows

- Partitioning of the unknowns
 partitioning of matrix rows
- We apply exactly the same aggregation algorithm except that aggregates can only contain unknowns in a same partition.
 Hence, one needs only to know the local matrix rows (no communication except upon forming the next)
 - coarse grid matrix)

- Partitioning of the unknowns
 partitioning of matrix rows
- We apply exactly the same aggregation algorithm except that aggregates can only contain unknowns in a same partition. Hence, one needs only to know the local matrix rows (no communication except upon forming the next)
 - coarse grid matrix)
- The prolongations & restrictions are then purely local

- Partitioning of the unknowns
 partitioning of matrix rows
- We apply exactly the same aggregation algorithm except that aggregates can only contain unknowns in a same partition. Hence, one needs only to know the local matrix rows (no communication except upon forming the next)
 - coarse grid matrix)
- The prolongations & restrictions are then purely local

- Partitioning of the unknowns → partitioning of matrix rows
- We apply exactly the same aggregation algorithm except that aggregates can only contain unknowns in a same partition.
 Hence, one needs only to know the local matrix rows (no communication except upon forming the next)
 - coarse grid matrix)
- The prolongations & restrictions are then purely local
- During iterations: communications only for matvec and inner product computation

Outline

- 1. Introduction
- 2. AMG preconditioning and K-cycle
- 3. Two-grid analysis
- 4. Aggregation procedure Repeated pairwise aggregation
- 5. Multi-level analysis
- 6. Parallelization
- 7. Numerical results
- 8. Conclusions

Classical AMG talk on application

- Description of the application (beautiful pictures)
- Description of the AMG strategy and needed tuning
- Numerical results, often not fully informative:
 - no robustness study on a comprehensive test suite;
 - no comparison with state of the art competitors.

ULB

This talk

Most applications ran by people downloading the code. Some of those I am aware of: CFD, electrocardiology (in general, I don't have the beautiful pictures at hand).

ULB

This talk

- Most applications ran by people downloading the code. Some of those I am aware of: CFD, electrocardiology (in general, I don't have the beautiful pictures at hand).
- The code is used black box (adaptation neither sought nor needed)

This talk

- Most applications ran by people downloading the code. Some of those I am aware of: CFD, electrocardiology (in general, I don't have the beautiful pictures at hand).
- The code is used black box (adaptation neither sought nor needed)
- I think the most important is the robustness on a comprehensive test suite

This talk

- Most applications ran by people downloading the code. Some of those I am aware of: CFD, electrocardiology (in general, I don't have the beautiful pictures at hand).
- The code is used black box (adaptation neither sought nor needed)
- I think the most important is the robustness on a comprehensive test suite
- I like comparison with state of the art competitors

- Iterations stopped when $\frac{\|\mathbf{r}_k\|}{\|\mathbf{r}_0\|} < 10^{-6}$
- Times reported are total elapsed times in seconds (including set up) per 10⁶ unknowns
- Test suite: discrete scalar elliptic PDEs
 - SPD problems with jumps and all kind of anisotropy in the coefficients (some with reentering corner)
 - convection-diffusion problems with viscosity from
 1 $\rightarrow 10^{-6}$ and highly varying recirculating flow

FD on regular grids; 3 sizes:

2D: $h^{-1} = 600$, 1600, 5000 **3D**: $h^{-1} = 80$, 160, 320

• FE on (un)structured meshes (with different levels of local refinement); 2 sizes: $n = 0.15e6 \rightarrow n = 7.1e6$

2D symmetric problems

ULB

3D symmetric problems

ULB

2D nonsymmetric problems

3D nonsymmetric problems

Aggregation-based algebraic multigrid - p.43

ULB

Comparison with other methods

- AMG(Hyp): classical AMG method as implemented in the Hypre library (Boomer AMG)
- AMG(HSL): the classical AMG method as implemented in the HSL library
- ILUPACK: efficient threshold-based ILU preconditioner
- Matlab \: Matlab sparse direct solver (UMFPACK)
- All methods but the last with Krylov subspace acceleration

POISSON 2D, FD

LAPLACE 2D, FE(P3)

33% of nonzero offdiag > 0

Poisson 2D, L-shaped, FE Unstructured, Local refin.

Convection-Diffusion 2D, FD $\nu = 10^{-6}$

ULR

POISSON 3D, FD

LAPLACE 3D, FE(P3)

51% of nonzero offdiag > 0

Poisson 3D, FE Unstructured, Local refin.

400 ------AGMG AMG(Hyp) AMG(HSL) 200 -О-- ILUPACK Matlab \ 100 50 20 10 5 3 10^{5} 10^{6} 10^{4} 10^{7}

Convection-Diffusion 3D, FD $\nu = 10^{-6}$

ΠTR

ULB

Parallel run: with direct coarsest grid solver Cray, 32 cores/node with 1GB/node Poisson, 3D trilinear hexahedral FE

#Nodes	#Cores	$n/10^{6}$	#lter.	Setup Time	Solve Time
1	32	31	17	5.9	40.4
2	64	63	17	6.2	40.8
4	128	125	17	6.9	41.5
8	256	251	17	9.5	41.8
16	512	501	17	14.8	42.5
32	1024	1003	17	27.3	44.0
64	2048	2007	17	69.0	48.2
128	4096	4014	17	383.0	59.4

(By courtesy of Mark Walkley, Univ. of Leeds)

Parallel run: with (new) iterative coarsest grid solver Intel(R) Xeon(R) CPU E5649 @ 2.53GHz 3D problem with jumps, FD

#Nodes #Cores $n/10^6$ #Iter. Setup Time Solve Time 1 8 64 12 14.9 89. 128 1026 16 191. 16 17.4 384 3065 14 48 18.0 165. 768 6155 96 13 17.4 170.

8. Conclusions

Robust method for scalar elliptic PDEs

ULR

8. Conclusions

ULB

- Robust method for scalar elliptic PDEs
- Purely algebraic convergence theory: do not depend on FE spaces, regularity assumption; applies also to the nonsymmetric case.
- Robust method for scalar elliptic PDEs
- Purely algebraic convergence theory: do not depend on FE spaces, regularity assumption; applies also to the nonsymmetric case.
- Can be used (and is used!) black box (does not require tuning or adaptation)

- Robust method for scalar elliptic PDEs
- Purely algebraic convergence theory: do not depend on FE spaces, regularity assumption; applies also to the nonsymmetric case.
- Can be used (and is used!) black box (does not require tuning or adaptation)
- Faster than some solvers based on classical AMG

- Robust method for scalar elliptic PDEs
- Purely algebraic convergence theory: do not depend on FE spaces, regularity assumption; applies also to the nonsymmetric case.
- Can be used (and is used!) black box (does not require tuning or adaptation)
- Faster than some solvers based on classical AMG
- Fairly small setup time: especially well suited when only a modest accuracy is needed (e.g., linear solve within Newton steps)

- Robust method for scalar elliptic PDEs
- Purely algebraic convergence theory: do not depend on FE spaces, regularity assumption; applies also to the nonsymmetric case.
- Can be used (and is used!) black box (does not require tuning or adaptation)
- Faster than some solvers based on classical AMG
- Fairly small setup time: especially well suited when only a modest accuracy is needed (e.g., linear solve within Newton steps)
- Efficient parallelization

- Robust method for scalar elliptic PDEs
- Purely algebraic convergence theory: do not depend on FE spaces, regularity assumption; applies also to the nonsymmetric case.
- Can be used (and is used!) black box (does not require tuning or adaptation)
- Faster than some solvers based on classical AMG
- Fairly small setup time: especially well suited when only a modest accuracy is needed (e.g., linear solve within Newton steps)
- Efficient parallelization
- Professional code available, free academic license

References

- ULB
- Analysis of aggregation—based multigrid (with A. C. Muresan), SISC (2008).
- Recursive Krylov-based multigrid cycles (with P. S. Vassilevski), NLAA (2008).
- An aggregation-based algebraic multigrid method, ETNA (2010).
- Algebraic analysis of two-grid methods: the nonsymmetric case, NLAA (2010).
- Algebraic analysis of aggregation-based multigrid, (with A. Napov) NLAA (2011).
- An algebraic multigrid method with guaranteed convergence rate (with A. Napov), SISC (2012).
- Aggregation-based algebraic multigrid for convection-diffusion equations, SISC (2012, to appear).

AGMG software: Google AGMG

(http://homepages.ulb.ac.be/~ynotay/AGMG)

Thank you for your attention !