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1.1 — Definitions

1 — Introductio
1.1 — Definitions

O The sequential programming model :
= the program is executed by one and only one process;
= all the variables and constants of the program are allocated in the memory
of the process;
= g process is executed on a physical processor of the machine.

Mémoire

Programme

FIGURE 1 — Sequential programming model
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@ In the message passing programming model :
5 the program is written in a classic language (Fortran, C, C++, etc.);
= each process may executes different parts of a program ;
= all the variables of the program are private and reside in the local memory of
each process;
1 3 variable is exchanged between two or many processes via a call to

subroutines.
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FIGURE 2 — Message-Passing Programming Model
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2.1 — Description

2 — Environn
2.1 — Description

w Every program unit calling MPI subroutines has to include a header file. In
Fortran, we must use the fipil module introduced in MPI-2 (in MPI-1, it was the

EPEERE file), and in C/C++ the HpilH file.

= The [JIZIB0IEYO] subroutine initializes the necessary environment :

integer, intent(out) : code

call [y (code)
1= The VIZFNIVEVAAP] subroutine disables this environment :

integer, intent(out) : code

cal1 [EMERIVATAH code)
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= All the operations made by MPI are related to communicators. The default
communicator is MPESCOMMEWORED which includes all the active processes.

FIGURE 3 — MPI_COMM__ WORLD Communicator
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.

= At any moment, we can know the number of processes managed by a given

communicator by the [UZIRGUUIBEIPAA®] subroutine :

integer, intent(out) : nb_procs,code

call [UIINCVTEEIVAT (MPINCOMMEWORED , nb_procs,code)

= Similarly, the [IZIRGUUVBINIA®)] subroutine allows to obtain the process rank (i.e.
its instance number, which is a number between 0 and the value sent by

MPI_COMM_SIZE () Reb

integer, intent(out) : rank,code

call [T (MPISCOMMEWORED , rank, code)
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9/87 2 — Environnement 2.2 — Exemple

2 — Environnement
2.2 — Exemple

program who_am_I
use mpi
implicit none
integer : nb_procs,rank,code

call [ViZdEEfEY (code)

call [UINEUVIEIPAS (MPINCOMMEWORED , nb_procs, code)
9 call [UIECOTTITNIY (MPIZCOMMIWORED , rank, code)

0N oUW N e

11 print *,'I am the process ',rank,' among

13 [ANMPT _FINALIZE (code)

14 | end program who_am_

,nb_procs

v

mpiexec -n 7 who_am_I

am the process among
am the process [{] among
am the process [ among
the process among
am the process [ among
am the process [B] among
am the process [d among

HHHHHHH

INSTITUT DU DEVELOPPEMENT CEMRACS - MPI
ET DES RESSOURCI
EN INFORMATIQUE SCIENTIFIQUE D. Lecas




3.1 — General concepts

3 — Point to point co
3.1 — General concepts

= A point to point communication occurs between two processes, one names the
sender process and the other one the receiver process

© O
1000 @ @

Emetteur

Récepteur
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FIGURE 4 — Point to point communications
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w The sender and the receiver are identified by their rank in the communicator.
= The so-called message envelope is composed of :

@ the rank of the send process;

@ the rank of the receive process;

@ the tag of the message;

@ the name of the communicator which will define the operation

communication context.
= The exchanged data are predefined (integer, real, etc.) or personal derived
datatypes.

= There are in each case many communication modes, calling different protocols.
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program point_to_point
use mpi
implicit none

1

2

3

4

5| integer, dimension(MPINSTATUSESIZE) : status

6 integer, parameter ¢ tag=100

7 integer : rank,value,code
8

9 call [UiZiEEY (code)

10

11| call [NV (MPESCOMMEWORED , rank, code)
12

13 if (rank == 2) then

14 valeur=1000

15 call [UIZEEN](value, 1, MPEININTEGER , 5, tag, MPINCOMMEWORED), code)

16| elseif (rank == 5) then

17 call [[IZMIEg](value,1, MPIRINTEGER 2, tag, MBINCOMMEWORED, status, code)

18 print *,'Myself, process 5, I have received ',value,' from the process 2.'
19 end if

20

21| call NGRS (code)

22

23 | end program point_to_point

> mpiexec -n 7 point_to_point

Myself, process [, I have received FIlY] from the process
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3.2 — Predefined MPI Datatypes

3 — Point to point communic
3.2 — Predefined MPI Datatypes

TABLE 1 — Predefined MPI Datatypes (Fortran)

Type MPI Type Fortran

MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION | DOUBLE PRECISION
MPI_COMPLEX COMPLEX

MPI LOGICAL LOGICAL
MPI_CHARACTER CHARACTER
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3.3 — Other possibilities

3 — Point to point communicat
3.3 — Other possibilities

= On the reception of a message, the process rank and the tag can be wild card,

MPISANYESOURCE ond HRIANYETAG rcspoctively.
1= A communication with the dummy process of rank MPISPROCENUEE has no effect.

1= MPIZSTATUSIIGNORE is a predefined constant that can be used instead of status
variable.

1= MPIWSUCCESS is a predefined constant which allows testing the return code of an
MPI function.

= There are syntaxic variants, [N IAGAO] and IR AI)IZGIIINGAP],

which launch simultaneously a send and a receive (in the first case, the receive
buffer must be necessarily different of the send buffer).

1 We can create more complex data structures.
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FIGURE 5 — Communication between the processes 0 and 1

program sendrecv

use mpi

implicit none

integer : rank,value,num_proc,code
integer,parameter : tag=110

call [y (code)

call [UZICTVIYNTY (MPINCOMMEWORED , rank, code)
! We suppose that we have exactly 2 processes
num_proc=mod (rank+1,2)

call [ZFEEFINIAG](rank+1000,1, HPINENTEGER , nun_proc,tag,value, 1, MBININTEGER ,
nun_proc, tag, MPILCOMMWORED , NPERSTRTUSHIGNGRE , code)
! Test of the return code of the MPI_SENDRECV subroutine

if (code /= MPI_SUCCESS) call [[igilV:[i¥{(MPINCOMMEWORED 2, code)

print *,'Myself, process',rank,', I have received',value,'from the process ',num_proc

call [IZWFNINEFAS (code)

end program sendrecv

CEMRACS - MPI
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16/87 3 — Point to point communications 3.3 — Other possibilities

> mpiexec -n 2 sendrecv

Myself, process El, I have received FI] from the process [
Myself, process [, I have received FH from the process

Warning! It must be noticed that if the subprogram is implemented in a
synchronous way in the implementation used of the MPI library, the previous code
would be in a deadlock situation if, rather than to use the
subprogram we used the subprogram followed by the one. In
this case, each of the two subprograms would wait a receipt command which will
never happened, because the two sends would stay suspended. So, for portability
reasons, it is absolutely necessary to avoid such situations.

call SEND (rank+1000, 1, MPESINTEGER , nun_proc,tag, HPINCOMMEWORED , code)
call [T3MC] (value, 1, HBELTNTEGER  non. oroc. ag, MBLCOMN.WORLD , MPYASTATUSSTGNORE , code)

—,r' INSTITUT DU DEVELOPPEMENT CEMRACS - MPI
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4.1 — General concepts

4 — Collective communicati
4.1 — General concepts

w The collective communications allow to make a series of point-to-point
communications in one single call.

= A collective communication always concerns all the processes of the indicated
communicator.

= For each process, the call ends when its participation in the collective call is
completed, in the sense of point-to-point communications (when the concerned
memory area can be changed).

i It is useless to add a global synchronization (barrier) after a collective call.

1= The management of tags in these communications is transparent and
system-dependent. Therefore, they are never explicitly defined during the calling
of these subroutines. This has among other advantages that the collective
communications never interfere with point-to-point communications.
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w There are three types of subroutines :

@ the one which ensures the global synchronizations : [[IgRRINIAAAO).
0 the ones which only transfer data :

global distribution of data : [T ¥I¥0] ;

selective distribution of data : [[IRIEIIYEsAAe] ;

collection of distributed data : [TV EIAT0] ;

collection by all the processes of distributed data : [IZINVBRINEIIO] ;
selective distribution, by all the processes, of distributed data :

MPI_ALLTOALL ()
® the ones which, in addition to the communications management, carry out
operations on the transferred data :

ooodoo

[ reduction operations (sum, product, maximum, minimum, etc.) whether
they are of a predefined or personal type : JiZBIaNGAP) ;
1 reduction operations with broadcasting of the result (it is in fact

equivalent to an [IZIIGA@] followed by an [JIZ:IEIN0)) :

MPI_ALLREDUCE(Q) §

p CEMRACS - MPI
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19/87 4 — Collective communications 4.2 — Broadcast : MPI_BCAST()

4 — Collective communications
4.2 — Broadcast : MPI_BCAST()

ro [T ro LT

pelal || | plal | | |
ps [T T T] P (LT T

FIGURE 6 — Broadcast : MPI_BCAST ()
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20/87 4 — Collective communications 4.2 — Broadcast : MPI_BCAST()

program bcast
use mpi
implicit none

call [iZilifHy(code)
call [iEETTIEYNE (MPEECOMMEWORED , rank, code)
10 if (rank == 2) value=rank+1000

12| call [EEEYN(value,1, MPENINTEGER 2, MPENCOMMEWORED), code)

14 print *,'I, process ',rank,' I have received ',value,' of the process 2'

16 call [IFENFSTNEPAS (code)

18 | end program bcast

1
2
3
4
5 integer : rank,value,code
6
7
8
9

> mpiexec -n 4 bcast

I, process I have received H of the process
I, process [ I have received of the process
I, process I have received of the process
I, process I have received of the process
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21/87 4 — Collective communications 4.3 — Scatter : MPI_SCATTER()

4 — Collective communications
4.3 — Scatter : MPI_SCATTER()

ro [T 111 ro M T
P1 rl—l—l—l MPI_SCATTER()) P1 ml_l_l_l

P2 P2 B [
ps [T TT] e LT T

FIGURE 7 — Scatter : MPI_SCATTER()
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22/87 4 — Collective communications 4.3 — Scatter : MPI_SCATTER()

WO U AN

i

program scatter
use mpi
implicit none

integer, parameter : nb_values=8
integer : nb_procs,rank,block_length,i,code
real, allocatable, dimension( :) : values,data

call [iZiiFHy(code)

call [UIZENCOTEEIVAT (MPIECOMMEWORED , nb_procs,code)
call [IZCUITINY (MPTICOMMIWORED , rank, code)
block length—nb values/nb_ rocs
allocate(data(block_length))

if (rank == 2) then
allocate(values(nb_values))
values( :)=(/(1000.+i,i=1,nb_values)/)
print *,'I, process ‘,rank, send my values array :',&
valuesd mb _values)

end if

call [IFWEIN¥IR](values,block_length, MPIBREAN,data,block_length, &
WP REAL -, MPT_COMM VORLD., code)
, 1 have received ', data(l :block_length), &

print *,'I, process ',rank,'
of the process 2'
cat TR

end program scatter

> mpiexec -n 4 scatter
I, process 2 send my values arra

1002. #1003 | 006\\007

I, process [], I have received of the process
I, process H, I have received of the process -
I, process B, I have received of the process
I, process B, I have received of the process
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23/87 4 — Collective communications 4.4 — Gather : MPI_GATHER()

4 — Collective communications
4.4 — Gather : MPI_GATHER ()

pofaol | | | o [TTT]
P1 |A1I I I | MPI_GATHER () P1 |—I—I—I—|

>
e[ ] P2
e LT T ps [T TT]

FIGURE 8 — Gather : MPI_GATHER()
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24/87 4 — Collective communications 4.4 — Gather : MPI_GATHER()

© 0N O U R W

program gather

use mpi

implicit none

integer, parameter : nb_values=8

integer : nb_procs,rank,block_length,i,code
real, dimension(nb_values) : data

real, allocatable, dimension( :) : values

call [ViZf§Y(code)
call [USENUVIEIPAS (MPINCOMMEWORED , nb_procs, code)
call [UIECTTITNIY (MPIZCOMMIWORED , rank, code)
block_length=nb_values/nb_procs
allocate(values(block_length))
values( :)=(/(1000.+rank*block_length+i,i=1,block_length)/)
print *,'I, process ',rank,'send my values array :',&
values(l :block_length)

call [IFMENVIT](values,block_length, MPEUREAH,data,block_length, &
MPISREAL , 2, MPTECOHMEWORLD , code)

if (rank == 2) print *,'I, process 2', ' have received ',datall mb_values)

call [UIFMFRJVEFAT (code)

end program gather

> mpiexec -n 4 gather

I, process 1 send my values array
I, process O send my values array
I, process 2 send my values array
I, process 3 send my values array

I, process have received [ FONPHN FRREN FOZN FRLEE FOGEH FRYA FOREN

— = INSTITUT DU DEVELOPPEMENT
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25/87 4 — Collective communications 4.5 — Global reduction

4 — Collective communications
4.5 — Global reduction

= A reduction is an operation applied to a set of elements in order to obtain one
single value. Classical examples are the sum of the elements of a vector
(SUM(A(:))) or the search of the maximum value element in a vector
(MAX(V(:))).

= MPI proposes high-level subroutines in order to operate reductions on distributed
data on a group of processes. The result is obtained on one process

(EiEIDGAC)) or on all (VIFWNEEID®AS), which is in fact equivalent to an
TZIETEDEA®) followed by an [TREETEIIO)).

= If many elements are implied by process, the reduction function is applied to each
one of them.

1w The UFWEINIO) subroutine allows also to make partial reductions by
considering, for each process, the previous processes of the group and itself.

1= The [UZMUIMGAAWWAC) and UIAMOINIAAAQ) subroutines allow personal reduction

operations.

—,r' INSTITUT DU DEVELOPPEMENT CEMRACS - MPI
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TABLE 2 — Main Predefined Reduction Operations (there are also other logical operations)

Name Opération

MPI SUM Sum of elements
MPI_PROD Product of elements
MPI MAX Maximum of elements
MPI MIN Minimum of elements

MPI__MAXLOC | Maximum of elements and location
MPI_MINLOC Minimum of elements and location

MPI_LAND Logical AND
MPI_LOR Logical OR
MPI LXOR Logical exclusive OR

CEMRACS - MPI
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27/87 4 — Collective communications 4.5 — Global reduction

FIGURE 9 — Distributed reduction (product) with broadcast of the result
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program allreduce

use mpi
implicit none

integer : nb_procs,rank,value,product,code

call [iZFBIEEY(code)
call [UIINCOTVEEIVAT (MPIRCOMMEWORED , nb_procs,code)
call [UIZICTTITNIY (MPTZCOMMIWORED , rank, code)

if (rank == 0) then
value=10

else
value=rank

endif

call [UIFINBEINNGT(value,product, 1, MBENINTEGER , MPTEPROD , MPTECOMMEWORED), code)

print *,'I,process ',rank,',I have received the value of the global product ',product

call [FWFNINEPAS (code)

end program allreduce

CEMRACS - MPI
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29/87 4 — Collective communications 4.5 — Global reduction

> mpiexec -n 7 allreduce

I, process [, I have received the value of the global product [ZI]
I, process B, I have received the value of the global product [ZI]
I, process [, I have received the value of the global product [ZHl]
I, process P, I have received the value of the global product [ZIl]
I, process B, I have received the value of the global product @I
I, process B, I have received the value of the global product @I
I, process B, I have received the value of the global product [Z]
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ET DES RESSOURCES
EN INFORMATIQUE SCIENTIFIQUE D. Lecas




There are various approaches to transfer data between two different processes. Among
the most commonly used are :

® Point-to-point communications by message-passing (MPI, etc.);

@ One-sided communications (direct access to the memory of a distant process).
Also called RMA for Remote Memory Access , it is one of the major
contributions of MPI.




5.1 — Introduction

5 — One-sid
5.1 — Introducti
5.1.1 — Remind

I send | receive

FIGURE 10 — Message-Passing

In message-passing, a sender (origin) sends a message to a destination process
(target) which will make all what is necessary to receive this message. This requires
that the sender as well as the receiver be involved in the communication. This can be
restrictive and difficult to implement in some algorithms (for example when it is
necessary to manage a global counter).

CEMRACS - MPI
D. Lecas



The concept of one-sided communication is not new, MPI having simply unified the
already existing constructors’ solutions (such as shmem (CRAY), lapi (IBM), ...) by
offering its own RMA primitives. Through these subroutines, a process has a direct
access (in read, write or update) to the memory of another remote process. In this
approach, the remote process does not have to participate in the data-transfer process.

The principle advantages are the following :

= enhanced performances when the hardware allows it,

= g simpler programming for some algorithms.




The use of MPI RMA is done in three steps :

@ definition on each process of a memory area (local memory window) visible and
eventually accessible to remote processes;
@ start of the data transfer directly from the memory of a process to the memory of

another process. It is therefore necessary to specify the type, the number and the
initial and final localization of data.

© completion of current transfers by a step of synchronization, the data are then
available.




5.2 — Memory Window

5 — One-sided Com:

5.2 — Memory Window

All the processes participating in an one-sided communication have to specify which
part of their memory will be available to the other processes; it is the notion of
memory window.

15 More precisely, the collective operation allows the creation of
an MPI window object. This object is composed, for each process, of a specific
memory area called local memory window. For each process, a local memory
window is characterized by its initial address, its size in bytes (which can be
zero) and the displacement unit size inside this window (in bytes). These
characteristics can be different on each process.

CEMRACS - MPI
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6.1 — Introduction

6 — Derived datatypes

6.1 — Introduction

1= In the communications, the exchanged data have datatypes : MPIBINTEGER,
MPI_REAL. MPI_COMPLEX. cic,

1= We can create more complex data structures by using subroutines such as
(MPI_TYPE_CONTIGUOUS () MIMPI_TYPE_VECTOR () MIMPI_TYPE_CREATE_HVECTOR()|

= Fach time that we use a datatype, it is mandatory to validate it by using the

IR MNTITEENe) subroutine.

= [f we wish to reuse the same name to define another derived datatype, we have to

free it first with the [IZINSIIHMIIFIAP] subroutine.

CEMRACS - MPI
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MPI_TYPE_CREATE_STRUCT

MPI_TYPE_[CREATE_H]INDEXED

MPI_TYPE_[CREATE_H]VECTOR

MPI_TYPE_CONTIGUOUS

MPI_REAL, MPI_INTEGER, MPI_LOGICAL

FIGURE 11 — Hierarchy of the MPI constructors
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6.2 — Contiguous datatypes

6 — Derived datatype

6.2 — Contiguous datatypes

ww IR M FREAIEI®) creates a data structure from a homogenous set of
existing datatypes contiguous in memory.

1. 6. 16. | 21. | 26.
2. 7. 17. | 22. | 27.
3. 8. 18. | 23. | 28.
4. 9. 19. | 24. | 29.
5. | 10. 20. | 25. | 30.

call [N TIIMFEIENIE (5, MPIBREAH ,nev_type,code)

FIGURE 12 — MPI_TYPE_CONTIGUOUS subroutine

integer, intent(in) : count, old_type
integer, intent(out) : new_type,code

call IR ZIMFRIEiNliF] (count ,0ld_type,new_type,code)

CEMRACS - MPI
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6.3 — Constant stride

6 — Derived datatypes

6.3 — Constant stride

ww NI INIAGA0) creates a data structure from a homogenous set of existing
data separated by a constant stride in memory. The stride is given by the number
of elements.

1. 6. | 11. | 16. | 21. | 26.
2. o120 17. | 22. | 27.

4. 9. | 14. | 19. | 24. | 29.
5. | 10. | 15. | 20. | 25. | 30.

call FZERTIMEG(6,1,5, MPIEREAH , new_type,code)

FiGURE 13 — MPI_TYPE_VECTOR subroutine

integer, intent(in) : count,block_length
integer, intent(in) : stride ! given in elements
integer, intent(in) : old_type

integer, intent(out) : new_type,code

call EIZNRIZMIIGI0I (count ,block_length,stride,old_type,new_type,code)

CEMRACS - MPI
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6.4 — Other subroutines

ww Before using a new derived datatype, it is necessary to validate it by the

(MPT_TYPE_COMMIT () JERIe]tnteN

integer, intent(inout) : new_type
integer, intent(out) : code

call [IFINNGIIMILENY (new_type,code)
1z The freeing of a derived datatype is made by using the [IZINSI2MIVIAO]

subroutine.
integer, intent(inout) : new_type
integer, intent(out) : code

call i3 W335 (new_type,code)

CEMRACS - MPI
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6 — Derived datatypes
6.5 — Homogenous datatypes of variable strides

ww NI IR ENIO) allows to create a data structure composed of a sequence of
blocks containing a variable number of elements separated by a variable stride in
memory. The latter is given in elements.

= has the same functionality as
except that the strides that separates two data blocks are
given in bytes.
This subroutine is useful when the generic datatype is not an MPI base

datatype(MPIBINTEGER, MPIBREAL, ...). We cannot therefore give the stride by

the number of elements of the generic datatype.

L OMMPI_TYPE_CREATE_HINDEXED () NEER(MMPI_TYPE_CREATE_HVECTOR () NRPES
WIS VAA0) or [ViZiNRiZ eI GNA O] in order to obtain in a portable
way the size of the stride in bytes.

CEMRACS - MPI
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nb=3, blocks_ lengths=(2,1,3), displacements=(0,3,7)

old__type _

new_type N T T T 1 1 1 [ D

FIGURE 14 — The MPI_TYPE_INDEXED constructor

integer,intent (in) : nb

integer,intent(in) ,dimension(nb) : :block_lengths

! Attention the displacements are given in elements

integer,intent(in) ,dimension(nb) : displacements

integer,intent (in) : old_type

integer,intent (out) : new_type,code

call EIFENRIZINIIN] (nb,block_lengths,displacements,old_type,new_type,code)

CEMRACS - MPI
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nb=4, blocks_ lengths=(2,1,2,1), displacements=(2,10,14,24)

old_type _

e I 5 5 5 5 5

FIGURE 15 — The MPI_TYPE_CREATE_HINDEXED constructor

integer,intent (in) : nb
integer,intent (in) ,dimension(nb) : :block_lengths
! Attention the displacements are given in bytes

integer (kind=MPTPADDRESSEKIND) , intent (in) ,dimension(nb) : displacements
integer,intent (in) : old_type

integer,intent (out) : new_type,code

[EWRRIMPI_TYPE_CREATE_HINDEXED[G1-H block_lengths,displacements,
old_type,new_type,code)

CEMRACS - MPI
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1= The VDN MOTTIVAE]GIVITNEO) subroutine allows to create a subarray from

an array.
integer,intent (in) : nb_dims
integer,dimension(ndims),intent(in) : shape_array,shape_sub_array,coord_start
integer,intent (in) : order,old_type
integer,intent (out) new_type,code

[EWRRIMPI_TYPE_CREATE_SUBARRAY[IK dlms shape array,shape_sub_array,coord_start,
order,old_type,new_type,code)




44/87 6 — Derived datatypes 6.6 — Subarray Datatype Constructor

Reminder of the vocabulary relative to the arrays in Fortran 95

1= The rank of an array is its number of dimensions.

= The extent of an array is its number of elements in a dimension.

w The shape of an array is a vector whose each dimension is the extent of the array
in the corresponding dimension.

For example the T(10,0:5,-10:10) array. Its rank is 3, its extent in the first
dimension is 10, in the second 6 and in the third 21, its shape is the (10,6,21) vector.
w nb_dims : rank of the array
ww shape array : shape of the array from which a subarray will be extracted
w shape_sub_ array : shape of the subarray

w coord_start : start coordinates if the indices of the array start at 0. For example,
if we want that the start coordinates of the subarray be array(2,3), we must
have coord_start(:)=(/ 1,2 /)

= order : storage order of elements

@ |MPINORDERBEORTRAN for the ordering used by Fortran arrays (column-major

order)
@ MBINORDEREC for the ordering used by C arrays (row-major order)
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7 — Optimisation

Point-to-Point Send Modes

Mode Blocking Non-blocking
Standard send MPI_Send MPI_Isend
Synchronous send | MPI_Ssend | MPI_Issend
Buffered send MPI_Bsend | MPI_Ibsend
Ready send MPI_Rsend | MPI_Irsend
Receive MPI_Recv MPI_Irecv
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7 — Optimisation

Key Terms

o Blocking call : a call is blocking if the memory space used for the
communication can be reused immediately after the exit of the call. The data
that have been or will be sent are the data that were in this space at the moment
of the call. If it is a receive, the data must have already been received in this
space (if the return code is MPI_SUCCESS).

o Non-blocking call : a non-blocking call returns very quickly, but it does not
authorize the immediate re-use of the memory space used in the communication.
It is necessary to make sure that the communication is fully completed (with
MPI_Wait for example) before using it again.

o Synchronous send : a synchronous send involves a synchronization between the
involved processes. There can be no communication before the two processes are
ready to communicate. A send cannot start until its receive is posted.

o Buffered send : a buffered send implies the copying of data in an intermediate
memory space. There is then no coupling between the two processes of
communication. So the output of this type of send does not mean that the receive
occurred.
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Synchronous Sends

A synchronous send is made by calling the MPI_Ssend or MPI_Issend subroutine.

Rendezvous Protocol

Processus 0 Processus 1

The rendezvous protocol is
generally the protocol used for
synchronous sends
(implementation-dependent). The
return receipt is optional.

Temps
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o Less use of resources (no buffer)
o Faster if the receiver is ready (no copying in a buffer)

o Guarantee of receive through synchronization

o Waiting time if the receiver is not there/not ready
o Risks of deadlocks




7 — Optimisation

Buffered Sends

A buffered send is made by calling the MPI_Bsend or MPI_Ibsend subroutine. The
buffers have to be managed manually (with calls to MPI_Attach and MPI_Detach).
They have to be allocated by taking into account the header size of messages (by
adding the constant MPI_BSEND_OVERHEAD for each message instance).

Protocol with User Buffer on the Sender Side

Processus 0 Processus 1
This approach is the one generally
used for the MPI_Bsend or
MPI_Ibsend. In this approach, the
buffer is on the sender side and is
managed explicitly by the
application. A buffer managed by
MPI can exist on the receiver
side. Many variants are possible.
The return receipt is optional.

CEMRACS - MPI
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Eager Protocol

The eager protocol is often used
for standard sends of small-size
messages. It can also be used for
sends with MPI_Bsend with small
messages
(implementation-dependent) and
by bypassing the user buffer on
the sender side. In this approach,
the buffer is on the receiver side.
The return receipt is optional.

Temps

Processus 0 Processus 1
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7 — Optimisation

Advantages
o No need to wait for the receiver (copying in a buffer)
o No risks of deadlocks

Disadvantages

o Use of more resources (memory use by buffers with saturation risks)

o The used send buffers in the MPI_Bsend or MPI_Ibsend calls have to be managed
manually (often hard to choose a suitable size)

o A little bit slower than the synchronous sends if the receiver is ready
o There is no guarantee of good receive (send-receive decoupling)
o Risk of wasted memory space if the buffers are too oversized

o There is often also hidden buffers managed by the MPI implementation on the
sender side and/or on the receiver side (and using memory resources)
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7 — Optimisation

Standard Sends

A standard send is made by calling the MPI_Send or MPI_Isend subroutine. In most
implementations, this mode switches from a buffered mode to a synchronous mode
when the size of messages grows.

Advantages

o Often the most efficient (because the constructor chose the best parameters and
algorithms)

o The most portable for the performances

Disadvantages

o Little control over the really used mode (often accessible via environment
variables)

o Risk of deadlock according to the actual mode

o Behavior that can vary according to the architecture and the problem size
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7 — Optimisation

Presentation
The overlap of communications by computations is a method which allows to execute
communications operations in background while the program continues to operate.
o It is thus possible, if the hardware and software architecture allows it, to hide all
or part of communications costs.

o The computation-communication overlap can be seen as an additional level of
parallelism.

o This approach is used in MPI by the use of non-blocking subroutines (i.e.
MPI_Isend, MPI_Irecv and MPI_Wait).
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7 — Optimisation

7 — Optimisation
Advantages

o Possibility of hiding all or part of communications costs (if the architecture
allows it)

o No risks of deadlock

Disadvantages

o Greater additional costs (several calls for one single send or receive, management
of requests)

o Higher complexity and more complicated maintenance

o Less efficient on some machines (for example with transfer starting only at the
MPI_Wait call)

o Performance-loss risk on the computational kernels (for example differentiated
management between the area near the border of a domain and the interior area
resulting in less efficient use of memory caches)

o Limited to point-to-point communications (it will be extended to collective

communications in MPI 3.0)

= =@ rsuror bu pEvEOPPENENT CEMRACS - MPI
I ET DES RESSOURCES
@) EN INFORMATIQUE SCIENTIFIQUE D. Lecas




56/87 7 — Optimisation

7 — Optimisation

Use
The message send is made in two steps :
o Initiate the send or the receive by a call to a subroutine beginning with
MPI_Isend or MPI_Irecv (or one of their variants)
o Wait the end of the local contribution by a call to MPI_Wait (or one of its
variants).
The communications overlap with all the operations that occur between these two
steps. The access to data being in receive is not permitted before the end of the
MPI_Wait (the access to data being in send is also not permitted for the MPI
implementations previous to the 2.2 version).

CEMRACS - MPI
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7 — Optimisation

Example
do i=1,niter
! Initialize communications
call MPI_Irecv(data_ext, sz,MPI_REAL,dest,tag,comm, &
req(l) ,ierr)
call MPI_Isend(data_bound,sz,MPI_REAL,dest,tag,comm, &
req(2) ,ierr)

! Compute the interior domain (data_ext and data_bound
! are unused) during communications
call compute_interior_domain(data_int)

! Wait for the end of communications
call MPI_Waitall(2,req,MPI_STATUSES_IGNORE,ierr)

! Compute the exterior domain
call compute_exterior_domain(data_int,data_bound,data_ext)

end do

CEMRACS - MPI
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8.1 — Introduction

8 — Comm
8.1 — Introducti

Communicators usage consists of partitioning a group of processes in order to create
subgroups on which we can carry out operations such as collective or point-to-point
communications. Each created subgroup will have its own communication space.

MPI_COMM_WORLD

G & % :
by h, 9 °
ds

FIGURE 16 — Communicator partitioning
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8.2 — Example

8 — Communic
8.2 — Example

In the following example, we will :
= put together on one hand the even-ranked processes and on the other hand the
odd-ranked processes;
= broadcast a collective message only to even-ranked processes and another only to
odd-ranked processes.

MPI_COMM_WORLD
be Moy

% C b d3 call MPI_INIT(...)

o & 13 f5 call MPI_COMM_CREATE(...)
96 b? d3
2
e call MPI_BCASTY(...)
bl d3

ao e M fg
% C b, dg

| $ mpirun —np 8 CommPairimpair |

call MPI_COMM_FREE(...)

FIGURE 17 — Communicator creation/destruction
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v A communicator consists :

@ of a group, which is an ordered group of processes;
@ of a communication context made at the calling of the communicator
construction subroutine, which allows to define the communication space.

5 The communication contexts are managed by MPI (the programmer has no
action on them : it is an opaque attribute).
In pratice, in order to build a communicator, there are two ways to do this :

@ through a group of processes;
@ directly from another communicator.




The [UiIZNTIIMSIBIIO) subroutine allows to partition a given communicator in as
many communicators as we want...

integer, intent(in)

integer, intent(out)
call PiFVVIE3%H§Y (comm, color,key,new_comm,code)

: comm, color, key
: new_comm, code

MPI_COMM_WORLD

process a

rank world 0

color n

key f

rank new com | 1 0 1|2 2

5B

FIGURE 18 — Construction of communicators with MPI_COMM_SPLIT()

A process that is assigned a color equal to the MPIBUNDEEINED value will belong only
to its initial communicator.
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1| program EvenOdd

2 use mpi

3 implicit none

4

5 integer, parameter : m=16

6 integer : key,CommEvenOdd

7 integer : rank_in_world,code
8 real, dimension(m) : a

9

10 call [Vigs §§ (code)

11| call [IZCUTIEYVE (MPISCOMMBWORED , rank_in_world,code)
12

13 ! Initialization of the A vector

14| a( )=0.

15 if(rank_in_world == 2) a( :)=2.
16| if(rank_in_world == 5) a( :)=5.

18 key = rank_in_world
19 if (rank_in_world == 2 .0OR. rank_in_world == 5 ) then

20 key=-1

21 end if

22

23 ! Creation of even and odd communicators by giving them the same name

24| call SIS IRGY (MPEECOMMEWORED ,nod (rank_in_world,2) ,key,CommEven0dd, code)
25

26| ! Broadcast of the message by the rank process O of each communicator to the processes
27 ! of its group

28 call [IZMEY%H)(a,n, MPISREAN , O,CommEven0dd, code)

29

30| ! Destruction of the communicators

31| call [UZVBII33(CommEven0dd, code)
32| call QIZIRFNINE¥IY (code)

33| end program EvenOdd

CEMRACS - MPI
D. Lecas




= [n most applications, especially in domain decomposition methods where we
match the calculation domain to the grid of processes, it is interesting to be able
to arrange the processes according to a regular topology.

= MPT allows to define cartesian or graph virtual topologies.

»+ Cartesian topologies :

m each process is defined in a grid;
m the grid can be periodic or not ;
m the processes are identified by their coordinates in the grid.

#» Graph Topologies :
- generalization to more complex topologies.



= A cartesian topology is defined when a group of processes belonging to a given
communicator comm old calls the Vi VEMOITWAPY subroutine.

integer, intent(in) : comm_old, ndims
integer, dimension(ndims),intent(in) : dims

logical, dimension(ndims),intent(in) : periods
logical, intent(in) : reorganization
integer, intent(out) : comm_new, code

call [NiZIINVEMGIIN (comm_old, ndims,dims,periods,reorganization,comm_new,code)




= Example on a grid having 4 domains along x and 2 along y, periodic in y.

use mpi

integer : comm_2D, code
integer, parameter : ndims = 2
integer, dimension(ndims) : dims

logical, dimension(ndims) : periods
logical : reorganization
dims(1) = 4

dims(2) = 2

periods(1) = .false.

periods(2) = .true.

reorganization = .false.

call QiGN IMGIIN] (MPINCOMMENORED , ndins,dims,periods,reorganization,comm_2D,code)

= If reorganization = .false. then the rank of the processes in the new
communicator (comm_ 2D) is the same as in the old communicator

(MPTECOMMEWORED)). If reorganization = .true., the MPI implementation

chooses the order of the processes.
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FIGURE 19 — 2D periodic cartesian topology in y
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= The VIZIJIENGITNAP)] subroutine returns the number of processes in each
dimension of the grid according to the total number of processes.

integer, intent(in)

integer, intent(out)

: nb_procs, ndims

integer, dimension(ndims),intent(inout) : dims

: code

call [iZEIEMEIINN (nb_procs,ndims,dims, code)

w Remark : if the values of dims in entry are all 0, this means that we leave to MPI
the choice of the number of processes in each direction according to their total

number.

dims in entry

call MPI_DIMS_CREATE

dims en exit

(0,0)

(0,0,0)
(0,4,0)
(0,3,0)

(8,2,dims,code)

(16,3,dims,code)
(16,3,dims,code)
(16,3,dims,code)

(4,2)

(4,2,2)
(214,2)
error
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= In a cartesian topology, a process that calls the LI VIR:83R@)] subroutine
can get the rank of its neighboring processes in a given direction.

integer, intent(in) : comm_new, direction, step
integer, intent(out) : rank_previous,rank_next
integer, intent(out) : code

call [ VEEERIgY(comm_new, direction, step, rank_previous, rank_next, code)

5 The direction parameter corresponds to the displacement axis (xyz).

= The step parameter corresponds to the displacement step.
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1= Program Example :

1| program decomposition

2 use mpi

3 implicit none

4

5 integer : rank_in_topo,nb_procs
6 integer : code,comm_2D

7 integer, dimension(4) : neighbor

8 integer, parameter : N=1,E=2,S=3,W=4
9 integer, parameter : ndims = 2

10 integer, dimension (ndims) : dims,coords

11 logical, dimension (ndims) : periods

12 logical : reorganization
13

14 call [ViZRFHY(code)

15

16 call [IZICVIVEEIVAS (MPINCOMMEWORED , nb_procs, code)
17

18 ! Know the number of processes along x and y
19| dims( :) =0

20

21 call FIFNiEMOITNN (nb_procs,ndims,dims,code)
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22 ! 2D y-periodic grid creation

23| periods(l) = .false.

24| periods(2) = .true.

25 reorganization = .false.

26

27| call [igNGVINGITY (MPIECOMMEWORED , ndims,dims,periods,reorganization,comm_2D,code)
28

29 ! Know my coordinates in the topology

30 call [UINEVIVIINGY (comm_2D,rank_in_topo,code)

31 call I VIMIE] (comm_2D,rank_in_topo,ndims, coords, code)
32

33 ! Initialization of the neigboring array to the MPI_PROC_NULL value
34| mneighbor( :) =

35

36 ! Search of my West and East neigbors

37 call [IZGNEEEIEY (comm_2D,0,1,neighbor (W) ,neighbor (E) ,code)
38

39 ! Search of my South and North neighbors

40| call [IFMFVEWEEIIEY(comm_2D,1,1,neighbor(S) ,neighbor (N),code)
41

42 call [IFIFSTNEPAS (code)

43

44 | end program decomposition
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ww Very logically, the applications that make large calculations also handle large
amounts of data, and generate therefore a significant number of I/0.

ww Thus, their effective treatment sometimes affects very strongly the global
performances of applications.




72/87 9 — MPI-IO 9.1 — Introduction

5 The I/O optimization of parallel codes is made by the combination :
» of their parallelization, in order to avoid creating a bottleneck due to their
serialization ;
» of explicitly implemented techniques at the level of programming
(nonblocking reads / writes) ;
»+ of specific operations supported by the operating system (grouping of
requests, buffer management of 1/0, etc.).

w The goals of MPI-10, via the high-level interface that it proposes, are to provide
simplicity, expressivity and flexibility, while authorizing performing
implementations that take into account the software and hardware specificities of
I/0O devices of the target machines.

w MPI-IO provides an interface modeled on the one used for message passing.
The definition of data accessed according to the processes is made by the use of
(basic or derived) datatypes. As for the notions of nonblocking and collective
operations, they are managed similarly to what MPI proposes for the messages.

= MPI-IO authorises both sequential and random accesses.
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9.2 — File management

9 — MPI-1I0

9.2 — File management

= The file management tasks are collective operations made by all the processes of
the indicated communicator.

i We are only describing here the principal subroutines (opening, closing) but
others are available (deletion, etc.).

= The attributes (describing the access rights, the opening mode, the possible
destruction at the closing, etc.) must be precised by sum on predefined constants.

= All the processes of the communicator inside of which a file is open will
participate in the later collective operations of data access.

1= The opening of a file returns a file handle, which will be later used in all the
operations relative to this file.

5 The available information via the iimaiN)5miigol®) subroutine varies from
one implementation to another.
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TABLE 3 — Attributes that can be positioned during the opening of files

‘ Attribut Meaning
MPI_MODE__RDONLY read only
MPI_MODE_RDWR reading and writing
MPI_MODE__WRONLY write only
MPI_MODE__ CREATE create the file if it does not exist
MPI_MODE__EXCL error if the file exists
MPI_MODE__UNIQUE__OPEN error if the file is already open by ano-

ther application
’ MPI_MODE_SEQUENTIAL ‘ sequential access ‘
’ MPI_MODE_APPEND ‘ pointers at the end of file (add mode) ‘

’ MPI_MODE_DELETE_ON_ CLOSE ‘ delete after the closing ‘
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program open0O1

use mpi
implicit none

integer : fh,code

call [UIIRFF](code)

call [EIFIAMUIA] (HPTNCOMMMNORED|, "file data", &
MPI_MODE_RDWR + MPI_MODE_CREATE

call EIZMFIRMONEY(fh,code)
call [IFWFNTNEVAS (code)

end program openOl

, HRTWINFOBNUEE , £h, code)

> 1s -1 file.data

—rW——————— 1 name grp O Feb 08 12 :13 file.data

CEMRACS - MPI
D. Lecas




9.3 — Reads/Writes :

general concepts

9 — MPI-1I0

9.3 — Reads/Writes : general co

= The data transfers between files and memory areas of processes are made via
explicit calls to read and write subroutines.
= We distinguish three aspects to file access :

»+ the positioning, which can be explicit (by specifying for example the desired
number of bytes from the beginning of the file) or implicit, via pointers
managed by the system (these pointers can be of two types : either
individual to each process, or shared by all the processes);

» the synchronism, the accesses can be blocking or nonblocking ;

»+ the coordination, the accesses can be collective (that is to say made by all
the processes of the communicator inside of which the file is opened) or
specific only to one or many processes.

= There are many available variants : we will describe some of them.
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TABLE 4 — Summary of possible access types

Position- || Synchro- Coordination
mg nism individual | collective
. MPI_FILE_READ_AT MPI_FILE_READ_AT_ALL
blocking
MPI_FILE_WRITE_AT |MPI_FILE_WRITE_AT_ALL
explicit MPI_FILE_IREAD_AT |MPI_FILE_READ_AT_ALL_BEGIN
offsets . MPI_FILE_READ_AT_ALL_END
nonblocking
MPI_FILE_IWRITE_AT |MPI_FILE_WRITE_AT_ALL_BEGIN
MPI_FILE_WRITE_AT_ALL_END

see next page
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Position-|| Synchro- Coordination
Ing nism individual collective
] MPI_FILE_READ MPI_FILE_READ_ALL
blocking
o MPI_FILE_WRITE MPI_FILE_WRITE_ALL
gﬁmdual MPI_FILE_IREAD MPI_FILE_READ_ALL_BEGIN
: MPI_FILE_READ_ALL_END
pointers nonblocking - - .
MPI_FILE_IWRITE MPI_FILE_WRITE_ALL_BEGIN

MPI_FILE_WRITE_ALL_END
MPI_FILE_READ_SHARED |MPI_FILE_READ_ORDERED

blocking
MPI_FILE_WRITE_SHARED [MPI_FILE_WRITE_ORDERED
E}f:red MPI_FILE_IREAD SHARED MPI_FILE_READ ORDERED BEGIN
: MPI_FILE_READ_ORDERED_END
pointers nonblocking - - - -

MPI_FILE_IWRITE_SHAREDMPI_FILE_WRITE_ORDERED_BEGIN|
MPI_FILE_WRITE_ORDERED_END
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= [t is possible to mix the access types performed at the same file inside an
application.
w The accessed memory areas are described by three quantities :
» the initial address of the concerned area;

»+ the number of elements;
» the datatype, which must match a sequence of contiguous copies of the etype

of the current "view”.
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9.4 — Definition of view:

9.4 — Definition of views

The views are a flexible and powerful mechanism for describing the accessed
areas in the files.

The views are constructed by the help of MPI derived datatypes.

Each process has its own view (or its own views) of a file, defined by three
variables : a displacement, an etype and a filetype. A view is defined as a
repetition of the filetype, once the initial positioning is made.

It is possible to define holes in a view, by not taking into account some data
parts.

Different processes can perfectly have different views of the file, in order to access
complementary parts of it.

A given process can define and use many different views of the same file.

A shared pointer may be used with a view only if all the processes have the same
view.

CEMRACS - MPI
D. Lecas



81/87 9 — MPI- IO 9.4 — Definition of views

ww [f the file is open for writing, the described areas by the etypes and the filetypes
cannot overlap, even partially.

1z The default view consists of a simple sequence of bytes (zero initial displacement,
etype and filetype equal to MPIEBYTE)).

etype D

holes
o I EE T EE T eI
W—/ *
initial displacement accessible data

FIGURE 20 — etype and filetype
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etype I:l

filetype proc.0 .:I:I:I:I:‘
filetype proc.1 E_:I:I:‘
filetype proc.2 D:I:-

fe N 5 5 I o 0
!

initial displacement

FIGURE 21 — Example of definition of different filetypes according to the processes
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initial_ disp

etype

0

|:] MPI_INTEGER

filetype proc. 0 -:l:l
filetype proc. 1 I:l:-

FIGURE 22 — Filetype used in example 2 of MPI_FILE_SET_VIEW()

program read_view02

use mpi
implicit none

integer, parameter

integer

integer (kind-MPIJOFESETIKIND)
integer, dimension(nb_values)

integer, dimension(MPINSTATUSESIZE)

: nb_values=10
: rank,fh,coord,filetype,code
: initial_displacement
: values
: status
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call [ViZ#EEfFY (code)
call [ICUITTNTY (MPTRCOMMEWORED , rank, code)

call [FTFAN (MPTSCOMMINORED " data. dat"  MPISHODESRDONDY , MPTSINFORNULE , &

fh,code)
if (rank == 0) then
coord=1
else

coord=3
end if

call MRS IIIMETTVAEIVIING (1, (/4/),(/2/),(/coord - 1/), &
, MPIRINTEGER, f iletype, code)
call [igigTgMeVITigy(filetype,code)
initial_displacement=0
call [UMFINIERMAIT(fh,initial_displacement , MPEBINTEGER ,filetype, &
"native" , MBINENEOENUEH , code)

call [IFINFIRINTIN](fh,values,nb_values, MBIBINTEGER , status,code)

print *, "Read process",rank," Y,values( :)

call PIZFIRMONE(fh,code)
call [IZWFNTNEPAS (code)

end program read_view02
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Processus 0 [ 1 [2]5[6 ]9 |10|103|104|107|108|

L NTT——

Fichier | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10|101|102|103|104|105|106| 107|108| 109|110|

e

Processus 1 | 3 | 4 | 7| 8 [101]102]105[106]109]110

FIGURE 23 — Example 2 of MPI_FILE_SET_VIEW()

mpiexec -n 2 read_view02

Read process 1 :3, 4, 7, 8, 101, 102, 105, 106, 109, 110
Read process 0 :1, 2, 5, 6, 9, 10, 103, 104, 107, 108
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= The nonblocking I/O are implemented according to the model used for the
nonblocking communications.

= A nonblocking access must later lead to an explicit test of completeness or to a

standby (via [I2WRN0), [FZIMITIEIO), ctc.), in a way similar to the

management of nonblocking messages.

i The advantage is to make an overlap between the computations and the I/0.
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10 — Conclusion

— Conclusion

Use blocking point-to-point communications, this before going to nonblocking
communications. It will be necessary then to try to make
computations/communications overlap.

Use the blocking I/O functions, this before going to nonblocking I/O. Similarly,
it will be necessary then to make 1/O-computations overlap.

Write the communications as if the sendings were synchronous (MPI_SSEND()).
Avoid the synchronization barriers (MPI_BARRIER() ), especially on the blocking
collective functions.

The MPI/OpenMP hybrid programming can bring gains of scalability, in order
for this approach to function well, it is obviously necessary to have good

OpenMP performances inside each MPI process. A course is given at IDRIS
(https://cours.idris.fr/).

—,r' INSTITUT DU DEVELOPPEMENT CEMRACS - MPI
ET DES RESSOURCES
B D. Lecas
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