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Overview
Motivation
A tutorial intro to Multigrid (based on Irad Yavneh‘s tutorial)

„Sergeant Jacobi‘s“ soldier alignment problem
The multigrid algorithm
How fast should our solvers be

How fast are parallel computers today:
The race to Exa-Scale

Scalable Parallel Multigrid
Matrix-Free Multigrid FE solver: Hierarchical Hybrid Grids (HHG)
Other things we do

Flow Simulation with Lattice Boltzmann Methods
Conclusions
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A (too) brief introduction
to Multigrid

following the wonderful tutorial and 
using slides by I. Yavneh 

3



Further Acknowledgements
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• Multigrid Lecture Notes by S. McCormick
• Slides from Multigrid Tutorial by V. Henson
•  „Why Multigrid Methods are so Efficient“ by I. Yavneh
• Multigrid Tutorial by B. Briggs, S. McCormick, V. Henson
• „The Multigrid Guide“ by A. Brandt
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What is „Multigrid“?

A framework of efficient iterative methods for solving 
problems with many variables and many scales.  

• Framework: common concept, different methods.
• Efficient: usually O(N) or O(N log N) operations 
 The importance of efficient methods becomes greater as 

computers grow stronger! 
• Iterative: most nontrivial problems in our field cannot be solved 

directly efficiently.
• Solving: approximately, subject to appropriate convergence 

criteria, constraints, etc.
• Many variables: the larger the number of variables, the greater 

the gain of efficient methods
• Many scales: typical spatial and/or temporal sizes. 



What can multigrid achieve?
• Solve  elliptic PDE in asymptotically optimal complexity
• Poisson‘s eqn in 2D: <30 FLOPs per unknown

– Cheaper than computing

• Solve FE problems (linear, scalar, elliptic PDE) with 
more than 1012 tetrahedral elements
– on a massively parallel supercomputer
– reminder: 1012 ! 2 ! 106

6

ui,j = sin(xi) sin(yj)
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Basic Concepts: Local vs. Global processing.

Imagine a large number of soldiers who need to be 
arranged in a straight line and at equal distances from 
each other. 
The two soldiers at the ends of the line are fixed. Suppose 
we number the soldiers 0 to N , and that the length of the 
entire line is L.
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Initial Position
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Final Position
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Global processing. Let soldier number j stand on the 
line connecting soldier 0 to soldier N at a distance jL/N 
from soldier number 0.
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Global processing. Let soldier number j stand on the line 
connecting soldier 0 to soldier N at a distance jL/N from 
soldier number 0.

This method solves the problem directly, but it requires a 
high degree of sophistication: recognition of the extreme 
soldiers and some pretty fancy arithmetic.
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A step in the right direction
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Slow convergence
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Fast convergence
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Slow convergence
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Local solution: damping
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Local solution: damping
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Local solution: damping
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Local solution: damping
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The multiscale idea: Employ the local processing with 
simple arithmetic. But do this on all the different scales.
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Large scale
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Large scale
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Intermediate scale
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Intermediate scale
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Small scale
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How much work do we save?

Jacobi’s method requires about N2 iterations and N2 *N = 
N3 operations to improve the accuracy by an order of 
magnitude.

The multiscale approach solves the problem in about  
Log2(N) iterations (whistle blows) and only about N 
operations.

Example: for N = 1000 we require about:
10 iterations and 1000 operations 

instead of about 
1,000,000 iterations and 1,000,000,000 operations
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How important is computational efficiency?
Suppose that we have three different algorithms for a 
given problem, with different computational complexities 
for input size N :

Algorithm 1: 106 N operations
Algorithm 2: 103 N2 operations
Algorithm 3: N3 operations

Suppose that the problem size, N, is such that Algorithm 1 
requires one second. 
How long do the others require? 
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Algorithm 3
O(N3)

Algorithm 2
O(N2)

Algorithm 1 
O(N)

N
Computer 

Speed
(ops/sec)

0.000001 sec 0.001 sec 1 sec 1 1M (~106)
(1980’s)

1 sec 1 sec 1 sec 1K 1G (~109)
(1990’s)

12 days 17 min 1 sec 1M 1T (~1012)
(2000’s)

31,710 years 12 days 1 sec 1G 1P (~1015)
(2010’s)

Stronger Computers     

Greater Advantage of Efficient Algorithms!
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The catch: in less trivial problems, we cannot 
construct appropriate equations on the large 
scales without first propagating information from 
the small scales. 
Skill in developing efficient multilevel algorithms 
is required for:
1. Choosing a good local iteration.
2. Choosing appropriate coarse-scale 
 variables. 
3. Choosing inter-scale transfer operators.  
4. Constructing coarse-scale approximations to 
the fine-scale problem.
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Multigrid is not the answer to everything!

+ Sparse, low dimension, large, stiff, elliptic PDE, 
geometric, smooth long-range effects, structured, 
isotropic, smoothly varying coefficients, symmetric 
positive definite.

 ~ Nonlinear, disordered, anisotropic, discontinuous 
coefficients, singular-perturbation and non-elliptic 
PDE, PDE systems, non-symmetric, indefinite, non-
deterministic.  

- Dense, high-dimensional, small, single-scale.
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2D Model Problem

Find u which satisfies:

This is the 2D Poisson equation, with Dirichlet boundary conditions. It is an 
elliptic partial differential equation which appears is many models.

(4)



ui,j =
1
4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1) for i, j = 1...n

Slide 

Grid of wires 

Solution at each node = 
Average of neighboring values

Boundary values given.

This is the standard 5-point 
discretization of the Laplace-  
or Poisson-equation in 2D.  

ui,j ui+1,jui-1,j

ui,j+1

ui,j-1

Example for Use of an Iterative Method 

38
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Matrix representation 
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Matrix free implementation of the Gauss-Seidel Method

  w=1: Gauss-Seidel;   w>1: SOR  

Iterative Methods

<(

40
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Exact Solution (of PDE) 
Boundary values to start the iteration

Graphical Illustration (Visualization)

41



Slide 

Visualization of Convergence

after 2 iterations

after 1 iterations

after 10 iterations

before any iteration
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Slide 

Visualization of Convergence

after 100 iterations after 1000 iterations

overlayed with true 
solution

overlayed with true 
solution
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Slide 

View of iterative solution after 1000. Gauss-Seidel-Iterations
The Gauss-Seidel-method needs for this problem O(N) iterations,  where  N
(=n2) is the number of unknowns (grid points).

Beispiel: Iterations -- Visualisation

44



! = 1.0 ! = 1.5

! = 1.8 ! = 1.95
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Slide SiWiR-II  SS 2012         VL 2-3       Einführung

Gauss-Seidel-Method:
When N iterations are required, each of which needs O(N) operations then 
the total cost is O(N2) operations
N=n2, n number of grid points in one mesh dimensions

SOR-method: only  n=N1/2 iterations necessary, if the relaxation 
parameter  !>1 is chosen optimally.

For the model problem thsi can be shown mathmatically, see e.g. Stoer/
Bulirsch.

Be clear that there are different types of error:
Rounding errors (hier of secondary importance)
Iteration error: stopping the iteration after finitely many steps
Discretisation: even after " many iterationenan error relative to the partial 
differential equation remains (discretization error: griod vs. plate)

Iterative Methods: Discussion of Example

46
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Choose ordering of grid traversals more inteligently. 
However this unfortunately only helps substantially, when 
the problem at hand has a „preferred direction. (Physically 
this corresponds to convection rather than diffusion) 
Search systematically for equations/unknows which are far 
from equlibrium (large residual) and iterate preferably on 
those (search algorithm often too expensive)
Search for better initial guess: 

interpolate boundary values 
Start on coarser grid, compute a approximate solution 
there, and interpolate to finer grid. (Cascade algorithm, 
Nested iteration)

Ideas for improvement (1)

47
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Acceleration possible?:
Store several iterates xi, xi+1, xi+2,... and search for 
better solution by taking (linear) combinations ->  
leads to the method of conjugate gradients with  
preconditioning  or more generally to Krylov-space 
methods such as (GMRES, etc.)
Use coarser grids  to accelerate fine grid iteration 
process: Multigrid methods.
....

Many books, e.g.:  Wolfgang Hackbusch: Iterative 
Lösung großer schwachbesetzter Gleichungssysteme, 
Teubner, Stuttgart, 2. Auflage (1993)

Ideas for accelerating the algorithms

48
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Practical conclusion:
1. A smooth error can be approximated well on a coarser 

grid.
2. A coarser grid implies less variables, hence less 

computation.
3. On the coarser grid the error is no longer as smooth 

relative to the grid, so relaxation may once again be 
efficient.

Key Observation re-worded: Relaxation cannot be 
generally efficient for reducing the error (i.e., the 
difference field            ). But relaxation may be 
extremely efficient for smoothing the error relative to the 
grid.
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The solution, uh, depends only on the equation and the 
data, so it is not, of course, smoothed by relaxation. Only 
the error is smoothed. Hence, we reformulate our 
problem:
Denote

Recall

Subtract  from both sides, and use the linearity of Lh 
to obtain:

It is this equation that we shall approximate on the 
coarse grids.

.~hhh uuv !=

.hhh fuL =

hhuL ~

hhhhhh ruLfvL !"= ~
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As we have seen, we need to smooth the error on the fine 
grid first, and only then solve the coarse-grid problem. 
Hence, we need two types of intergrid transfer operations:

1. A Restriction (fine-to-coarse) operator:
2. A Prolongation (coarse-to-fine) operator:

For restriction we can often use simple injection, but full-
weighted (local averaging) transfers are preferable.
For prolongation, linear interpolation (bi-linear in 2D) is 
simple and usually effective.

.HhI
.hHI
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The HHG Framework Stencil performance Strong scaling & performance modeling Weak scaling

Two-grid cycle (correction scheme)

Department for Computer Science 10 (System Simulation)
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Two-grid Algorithm

! Relax several times on grid h, obtaining   

    with a smooth corresponding error.

! Calculate the residual:

! Solve approximate error-equation on the 

    coarse grid:

! Interpolate and add correction:

! Relax again on grid h.

Multi-grid is obtained by recursion.

.~hhhh uLfr !=

.hH
h

HHH rIfvL !=

.~~ Hh
H

hh vIuu +!
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Multi-grid Cycle 

Let           approximate          ,          approximate the error on grid 2h, etc.
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Remarks:
1. Simple recursion yields a V cycle. More generally, we 

can choose a cycle index    , and define a     –cycle 
recursively as follows: Relax; transfer to next coarser 
grid; perform        cycles; interpolate and correct; Relax. 
(On the coarser grid define the  cycle as an exact 
solution).

2. The best number of pre-relaxation + post-relaxation 
sweeps is normally 2 or 3.

3. The boundary conditions for all coarse-grid problems is 
zero (because the coarse-grid variable is the error). 
The initial guess for the coarse-grid solution must be 
zero.

ã

ã

ã



Solution of Poisson‘s eqn
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Dirichlet boundary conditions
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After 2 steps of Gauss-Seidel smoothing
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after 2 iterations



On the next coarser grid, approximate solution
(after „V-cycle“ recursion)
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  File: c/c.4/u.26  

  enorm = 1.38371516388512e-01                             
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On finest grid, after coarse grid correction
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  File: c/u.29  

  enorm = 9.11869751280490e-02                             
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Multigrid vs. Relaxation

Iterations

E
rr

or
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The cost of the V cycle in terms of computation and storage is 
given by

Where d is the dimension and N is the number of variables on 
the finest grid. Here, c is some constant that depends on the 
discrete operators and the number of relaxation sweeps per 
level.
Thus, for a 2D problem, the V-cycle with one pre-relaxation 
and one post-relaxation requires approximately the same 
number of operations as 3-5 relaxation sweeps. 
The convergence rate of a V-cylce is <1 and bounded away 
from one for  a wide class of elliptic PDE independent of the 
mesh size. In practice, we try (and often succeed) to achieve  
µ ! 0.1.
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The cost of the V cycle in terms of computation and storage is 
given by

Where d is the dimension and N is the number of variables on 
the finest grid. Here, c is some constant that depends on the 
discrete operators and the number of relaxation sweeps per 
level.
Thus, for a 2D problem, the V-cycle with one pre-relaxation 
and one post-relaxation requires approximately the same 
number of operations as 3-5 relaxation sweeps. 
The convergence rate of a V-cylce is <1 and bounded away 
from one for  a wide class of elliptic PDE independent of the 
mesh size. In practice, we try (and often succeed) to achieve  
µ ! 0.1.



65

The Full Multi-Grid (FMG) Algorithm

The multigrid V-cycle is an iterative method, and 
hence it requires an initial guess for the solution. This 
initial approximation is obtained from a coarser grid, 
and so on recursively.

The FMG algorithm combines the grid-refinement 
approach with the V-cycle.

For many problems, FMG with just a single V-cycle 
per level suffices to reduce the error below truncation 
level. In this case, only O(N) operations are required 
overall.
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No relaxation

Coarsest grid

Finest grid

ProlongationRestrictionRelaxation
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High Performance Systems
(on the way to Exa-Flops)

67
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How much is ExaFlops?
106 = 1 MegaFlops: Intel 486

 33MHz PC (~1989)
109 = 1 GigaFlops: Intel Pentium III

 1GHz (~2000)
If every person on earth computes one operation 
every 7 seconds,  all humans  together have ~1 
GigaFlops performance (less than a current laptop)

1012= 1 TeraFlops: HLRB-I
 1344 Proc., ~ 2000

1015= 1 PetaFlops
122 400 Cores (Roadrunner, 2008)
294 912 Cores (Jugene, Jülich, 1.44 1014 

Bytes Memory)
155 000 Cores (SuperMuc, 3 PFlops, 3.33 
1014 Bytes Memory)

If every person on earth runs a 486 PC, we all 
together have an aggregate Performance of 7 
PetaFlops.
ExaScale (~1018 Flops) around 2018?

HLRB-I: 2 TFlops
HLRB-II: 63 TFlops

SuperMuc: 3 PFlops
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Example Peta-Scale System:
Jugene @ Jülich

PetaFlops = 1015 

operations/second
IBM Blue Gene
Theoretical peak 
performance: 1.0027 
Petaflop/s
294 912 cores
144 TBytes  = 1.44 1014 
#9 on TOP 500 List  in 
Nov. 2010

69

For comparison: Current fast desktop PC is ∼ 20.000 times slower
> 1 000 000 cores expected 2011
Exa-Scale System expected by 2018/19 ... likely with ~109 cores

Extreme Scaling Workshop 2010 
at Jülich Supercomputing Center
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What will Computers Look Like in 2020? 
Super Computer (Heroic Computing)

Cost: 200 Million "
Parallel Threads: 108 - 109 

1018  FLOPS, Mem: 1015-1017 Byte (1-100 PByte)
Power Consumption: 20 MW

Departmental Server (Mainstream Computing for R&D)
Cost: 200 000 "
Parallel Threads: 105 - 106 

1015  FLOPS, Mem: 1012-1014 Byte (1-100 TByte) 
Power Consumption: 20 KW

(mobile) Workstation (Computing for the Masses)
... scale down by another factor 100 

70

But remember: Predictions are difficult ... 
especially those about the future 
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What‘s the problem?
with four strong jet engines

or with 300,000 
blow dryer fans? 

71

Would you want to 
propel a Superjumbo 

Large Scale Simulation Software

Moderately Parallel Computing

Massively Parallel
MultiCore Systems
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What are the problems?

72

Unprecedented levels of parallelism
maybe billions of cores/threads needed 

Hybrid architectures
standard CPU
vector units (SSE)
accelerators (GPU) 

Memory wall 
memory response slow: latency
memory transfer limited: bandwith

Power considerations dictate
limits to clock speed => multi core
limits to memory size (byte/flop)
limits to address references per operation
limits to resilience 
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Why Parallel Programming?
All standard processors are multicore processors

“The free lunch is over”
To exploit multicore performance, parallel 
algorithms are essential
CPUs will have 2, 4, 8, 16, ..., 128, ..., ??? cores
Exa-Scale Systems will have many millions of 
cores

Current Exa-Scale development dictated by
power consumption: 10 PicoJoule/Flop:

we cannot afford communication
we cannot afford memory access

fault tolerance
we must learn to live with system failures and 
errors 
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What are the consequences?

For the application developers “the free lunch is 
over”

Without explicitly parallel algorithms, the performance 
potential cannot be used any more 

For HPC
CPUs will have 2, 4, 8, 16, ..., 128, ..., ??? cores - 
maybe sooner than we are ready for this
We will have to deal with systems with millions of cores

The memory wall grows higher
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Towards Scalable FE Software

Scalable Algorithms
and Data Structures
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How Fast

should our simulations be

... and why they aren‘t 

76
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How fast can we make FE multigrid
Parallelize „plain vanilla“ multigrid for 
tetrahedral finite elements

partition domain
parallelize all operations on all grids
use clever data structures
matrix free implementation 

Do not worry (so much) about Coarse 
Grids

idle processors?
short messages?
sequential dependency in grid hierarchy?

Elliptic problems always require global 
communication. This cannot be 
accomplished by

local relaxation or
Krylov space acceleration or
domain decomposition without coarse grid 

Bey‘s Tetrahedral 
Refinement
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Regular tetrahedral refinement
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Grid Partitioning - Communication Pattern
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Hierarchical Hybrid Grids (HHG)
Joint work with
Frank Hülsemann (now EDF, Paris), Ben Bergen (now Los 
Alamos), T. Gradl (Erlangen), B. Gmeiner (Erlangen)

HHG Goal: Ultimate Parallel FE Performance!

unstructured adaptive refinement grids with
regular substructures for 
efficiency
superconvergence effects
matrix-free implementation
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HHG refinement example

Input Grid
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HHG Refinement example

Refinement Level one
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HHG Refinement example

Refinement Level Two
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HHG Refinement example

Structured Interior
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HHG Refinement example

Structured Interior
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HHG Refinement example

Edge Interior
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HHG Refinement example

Edge Interior
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Typical HHG Input mesh

10

The HHG Framework Stencil performance Strong scaling & performance modeling Weak scaling

The HHG input mesh is quite large on many cores...

- Each tetrahedral element (≈ 132k) was assigned to one Jugene
compute core.

Department for Computer Science 10 (System Simulation)
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HHG for Parallelization
Use regular HHG patches for partitioning the domain
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HHG Parallel Update Algorithm
for each vertex do
 apply operation to vertex
end for
    
for each edge do
 copy from vertex interior
 apply operation to edge
 copy to vertex halo
end for

for each element do
 copy from edge/vertex interiors
 apply operation to element
 copy to edge/vertex halos
end for

update vertex primary dependencies

update edge primary dependencies

update secondary dependencies
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HHG Pros and Cons
Pro:

performance
• within node: SIMD, superscalar execution, etc.

better accuracy through local superconvergence effects
well suited for parallelization
tau-extrapolation for higher order
local line/plane smoothers for better efficiency

Con:
only restricted adaptivity possible
only limited ability to handle complex shapes
how to solve the coarse grid problem
high implementation effort
less flexible  
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Performance Engineering
design - model - measure - revise - tune

node performance first! 

92 16

The HHG Framework Stencil performance Strong scaling & performance modeling Weak scaling

Performance in MUnknowns/s per compute core for
different smoother variants on Jugene
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System Performance Model
and Measurement

93

22

Strong scaling & performance modeling

BlueGene/P performance model
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#Cores Coarse Grid  Unkn (x 106) Crse Grd Its Tme to soln
128 1536 535 15 5,64

64256 3072 1070 20 5,66
512 6144 2142 25 5,69

1024 12288 4286 30 5,71
2028 24576 8577 45 5,75
4096 49152 17158 60 5,92
8192 98304 34326 70 5,86

16384 196608 68669 90 5,91
32768 393216 137355 105 6,17
65536 786432 274743 115 6,41

131072 1572864 549554 145 6,42
262144 3145728 1099276 280 6,82
294912 294912 824365 110 3,80

Parallel scalability 
of scalar elliptic 
problem in 3D
discretized by 
tetrahedral finite 
elements.

Times to solution 
on Jugene.

Largest problem 
solved:
1.099 x 1012 DOFS 
(6 trillion 
tetrahedra) on 
262000 processors 
in roughly 100 
secs.

B. Bergen, F. Hülsemann, U. Rüde, G. Wellein: ISC Award 2006, also: „Is 
1.7! 1010 unknowns the largest finite element system that can be solved 
today?“, SuperComputing,  Nov‘ 2005. Runs done on SGI Altix at LRZ.

? ? ?
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Conclusions

95
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Theory versus Practice
Assumptions:

Multigrid requires 27.5 Ops/unknown to solve an elliptic PDE (Griebel ´89 
for Poisson)
A modern laptop CPU delivers >10 GFlops peak 

Consequence:
We should solve one million unknowns in 0.00275 seconds 
~ 3 ns per unknown

96

Revised Assumptions:
Multigrid takes 500 Ops/unknown to solve your favorite PDE 
you can get 5% of 10 Gflops performance 

Consequence: On your laptop you should
solve one million unknowns in 1.0 second
~ 1 microsecond per unknown

Consider Banded Gaussian Elimination on the Play Station (Cell Processor), 
single Prec. 250 GFlops, for 1000 x 1000 grid unknowns 

~2 Tera-Operations for factorization - will need about 10 seconds to factor  
the system 
requires 8 GB Mem.
Forward-backward substitution should run in about  0.01 second, except 
for bandwidth limitations 



Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

  0
4.

 A
pr

il 
20

11

Ulrich Rüde - Lehrstuhl für Simulation

Pessimizing the Performance 

97

Bring loops in wrong order, ignore caches, randomize 
memory access, use many small MPI messages

1012 " 1011  unknowns
Do not use a matrix-free implementation (keep in 
mind that a single multiplication with the mass and 
stiffness can easily cost 50 mem accesses per 
unknown):

1011 " 1010  unknowns
Gain additional flexibility by using unoptimized 
unstructured grids (indirect mem access costs!)

1010 " 109  unknowns
Increase algorithmic overhead, e.g. permanently 
checking convergence, use the most expensive error 
estimator, etc. etc. 

109 " 108  unknowns ( ... still a large system ... )

P
essim

ize #
O

pt
im

iz
e 
#
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Thank you for your attention!

Questions?

Slides, reports, thesis, animations available for download at:
www10.informatik.uni-erlangen.de
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