
Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Post-processing issue
Introduction to HDF5

Matthieu Haefele

High Level Support Team

Max-Planck-Institut für Plasmaphysik, München, Germany

Autrans, 26-30 Septembre 2011,
École d’été Masse de données : structuration, visualisation

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Monday: Serial IO, HDF5 and XDMF

Monday 1 MH : Post-processing and introduction to HDF5

Monday 2 MH : Hands on session on HDF5

Monday 3 MH : Advanced HDF5 and XDMF

Monday 4 MH : Hands on session on HDF5 and XDMF

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Tuesday: Parallel IO, MPI-IO and parallel HDF5

Tuesday 1 PW : Introduction super computer architectures
and MPI

Tuesday 2 PW : Parallel file system

Tuesday 3 MH : Parallel IO methods

Tuesday 4 PW+MH : Hands on session on MPI-IO and
parallel HDF5

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Wednesday: Your day !

Wednesday 1 : Presentation of your problematic

Wednesday 2 MH : Post-processing chain
Wednesday 3-4 MH : Multiple choices

inkscape (small presentation + hands on)
python basic (presentation)
python numpy (small presentation + hands on)
python matplotlib (small presentation + hands on)
application of XDMF/HDF5 to user projects

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Outline for this morning

1 Introduction to post-processing

2 Starting from file systems and operating systems
Hardware → Operating System
Operating System → Application
IO libraries

3 HDF5 library
Concepts and API
Detailed example
Hands on

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Numerical science “process”

Physics
Math

Applied Math
Code Post-processing

Bug ?Scheme ?
New

physics ?
Bug ?

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Part of the process in numerical science

.py

.txt

.gp

.svg .eps
inkscapegnuplotpython

.f90
gfortran, ifort mpiexec

Math

Physics

???
.exe

.xml

.h5

.txt

.xmf

VisIt

.avi

.png

convert

.ps

.pdf

pdflatex

dvips

ps2pdf

latex
.dvi

bibtexlatex
.tex

pdflatex

.bbl

.tex

.aux

.aux

.bib

latex

pdflatex
.aux

python + pylab

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Post-processing definition

Post-processing is a treatment of numerical data that
comes from either experiment measurements or numerical
simulation.

Signal processing (noise reduction, measures
correction. . .)

Diagnostics computing (features extraction)

Visualization

. . .

Anything that can improve the understanding of the data

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Identify technological requirements, constraints and
choices

How much can the data source be modified ?
What are the hardware requirements/constraints/choices:

CPU
Memory
Network
Storage capacity
Storage system bandwidth

What are the software requirements/constraints/choices:
Operating systems
Grid middleware
I/O library
Programing language

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Post-processing general rules

It involves read/write accesses from/to a storage system
These Input/Output (I/O) accesses generally represent a
large part of the post-processing

Execution time: bottleneck is often the storage system
bandwidth
Development/maintenance time: file format design and
implementation

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

Hardware/Software stack

I/O library

Standard library

High level I/O

library

Data structures

Hard drive

File system

Operating system

Application

System

Hardware

From the application level

One file ⇔ one sequence
of bytes

These bytes flow through
the operating system layer

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

Data storage device

A data storage device is a device for recording (storing)
information (data). In the context of computer science:

A set of Bytes

Organized as a 1D sequence

Grouped by sectors (512 B, 1, 2, 4 KB)

The sequence is cut into partitions

Partitions can be cut into logical drives

Logical drive 1 Logical drive 2 Logical drive 3

Partition 1 Partition 2Data storage device

Sector

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

File system

A file system is a method of storing and organizing
computer files and their data.

Meta-data

Sectors are gathered in blocks or sectors (1-64)

The block is the smallest amount of disk space that can be
allocated to hold a file.

Logical drive

Sector

Block

Meta-data

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

File (ext3)

A file is an inode in the file system. The inodes are stored in
the file system meta-data and contain:

File size

Owner and Access rights

Timestamps

Link counts

Pointers to the disk blocks that store the file’s contents

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

inode pointer structure (ext3)

inode
Direct blocks

Indirect blocks

Double Indirect blocks

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

Kernel calls

I/O are performed through 3 functions:
o f f t lseek (i n t f i l d e s , o f f t o f f s e t , i n t whence) ;
s s i z e t read (i n t fd , void ∗buf , s i z e t count) ;
s s i z e t w r i t e (i n t fd , const void ∗buf , s i z e t count) ;

Additional functions to manipulate the file system:

readdir, mkdir, . . . : Manipulating directories

link, symlink, unlink, . . . : Manipulating links

open, dup, close, . . . : Manipulating files

fcntl, flock, stat, . . . : Manipulating files cont.

. . .

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

Standard library

I/O are performed through 5 functions:
i n t fseek (FILE ∗stream , long o f f s e t , i n t whence) ;
s i z e t f read (void ∗pt r , s i z e t s ize , s i z e t nmemb, FILE ∗stream) ;
s i z e t f w r i t e (const void ∗pt r , s i z e t s ize , s i z e t nmemb, \

FILE ∗stream) ;
i n t f scan f (FILE ∗stream , const char ∗ format , . . .) ;
i n t f p r i n t f (FILE ∗stream , const char ∗ format , . . .) ;

Additional functions to manipulate the file system:

opendir, . . . : Manipulating directories

fopen, fdup, fclose, . . . : Manipulating files

. . .

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

Two main representations of floating point numbers

ASCII representation : array of characters

One byte per digit

Minus, plus sign, comma, e signs and carriage return take
also 1 byte each

IEEE 754 representation : m × 2e

m: significand or mantissa

e: exponent

Type Sign Exponent Significand Total bits
Half 1 5 10 16
Single 1 8 23 32
Double 1 11 52 64
Quad 1 15 112 128

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

ASCII I/O

i n t f scan f (FILE ∗stream , const char ∗ format , . . .) ;
i n t f p r i n t f (FILE ∗stream , const char ∗ format , . . .) ;

Read: Disk content is turned into the memory number
representation and dumped in memory
Write: Memory content is turned into an array of characters
and dumped on disk

Non optimal performance
CPU involved in the translation
Several calls are needed to read/write the whole data

Storage overhead: each stored character takes a Byte of
memory

Machine independent

Human readable files

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

Binary I/O

s i z e t f read (void ∗pt r , s i z e t s ize , s i z e t nmemb, FILE ∗stream) ;
s i z e t f w r i t e (const void ∗pt r , s i z e t s ize , s i z e t nmemb, \

FILE ∗stream) ;

Read: Memory content is dumped on disk
Write: Disk content is dumped into memory

Most efficient method (no CPU, 1 single call if contiguous
data)

No storage overhead
Can be machine dependent

Floating point data are now normalized by IEEE
Only endianness portability issues remain

Non human readable files

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

Hardware/Software stack

I/O library

Standard library

High level I/O

library

Data structures

Hard drive

File system

Operating system

Application

System

Hardware

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

C order versus Fortran order

/* C language */

#define NX 4

#define NY 3

int x,y;

int f[NY][NX];

for (y=0;y<NY;y++)

 for (x=0;x<NX;x++)

 f[y][x] = x+y;

! Fortran language

integer, parameter :: NX=4

integer, parameter :: NY=3

integer :: x,y

integer, dimension(NX,NY) :: f

do y=1,NY

 do x=1,NX

 f(x,y) = (x-1) + (y-1)

 enddo

enddo

0 1 2 3 1 2 3 4 2 3 4 5

The memory mapping is identical, the language semantic is
different !!

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

I/O libraries

The purpose of I/O libraries is to provide:

Efficient I/O

Portable binary files

Higher level of abstraction for the developer

Two main existing libraries:

Hierarchical Data Format: HDF5

Network Common Data Form: NetCDF

HDF5 is becoming a standard and parallel NetCDF is built on
top of parallel HDF5

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

High level I/O libraries

The purpose of high level I/O libraries is to provide the
developer a higher level of abstraction to manipulate
computational modeling objects

Meshes of various complexity (rectilinear, curvilinear,
unstructured. . .)

Discretized functions on such meshes

Materials

. . .

Until now, these libraries are mainly used in the context of
visualization

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Hardware → Operating System
Operating System → Application
IO libraries

Existing libraries

Silo
Wide range of objects
Built on top of HDF5
“Native” format for VisIt

Exodus
Focused on unstructured meshes and finite element
representations
Built on top of NetCDF

Famous/intensively used codes’ output format

eXtensible Data Model and Format (XDMF)

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

HDF5 library

An HDF5 file consists of:

HDF5 group: a grouping structure containing instances of
zero or more groups or datasets

HDF5 dataset: a multidimensional array of data elements

An HDF5 dataset is a multidimensional array and consists
of:

Name

Datatype (Atomic, NATIVE, Compound)

Dataspace (rank, sizes, max sizes)

Storage layout (contiguous, compact, chunked)

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

HDF5 library API

H5F: File-level access routines

H5G: Group functions, for creating and operating on
groups of objects

H5S: Dataspace functions, which create and manipulate
the dataspace in which the elements of a data array are
stored

H5D: Dataset functions, which manipulate the data within
datasets and determine how the data is to be stored in the
file

. . .

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

HDF5 High Level APIs

HDF5 Dimension Scale API (H5DS): Enables to attach
dataset dimension to scales

HDF5 Lite API (H5LT): Enables to write simple dataset in
one call

HDF5 Image API (H5IM): Enables to write images in one
call

HDF5 Table API (H5TB): Hides the compound types
needed for writing tables

HDF5 Packet Table API (H5PT): Almost H5TB but without
record insertion/deletion but supports variable length
records

. . .

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

HDF5 conclusion

HDF5 is not a format. It is an I/O library which:

Provides efficient I/O

Creates portable binary files

Gives the developer an interface to manipulate groups and
datasets rather than binary streams

Allows one to define his own format

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

HDF5 first example

#define NX 5
#define NY 6
#define RANK 2

i n t main (void)
{

h i d t f i l e , dataset , dataspace ;
h s i z e t d imsf [2] ;
h e r r t s ta tus ;
i n t data [NX] [NY] ;

i n i t (data) ;
f i l e = H5Fcreate (” example . h5 ” , H5F ACC TRUNC, H5P DEFAULT,\

H5P DEFAULT) ;
d imsf [0] = NX;
dimsf [1] = NY;

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

HDF5 first example cont.

dataspace = H5Screate simple (RANK, dimsf , NULL) ;

da tase t = H5Dcreate (f i l e , ” I n t A r r a y ” , H5T NATIVE INT , \
dataspace , H5P DEFAULT) ;

s ta tus = H5Dwrite (dataset , H5T NATIVE INT , H5S ALL , \
H5S ALL ,H5P DEFAULT, data) ;

H5Sclose (dataspace) ;
H5Dclose (da tase t) ;
H5Fclose (f i l e) ;

return 0;
}

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

HDF5 high level example cont.

s ta tus = H5LTmake dataset int (f i l e , ” I n t A r r a y ” , RANK, dimsf , data) ;

H5Fclose (f i l e) ;

return 0;
}

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

Variable C type

h i d t f i l e , dataset , dataspace ;
h s i z e t d imsf [2] ;
h e r r t s ta tus ;

hid t: handler for any HDF5 objects (file, groups, dataset,
dataspace, datatypes. . .)

hsize t: C type used for number of elements of a dataset
(in each dimension)

herr t: C type used for getting error status of HDF5
functions

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

File creation

f i l e = H5Fcreate (” example . h5 ” , H5F ACC TRUNC, H5P DEFAULT,\
H5P DEFAULT) ;

”example.h5”: file name

H5F ACC TRUNC: File creation and suppress it if it exists
already

H5P DEFAULT: file creation property list

H5P DEFAULT: file access property list (needed for
MPI-IO)

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

Dataspace creation

dimsf [0] = NX;
dimsf [1] = NY;
dataspace = H5Screate simple (RANK, dimsf , NULL) ;

RANK: dataset dimensionality

dimsf: size of the dataspace in each dimension

NULL: specify max size of the dataset being fixed to the
size

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

Dataset creation

datase t = H5Dcreate (f i l e , ” I n t A r r a y ” , H5T NATIVE INT , \
dataspace , H5P DEFAULT) ;

file: HDF5 objects where to create the dataset. Should be
a file or a group.

”IntArray”: dataset name

H5T NATIVE INT: type of the data the dataset will contain

dataspace: size of the dataset

H5P DEFAULT: default option for property list.

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

Datatype

Pre-Defined Datatypes: created by HDF5.

Derived Datatypes: created or derived from the
pre-defined datatypes.

There are two types of pre-defined datatypes:

STANDARD : They defined standard ways of representing
data. Ex: H5T IEEE F32BE means IEEE representation of
32 bit floating point number in big endian.

NATIVE: Alias to standard datatypes according to the
platform where the program is compiled. Ex: on an Intel
based PC, H5T NATIVE INT is aliased to the standard
pre-defined type, H5T STD 32LE.

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

Datatype cont.

A datatype can be:

ATOMIC: cannot be decomposed into smaller datatype
units at the API level. Ex: integer

COMPOSITE: An aggregation of one or more datatypes.
Ex: compound datatype, array, enumeration

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

Dataset writing

s ta tus = H5Dwrite (dataset , H5T NATIVE INT , H5S ALL , \
H5S ALL ,H5P DEFAULT, data) ;

dataset: HDF5 objects representing the dataset to write

H5T NATIVE INT: Type of the data in memory

H5S ALL: dataspace specifying the portion of memory that
needs be read (in order to be written)

H5S ALL: dataspace specifying the portion of the file
dataset that needs to be written

H5P DEFAULT: default option for property list (needed for
MPI-IO).

data: buffer containing the data to write

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

Closing HDF5 objects

H5Sclose (dataspace) ;
H5Dclose (da tase t) ;
H5Fclose (f i l e) ;

Opened/created HDF5 objects are closed.

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

HDF5 example

#define NX 5
#define NY 6
#define RANK 2

i n t main (void)
{

h i d t f i l e , dataset , dataspace ;
h s i z e t d imsf [2] ;
h e r r t s ta tus ;
i n t data [NX] [NY] ;

i n i t (data) ;
f i l e = H5Fcreate (” example . h5 ” , H5F ACC TRUNC, H5P DEFAULT,\

H5P DEFAULT) ;
d imsf [0] = NX;
dimsf [1] = NY;

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

HDF5 example cont.

dataspace = H5Screate simple (RANK, dimsf , NULL) ;

da tase t = H5Dcreate (f i l e , ” I n t A r r a y ” , H5T NATIVE INT , \
dataspace , H5P DEFAULT) ;

s ta tus = H5Dwrite (dataset , H5T NATIVE INT , H5S ALL , \
H5S ALL ,H5P DEFAULT, data) ;

H5Sclose (dataspace) ;
H5Dclose (da tase t) ;
H5Fclose (f i l e) ;

return 0;
}

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

Some comments

s ta tus = H5LTmake dataset int (f i l e , ” I n t A r r a y ” , RANK, dimsf , data) ;

H5Fclose (f i l e) ;

return 0;
}

This example is almost a fwrite , but:

The generated file is portable

The generated file can be accessed with HDF5 tools

Attributes can be added on datasets or groups

The type of the data can be fixed

The storage layout can be modified

Portion of the dataset can be written

. . .
Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

Introduction to post-processing
Starting from file systems and operating systems

HDF5 library

Concepts and API
Detailed example
Hands on

Hands on

1 Correct the program
2 Correct the Makefile to compile the program
3 Execute the program and examine the result with HDF5

tools
4 Modify the program to add an attribute to the main dataset

(use the high level Lite library)
5 Modify the program to create the dataset within a group

instead at the root
6 Modify the program to write the data in chunks
7 Modify the program to compress the dataset

Matthieu Haefele (HLST IPP) Post-processing issue, introduction to HDF5

	Introduction to post-processing
	Starting from file systems and operating systems
	Hardware Operating System
	Operating System Application
	IO libraries

	HDF5 library
	Concepts and API
	Detailed example
	Hands on

