
Dr. Jean M. Favre

Scientific Computing Research Group

30-09-2011

Parallel Visualization

The Visualization Pipeline

ParaView and VisIt

Les outils installes au CSCS

ParaView

VisIt

VMD, Molekel

Matematica

Matlab

Tecplot360

HDF5, NetCDF, ADIOS, Silo

Agenda

 Motivation by examples

 System architecture

 VTK Data Streaming

 ParaView and VisIt architectures

Resources:

 http://paraview.org/Wiki/ParaView/Users_Guide/
Introduction

 http://visitusers.org/index.php?title=Main_Page

http://paraview.org/Wiki/ParaView/Users_Guide/Introduction
http://paraview.org/Wiki/ParaView/Users_Guide/Introduction
http://paraview.org/Wiki/ParaView/Users_Guide/Introduction
http://visitusers.org/index.php?title=Main_Page

VTK (now version 5.8) is the de-facto standard

The Visualization ToolKit (VTK) is an open source,

freely available software system for 3D computer

graphics, image processing, and visualization.

ParaView & Visit are end-user applications based on

VTK, with support for:

 Parallel Data I/O

 Parallel Processing

 Parallel Rendering

 Single node, client-server, MPI cluster rendering

 OpenGL
Mesa

VTK Python

HDF5/Net
CDF/Silo/
Exodus

The VTK visualization pipeline, lesson 1

VTK’s main execution

paradigm is the data-flow,

i.e. the concept of a

downstream flow of data

Data Sources

Data Filters

Data Mappers

Rendering

Filter.SetInputConnection(Source.GetOutputPort())

Mapper.SetInputConnection(Filter.GetOutputPort())

Contour

Cut

Clip

Threshold

Extract grid

Warp vector

Stream lines

Integrate flow

Surface vectors

Glyph

etc…

ParaView’s Filters VisIt’s Operators

Elevate

IsoVolume

ThreeSlice

Coord Swap

Onion Peel

Reflect

InverseGhostCells

Create Bonds

Dual Mesh

etc…

 VTK extends the paradigm of data-flow

 VTK acts as an event-flow environment,
where data flow downstream and events
(or information) flow upstream

The Rendering drives the execution.
Similar to a load-on-demand.

view.StillRender() will trigger the execution.

Data Sources

Data Filters

Data Mappers

Rendering

The VTK visualization pipeline, lesson 2

 Large data (when dividable) can be

treated by pieces. The Source will

distribute data pieces to multiple

execution engines

 The Visualization Tool will instantiate

parallel pipelines to treat all pieces

and create the graphics output.

Data Source

1 2 N … …

Data Filters

Data Mappers

Rendering

The VTK visualization pipeline, lesson 3

First rendering option

1) The client collects all objects
to be rendered

 Each pipeline creates rendering
primitives from its partial data,

 The client does a heavy rendering

1 2 N … …

Data Filters

Mappers

Data Source

Rendering

Second rendering option

2) Sort-last rendering

Each pipeline does a full-frame rendering
of its partial data

Final Image

An image compositor merges all images

by comparing Z-depth of all pixels

1 2 N … …

Data Filters

Mappers

Data Source

Rendering

25/11/2008

Node 0 sends its frame

buffer to the client

Node 0 collects

[composites] all

frames buffers

Sort-last rendering [pixel compositing]

Arbitrary (or adaptive) 3-D data partitioning

Sort-last rendering is great, fast, order-independent,…

Except if the drawings are semi-transparent

3) Tiled-Display

Each renderer does a partial-frame
rendering of the full data

1 2 N … …

Data Filters

Mappers

Final
Image

Data Source

Third rendering option

When very large data require distributed processing

 Sub-sampling can help prototype a visualization
– As long as the data format/reader supports it.
– use the Xdmf format, or VisIt multires operator

 Piece-wise processing (on a single node)
– Data streaming (when the whole visualization will

not fit in memory)
– See ParaView 3.12

 Distributed processing (on multiple nodes)
– Parallel file I/O
– Parallel processing
– Parallel rendering

13/5/2009

Hierachical data encoding are a plus!

 AMR datasets, or wavelet-encoded data

When there is too much data…

Several strategies are available to mitigate this, e.g.

• multi-resolution, on-demand

 The snow removal was done in about 5
passes

Data Streaming = Divide and conquer

 Load datasets of any size by splitting the
volumes in pieces

 Process the split data

Sub-sampling, streaming or multi-pass…

The VTK file header =>

vtk DataFile Version 3.0

European DEM File

BINARY

DATASET STRUCTURED_POINTS

DIMENSIONS 8319 7638 1

ORIGIN 0 0 0

SPACING 1 1 1

POINT_DATA 63540522

Example: Digital Elevation Model

Warning: 64 millions points are first

read in memory, then sub-

sampled

The memory footprint can still be

huge

http://paraview.org/Wiki/ParaView/

UsersGuide/Recommendations

Data Sources

ExtractSubset

PolyDataMapper

Rendering

WarpScalar

Use sub-sampling when data are too big

http://paraview.org/Wiki/ParaView/UsersGuide/Recommendations
http://paraview.org/Wiki/ParaView/UsersGuide/Recommendations

Memory usage blows-up down the pipeline...

 Data larger than memory can be easily treated

– Piece by piece

– Releasing or re-using memory after each subset

– Optionally accumulating sub-object representations for the

final image

 The upstream filters should be prepared to handle

piece requests of any size

 Each filter can translate the piece request

Data Streaming in VTK

Update the VTK pipeline in several steps

Data Sources

Data Filters

Data Mappers

Rendering

 The VTK pipeline enables a two-way

exchange of data/information.

 The renderer drives the request for

data updates.

 First pass. Advertise Meta Data: Get

general bounds information, without

reading the data

 Second pass: Decide how to sub-

divide and process pieces

VisIt extends this notion even more (1)

Spatial Extents can be assigned

If the block partitioner receives spatial hints,
VisIt will not load the data in memory

VisIt extends this notion even more (2)

1 2 N … …

Surface Extraction &
data filtering

Rendering

Selection of partitions
and assignments to
processors

Data extents (min & max) are
examined and the visualization
pipeline is by-passed for those
outside the range

Data Extents can be given

Example: ADIOS lib

VisIt will not load the data block
in memory

The Extent Translator

The Extent Translator

does a binary

subdivision of the

data and let the user

access pieces one at

a time

vtkPolyDataMapper mapper

 mapper SetNumberOfPieces 64

 mapper SetPiece 27

Data Sources

ExtractSubset

PolyDataMapper

Rendering

Streaming the data

Data Sources

Data Filters

Data Mappers

Rendering

Rendering speed is linearly increasing according to the

number of pieces

7.04 2

14.00 1

3.55 4

1.78 8

0.88 16

0.44 32

0.21 64

0.13 128

Rendering

Speed

(sec./frame)

of Pieces

Streaming enables interactive exploration

The User does not have to explicitly

manage the pipeline

 Data Parallelism

– data are divided automatically based on

the number of servers available

 Transient Data

– time-dependent data requests are also

managed similarly via the two-way

pipeline data exchange

Data Source

1 2 N … …

Data Filters

Data Mappers

Rendering

Pipeline management is hard

ParaView & VisIt offer the state-of-the-art

Which one should you choose?

vi or emacs

CUDA or OpenCL

ParaView or VisIt

Can you read your data?

ParaView

 Exodus reader

 Line Integral

Convolution

 Interaction Widgets

are much nicer to use

VisIt

 Silo, NEK5000 reader

 Queries, expressions,

data-level

comparisons are much

easier to operate

 Python interface is

easier

My personal approach is to write data I/O interfaces which
create VTK objects + 2 wrappers for ParaView and VisIt

Python

With ParaView:

di = Data.GetDataInformation()

ddi = di.DataInformation

ddi.GetBounds()

ddi.GetNumberOfPoints()

With VisIt:

Query(“SpatialExtents”)

Query(“NumNodes”)

Modi operandi

Simple Locally, or with
remote server

Python-only
Pour les tres, tres
Grands Calculs

 Prototyper,
avec la GUI,
ou Python

 N’utiliser pas
ssh –X, mais
plustot les
compressions
et image
transfer de
Ice-T

 Attention aux
I/O

Modi operandi

ParaView has 6 executables

 paraview

 pvbatch

 pvpython

 pvserver

 pvdataserver

 pvrenderserver

VisIt has 5 executables

 mdserver

 cli

 engine_ser

 engine_par

 viewer

