An introduction to Schwarz methods

Victorita Dolean

Université de Nice and University of Geneva

École thematique CNRS Décomposition de domaine November 15-16, 2011

Outline

- 1 Introduction
- Schwarz algorithms as solvers
- Schwarz algorithms as preconditioners
- Classical coarse grid method
- Coarse grid for heterogeneous problems
- 6 An abstract 2-level Schwarz the GenEO algorithm

Motivation: pro and cons of direct solvers

Complexity of the Gauss factorization

Gauss	<i>d</i> = 1	d = 2	<i>d</i> = 3
dense matrix	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$
using band structure	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^{7/3})$
using sparsity	$\mathcal{O}(n)$	$\mathcal{O}(n^{3/2})$	$\mathcal{O}(n^2)$

Different sparse direct solvers

- PARDISO (http://www.pardiso-project.org)
- SUPERLU (http://crd.lbl.gov/~xiaoye/SuperLU)
- SPOOLES (www.netlib.org/linalg/spooles/spooles.2.2.html)
- MUMPS (http://graal.ens-lyon.fr/MUMPS/)
- UMFPACK (http: //www.cise.ufl.edu/research/sparse/umfpack)

Why iterative solvers?

Limitations of direct solvers

In practice all direct solvers work well until a certain barrier:

- two-dimensional problems (100K unknowns)
- three-dimensional problems (10K unknowns).

Beyond, the factorization cannot be stored in memory any more.

To summarize:

- below a certain size, direct solvers are chosen.
- beyond the critical size, iterative solvers are needed.

Why domain decomposition?

Natural iterative/direct trade-off

- Parallel processing is the only way to have faster codes, new generation processors are parallel: dual, quadri core.
- Large scale computations need for an "artificial" decomposition
- Memory requirements, direct solvers are too costly
- Iterative solvers are not robust enough.

New iterative/direct solvers are welcome: these are domain decomposition methods

In some situations, the decomposition is natural

- Moving domains (rotor and stator in an electric motor)
- Strongly heterogeneous media
- Different physics in different subdomains

Linear Algebra from the End User point of view

Direct	DDM	Iterative
Cons: Memory	Pro: Flexible	Pros: Memory
Difficult to	Naurally	Easy to
Pros: Robustness		Cons: Robustness
solve(MAT,RHS,SOL)	Few black box routines	solve(MAT,RHS,SOL)
	Few implementations	
	of efficient DDM	

Multigrid methods: very efficient but may lack robustness, not always applicable (Helmholtz type problems, complex systems) and difficult to parallelize.

Outline

- 1 Introduction
- Schwarz algorithms as solvers
 - Three continuous Schwarz algorithms
 - Connection with the Block-Jacobi algorithm
 - Discrete setting
 - Iterative Schwarz methods
 - Convergence analysis
 - Schwarz methods using Freefem++
 - Schwarz algorithms as solvers
- 3 Schwarz algorithms as preconditioners
- 4 Classical coarse grid method
- Coarse grid for heterogeneous problems

The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

$$-\Delta(u) = f \quad \text{in } \Omega$$
 $u = 0 \quad \text{on } \partial\Omega.$

Schwarz Method : $(u_1^n, u_2^n) \rightarrow (u_1^{n+1}, u_2^{n+1})$ with

$$\begin{split} -\Delta(u_1^{n+1}) &= f \quad \text{in } \Omega_1 \\ u_1^{n+1} &= 0 \text{ on } \partial\Omega_1 \cap \partial\Omega \\ u_1^{n+1} &= u_2^n \quad \text{on } \partial\Omega_1 \cap \overline{\Omega_2}. \end{split} \qquad \begin{aligned} -\Delta(u_2^{n+1}) &= f \quad \text{in } \Omega_2 \\ u_2^{n+1} &= 0 \text{ on } \partial\Omega_2 \cap \partial\Omega \\ u_2^{n+1} &= u_1^{n+1} \quad \text{on } \partial\Omega_2 \cap \overline{\Omega_1}. \end{aligned}$$

Parallel algorithm, converges but very slowly, overlapping subdomains only.

The parallel version is called **Jacobi Schwarz method (JSM)**.

Continuous ASM and RAS - I

The algorithm acts on the local functions $(u_i)_{i=1,2}$. To make things global, we need:

- extension operators, E_i , s.t. for a function $w_i : \Omega_i \mapsto \mathbb{R}$, $E_i(w_i) : \Omega \mapsto \mathbb{R}$ is the extension of w_i by zero outside Ω_i .
- partition of unity functions $\chi_i : \Omega_i \mapsto \mathbb{R}$, $\chi_i \ge 0$ and $\chi_i(x) = 0$ for $x \in \partial \Omega_i$ and s.t.

$$w = \sum_{i=1}^2 E_i(\chi_i w_{|\Omega_i}).$$

Let u^n be an approximation to the solution to the global Poisson problem and u^{n+1} is computed by solving first local subproblems and then gluing them together.

Continuous ASM and RAS - II

Local problems to solve

$$-\Delta(u_i^{n+1}) = f \quad \text{in} \quad \Omega_i$$

$$u_i^{n+1} = 0 \quad \text{on} \quad \partial\Omega_i \cap \partial\Omega$$

$$u_i^{n+1} = u^n \quad \text{on} \quad \partial\Omega_i \cap \overline{\Omega}_{3-i}.$$

Two ways to "glue" solutions

Using the partition of unity functions
 Restricted Additive Schwarz (RAS)

$$u^{n+1} := \sum_{i=1}^{2} E_i(\chi_i u_i^{n+1}).$$

 Not based on the partition of unity Additive Schwarz (ASM)

$$u^{n+1} := \sum_{i=1}^{2} E_i(u_i^{n+1}).$$

Block Jacobi methods - I

Let us consider a linear system:

$$AU = F$$

with a matrix A of size $m \times m$, a right handside $F \in \mathbb{R}^m$ and a solution $U \in \mathbb{R}^m$ where m is an integer. Let D be the diagonal of A, the Jacobi algorithm reads:

$$DU^{n+1} = DU^n + (b - AU^n),$$

or equivalently,

$$U^{n+1} = U^n + D^{-1}(b - AU^n) = U^n + D^{-1}r^n$$

where r^n is the residual of the equation.

Block Jacobi methods - II

We now define a block Jacobi algorithm. The set of indices $\{1, \ldots, m\}$ is partitioned into two sets

$$\mathcal{N}_1 := \{1, \dots, m_s\} \text{ and } \mathcal{N}_2 := \{m_s + 1, \dots, m\}.$$

Let $U_1:=U_{|\mathcal{N}_1},\ U_2:=U_{|\mathcal{N}_2}$ and similarly $F_1:=F_{|\mathcal{N}_1},\ F_2:=F_{|\mathcal{N}_2}.$ The linear system has the following block form:

$$\left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right) \left(\begin{array}{c} U_1 \\ U_2 \end{array}\right) = \left(\begin{array}{c} F_1 \\ F_2 \end{array}\right)$$

where $A_{ij} := A_{|\mathcal{N}_i \times \mathcal{N}_i}$, $1 \le i, j \le 2$.

Block Jacobi methods - III

The block-Jacobi algorithm reads:

$$\begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} U_1^{n+1} \\ U_2^{n+1} \end{pmatrix} = \begin{pmatrix} F_1 - A_{12} U_2^n \\ F_2 - A_{21} U_1^n \end{pmatrix}. \tag{1}$$

Let $U^n = (U_1^n, U_2^n)^T$, algorithm (1) becomes

$$\begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} U^{n+1} = F - \begin{pmatrix} 0 & A_{12} \\ A_{21} & 0 \end{pmatrix} U^{n}.$$
 (2)

On the other hand, it can be rewritten equivalently

$$\begin{pmatrix} U_1^{n+1} \\ U_2^{n+1} \end{pmatrix} = \begin{pmatrix} U_1^n \\ U_2^n \end{pmatrix} + \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}^{-1} \begin{pmatrix} r_1^n \\ r_2^n \end{pmatrix}$$
(3)

where

$$r^n := F - AU^n, r_i^n := r_{|\mathcal{N}_i}^n, \ i = 1, 2.$$

Block-Jacobi compact form

In order to have a more compact form, let us introduce

- R_1 the restriction operator from \mathcal{N} into \mathcal{N}_1
- R_2 the restriction operator from \mathcal{N} into \mathcal{N}_2 .

The transpose operator R_1^T is an extension operator from \mathcal{N}_1 into \mathcal{N} and the same holds for R_2^T . Notice that $A_{ii} = R_i A R_i^T$.

Block-Jacobi in compact form

$$U^{n+1} = U^n + (R_1^T (R_1 A R_1^T)^{-1} R_1 + R_2^T (R_2 A R_2^T)^{-1} R_2) r^n.$$
 (4)

where

$$r^n := F - AU^n, r_i^n := r_{|\mathcal{N}_i}^n, \ i = 1, 2.$$

Schwarz algorithms as block Jacobi methods - I

Let $\Omega := (0,1)$ and consider the following BVP

$$-\Delta u = f \text{ in } \Omega$$

$$u(0) = u(1) = 0.$$

discretized by a three point finite difference scheme on the grid $x_j := j h$, $1 \le j \le m$ where h := 1/(m+1). Let $u_i \simeq u(x_i)$, $f_i := f(x_i)$, $1 \le j \le m$ and the discrete problem

$$AU = F, U = (u_j)_{1 \le j \le m}, F = (f_j)_{1 \le j \le m}.$$

where $A_{jj} := 2/h^2$ and $A_{jj+1} = A_{j+1j} := -1/h^2$. Let domains $\Omega_1 := (0, (m_s + 1) h)$ and $\Omega_2 := (m_s h, 1)$ define an overlapping decomposition with a minimal overlap of width h. The discretization of the **JSM** for domain Ω_1 reads

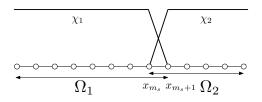
$$\left\{ \begin{array}{l} -\frac{u_{1,j-1}^{n+1}-2u_{1,j}^{n+1}+u_{1,j+1}^{n+1}}{h^2}=f_j,\ 1\leq j\leq m_s\\ u_{1,0}^{n+1}=0\\ u_{1,m_s+1}^{n+1}=u_{2,m_s+1}^n \end{array} \right..$$

Solving for $U_1^{n+1} = (u_{1,j}^{n+1})_{1 \le j \le m_s}$ corresponds to solving a Dirichlet boundary value problem in subdomain Ω_1 with Dirichlet data taken from the other subdomain at the previous step. Then, U_1^{n+1} and U_1^{n+1} satisfy

$$\begin{split} A_{11} U_1^{n+1} + A_{12} U_2^n &= F_1, \\ A_{22} U_2^{n+1} + A_{21} U_1^n &= F_2 \,. \end{split}$$

Schwarz as block Jacobi methods - III

The discrete counterpart of the extension operator E_1 (resp. E_2) is defined by $E_1(U_1) = (U_1, 0)^T$ (resp. $E_2(U_2) = (0, U_2)^T$).



then
$$E_1(U_1) + E_2(U_2) = E_1(\chi_1 U_1) + E_2(\chi_2 U_2) = \begin{pmatrix} U_1 \\ U_2 \end{pmatrix}$$
.

When the overlap is minimal, the discrete counterparts of the three Schwarz methods are equivalent to the same block Jacobi algorithm.

Continuous level

- Ω and an overlapping decomposition $\Omega = \bigcup_{i=1}^{N} \Omega_i$.
- A function $u: \Omega \to \mathbb{R}$.
- Restriction of $u : \Omega \to \mathbb{R}$ to Ω_i , $1 \le i \le N$.
- The extension E_i of a function $\Omega_i \to \mathbb{R}$ to a function $\Omega \to \mathbb{R}$.
- Partition of unity functions χ_i , $1 \le i \le N$.

Discrete level

- A set of d.o.f. \mathcal{N} and a decomposition $\mathcal{N} = \bigcup_{i=1}^{N} \mathcal{N}_{i}$.
- A vector $U \in \mathbb{R}^{\#\mathcal{N}}$.
- The restriction R_i U where $U \in \mathbb{R}^{\#\mathcal{N}}$ and R_i is a rectangular $\#\mathcal{N}_i \times \#\mathcal{N}$ boolean matrix.
- Extension R_i^T .
- Diagonal matrices with positive entries, of size $\#\mathcal{N}_i \times \#\mathcal{N}_i$ s. t. $Id = \sum_{i=1}^{N} R_i^T D_i R_i$.

Restrictions operators

Let \mathcal{T}_h be a mesh of a domain Ω and u_h some discretization of a function u which is the solution of an elliptic Dirichlet BVP. This yields a linear algebra problem

Find
$$U \in \mathbb{R}^{\#\mathcal{N}}$$
s.t. $AU = F$.

Define the restriction operator $r_i = E_i^T$:

$$r_i: u_h \mapsto u_{h|\Omega_i}$$

Let R_i be the boolean matrix corresponding to the restriction operator r_i :

$$R_i := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \dots \end{bmatrix}$$

$$R_i: \mathbb{R}^{\#\mathcal{N}} \longmapsto \mathbb{R}^{\#\mathcal{N}_i}$$

Partition of unity

We have

$$R_i: \mathbb{R}^{\#\mathcal{N}} \longmapsto \mathbb{R}^{\#\mathcal{N}_i}$$

and the transpose is a prolongation operator

$$R_i^T: \mathbb{R}^{\#\mathcal{N}_i} \longmapsto \mathbb{R}^{\#\mathcal{N}}$$
.

The local Dirichlet matrices are given by

$$A_i := R_i A R_i^T$$
.

We also need a kind of partition of unity defined by matrices D_i

$$D_i: \mathbb{R}^{\#\mathcal{N}_i} \longmapsto \mathbb{R}^{\#\mathcal{N}_i}$$

so that we have:

$$\sum_{i=1}^{N} R_i^T D_i R_i = Id$$

Two subdomain case: 1d algebraic setting

Let
$$\mathcal{N} := \{1, \dots, 5\}$$
 be partitioned into $\mathcal{N}_1 := \{1, 2, 3\}$ and $\mathcal{N}_2 := \{4, 5\}$.

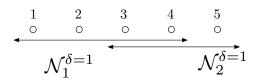
Then, matrices R_1 , R_2 , D_1 and D_2 are:

$$R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \ \text{ and } R_2 = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \ .$$

$$D_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $D_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Consider now the case overlapping case

$$\mathcal{N}_1^{\delta=1} := \{1,2,3,4\} \text{ and } \mathcal{N}_2^{\delta=1} := \{3,4,5\} \,.$$



Then, matrices R_1 , R_2 , D_1 , D_2 are:

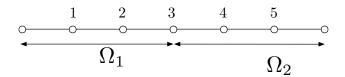
$$R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \text{ and } R_2 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$D_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{pmatrix} \text{ and } D_2 = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Two subdomain case: 1d finite element decomposition

Partition of the 1D mesh corresponds to an ovr. decomp. of \mathcal{N} :

$$\mathcal{N}_1 := \{1, 2, 3\} \text{ and } \mathcal{N}_2 := \{3, 4, 5\}.$$



Then, matrices R_1 , R_2 , D_1 , D_2 are:

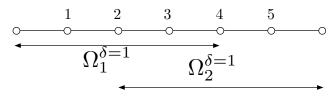
$$R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \text{ and } R_2 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$D_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/2 \end{pmatrix} \text{ and } D_2 = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

V. Dolean

Consider now the situation of an overlapping partition.

$$\mathcal{N}_1^{\delta=1} := \{1,2,3,4\} \text{ and } \mathcal{N}_2^{\delta=1} := \{2,3,4,5\} \,.$$



Then, matrices R_1 , R_2 , D_1 , D_2 are:

$$R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \text{ and } R_2 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \,.$$

$$D_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{pmatrix} \text{ and } D_2 = \begin{pmatrix} 1/2 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Multi-D and many subdomains: General procedure

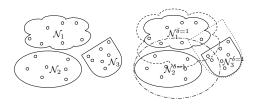
The set of indices $\mathcal N$ can be partitioned by an automatic graph partitioner such as **METIS** or **SCOTCH**.

- From the input matrix A, a connectivity graph is created.
- Two indices $i, j \in \mathcal{N}$ are connected if the matrix coefficient $A_{ii} \neq 0$.
- Even if matrix A is not symmetric, the connectivity graph is symmetrized.
- Algorithms that find a good partitioning of highly unstructured graphs are used.
- This distribution must be done so that the number of elements assigned to each processor is roughly the same (balance the computations among the processors).
- The number of adjacent elements assigned to different processors is minimized (minimize the communication between different processors).

Multi-D algebraic setting

Let us consider a partition into *N* subsets

$$\mathcal{N} := \cup_{i=1}^{N} \mathcal{N}_{i}, \quad \mathcal{N}_{i} \cap \mathcal{N}_{j} = \emptyset \text{ for } i \neq j.$$



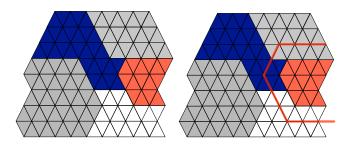
Extend each subset \mathcal{N}_i with its direct neighbors to form $\mathcal{N}_i^{\delta=1}$. Let R_i be the restriction matrix from set \mathcal{N} to the subset $\mathcal{N}_i^{\delta=1}$ and D_i be a diagonal matrix of size $\#\mathcal{N}_i^{\delta=1} \times \#\mathcal{N}_i^{\delta=1}$, $1 \leq i \leq N$ such that for

$$\mathcal{M}_j := \{1 \leq i \leq N | j \in \mathcal{N}_i^{\delta=1}\}.$$

and $j \in \mathcal{N}_i^{\delta=1}$, we define $(D_i)_{jj} := 1/\# \mathcal{M}_j$.

Multi-D algebraic finite element decomposition

In a FE setting, the computational domain is the union of elements of the finite element mesh \mathcal{T}_h .



It is possible to create overlapping subdomains resolved by the finite element meshes:

$$\Omega_i = \bigcup_{\tau \in \mathcal{T}_{i,h}} \tau \text{ for } 1 \le i \le N.$$
(5)

Let $\{\phi_k\}_{k\in\mathcal{N}}$ be a basis of the finite element space. For $1\leq i\leq N$, we define

$$\mathcal{N}_i := \{ k \in \mathcal{N} : \mathsf{supp}(\phi_k) \cap \Omega_i \neq \emptyset \}.$$

For all degree of freedom $k \in \mathcal{N}$, let

$$\mu_k := \# \{ j : 1 \le j \le N \text{ and } \operatorname{supp}(\phi_k) \cap \Omega_j \ne \emptyset \}.$$

Let R_i be the restriction matrix from set \mathcal{N} to the subset \mathcal{N}_i and D_i be a diagonal matrix of size $\#\mathcal{N}_i \times \#\mathcal{N}_i$, $1 \le i \le N$. Then, for $k \in \mathcal{N}_i$, we define $(D_i)_{kk} := 1/\mu_k$.

Algebraic formulation - JSM

Define local unknowns $U_i := R_i U$ for i = 1, ..., N and local right handside $F_i := R_i F$.

$$R_{i} A U = R_{i} A R_{i}^{T} (R_{i} U) + R_{i} A (Id - R_{i}^{T} R_{i}) U = F_{i}$$

$$= R_{i} A R_{i}^{T} U_{i} + R_{i} A (Id - R_{i}^{T} R_{i}) \sum_{j=1}^{N} R_{j}^{T} D_{j} R_{j} U$$

$$= R_{i} A R_{i}^{T} U_{i} + \sum_{j=1}^{N} R_{i} A (Id - R_{i}^{T} R_{i}) R_{j}^{T} D_{j} U_{j}$$

Notice that $(Id - R_i^T R_i)R_i^T R_i = 0$ so we have

$$R_i A R_i^T U_i + \sum_{j \neq i} R_i A (Id - R_i^T R_i) R_j^T D_j U_j = F_i$$
 (6)

Algebraic formulation - JSM

Let us define the block matrix \tilde{A} (extended matrix)

$$(\widetilde{A})_{ii} := R_i \, A \, R_i^T, \, (\widetilde{A})_{ij} := R_i \, A \, (Id - R_i^T \, R_i) R_j^T \, D_j, \, 1 \leq i \neq j \leq N$$

Define (extended) unknown vector and right-hand side

$$\begin{split} \widetilde{\boldsymbol{U}} &:= (\boldsymbol{U}_1, \dots, \boldsymbol{U}_i, \dots, \boldsymbol{U}_N)^T \in \mathbb{R}^{\sum_{i=1}^N \# \mathcal{N}_i}, \\ \widetilde{\boldsymbol{F}} &:= (\boldsymbol{R}_1 \, \boldsymbol{F}, \dots, \boldsymbol{R}_i \, \boldsymbol{F}, \dots, \boldsymbol{R}_N \, \boldsymbol{F})^T \in \mathbb{R}^{\sum_{i=1}^N \# \mathcal{N}_i}. \end{split}$$

Let $(M_{JSM})_{ii} := (\widetilde{A})_{ii} = R_i A R_i^T$. The block Jacobi method applied to the (extended) system

$$\widetilde{A}\widetilde{U}=\widetilde{F}$$

is the JSM:

$$\widetilde{\boldsymbol{U}}^{n+1} = \widetilde{\boldsymbol{U}}^n + \boldsymbol{M}_{JSM}^{-1} \widetilde{\boldsymbol{r}}^n, \widetilde{\boldsymbol{r}}^n := \widetilde{\boldsymbol{F}} - \widetilde{\boldsymbol{A}} \widetilde{\boldsymbol{U}}^n. \tag{7}$$

Algebraic formulation - RAS and ASM

As for (RAS), we give the following definition

$$M_{RAS}^{-1} := \sum_{i=1}^{N} R_i^T D_i (R_i A R_i^T)^{-1} R_i$$
 (8)

so that the iterative RAS algorithm reads:

$$U^{n+1} = U^n + M_{RAS}^{-1} r^n, r^n := F - A U^n.$$

For (ASM), we give the following definition

$$M_{ASM}^{-1} := \sum_{i=1}^{N} R_i^T (R_i A R_i^T)^{-1} R_i$$
 (9)

so that the iterative ASM algorithm reads:

$$U^{n+1} = U^n + M_{RAS}^{-1} r^n$$
.

Geometrical analysis in 1d

Let L>0 and the domain $\Omega=(0,L)$ be decomposed into two subodmains $\Omega_1:=(0,L_1)$ and $\Omega_2:=(I_2,L)$ with $I_2\leq L_1$. The error $e_i^n:=u_i^n-u_{|\Omega_i},\ i=1,2$ satisfies

$$-\frac{d^{2}e_{1}^{n+1}}{dx^{2}} = 0 \quad \text{in } (0, L_{1}) \\ e_{1}^{n+1}(0) = 0 \\ e_{1}^{n+1}(L_{1}) = e_{2}^{n}(L_{1}) \qquad \text{then,} \qquad -\frac{d^{2}e_{2}^{n+1}}{dx^{2}} = 0 \quad \text{in } (I_{2}, L) \\ e_{2}^{n+1}(I_{2}) = e_{1}^{n+1}(I_{2}) \\ e_{2}^{n+1}(L) = 0 . \tag{10}$$

Thus the errors are affine functions in each subdomain:

$$e_1^{n+1}(x) = e_2^n(L_1) \frac{x}{L_1}$$
 and $e_2^{n+1}(x) = e_1^{n+1}(I_2) \frac{L-x}{L-I_2}$.

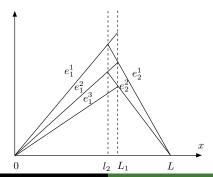
Thus, we have

$$e_2^{n+1}(L_1) = e_1^{n+1}(l_2) \frac{L-L_1}{L-l_2} = e_2^n(L_1) \frac{l_2}{L_1} \frac{L-L_1}{L-l_2}$$
.

Let $\delta := L_1 - I_2$ denote the size of the overlap, we have

$$e_2^{n+1}(L_1) = \frac{I_2}{I_2 + \delta} \frac{L - I_2 - \delta}{L - I_2} e_2^n(L_1) = \frac{1 - \delta/(L - I_2)}{1 + \delta/I_2} e_2^n(L_1).$$

It is clear that $\delta > 0$ is sufficient and necessary to have convergence.



Fourier analysis in 2d - I

Let \mathbb{R}^2 decomposed into two half-planes $\Omega_1=(-\infty,\delta)\times\mathbb{R}$ and $\Omega_2=(0,\infty)\times\mathbb{R}$ with an overlap of size $\delta>0$ and the problem

$$(\eta - \Delta)(u) = f$$
 in \mathbb{R}^2 ,
 u is bounded at infinity,

By linearity, the errors $e_i^n := u_i^n - u|_{\Omega_i}$ satisfy the JSM f = 0:

$$(\eta - \Delta)(e_1^{n+1}) = 0$$
 in Ω_1
 e_1^{n+1} is bounded at infinity
 $e_1^{n+1}(\delta, y) = e_2^n(\delta, y),$
 (11)

$$(\eta - \Delta)(e_2^{n+1}) = 0$$
 in Ω_2

$$e_2^{n+1}$$
 is bounded at infinity
$$e_2^{n+1}(0,y) = e_1^n(0,y).$$
(12)

Fourier analysis in 2d - II

By taking the partial Fourier transform of the equation in the *y* direction we get:

$$\left(\eta - \frac{\partial^2}{\partial x^2} + k^2\right) \left(\hat{\mathbf{e}}_1^{n+1}(x,k)\right) = 0 \quad \text{in} \quad \Omega_1.$$

For a given k, the solution

$$\hat{e}_{1}^{n+1}(x,k) = \gamma_{+}^{n+1}(k) \exp(\lambda^{+}(k)x) + \gamma_{-}^{n+1}(k) \exp(\lambda^{-}(k)x).$$

must be bounded at $x = -\infty$. This implies

$$\hat{e}_1^{n+1}(x,k) = \gamma_+^{n+1}(k) \exp(\lambda^+(k)x)$$

and similarly,

$$\hat{\mathbf{e}}_{2}^{n+1}(x,k) = \gamma_{-}^{n+1}(k) \exp(\lambda^{-}(k)x)$$

Fourier analysis in 2d - III

From the interface conditions we get

$$\gamma_{+}^{n+1}(k) = \gamma_{-}^{n}(k) \exp(\lambda^{-}(k)\delta), \ \gamma_{-}^{n+1}(k) = \gamma_{+}^{n}(k) \exp(-\lambda^{+}(k)\delta).$$

Combining these two and denoting $\lambda(k) = \lambda^+(k) = -\lambda^-(k)$, we get for i = 1, 2,

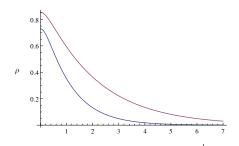
$$\gamma_{\pm}^{n+1}(\mathbf{k}) = \rho(\mathbf{k}; \alpha, \delta)^2 \gamma_{\pm}^{n-1}(\mathbf{k})$$

with ρ the convergence rate given by:

$$\rho(\mathbf{k}; \alpha, \delta) = \exp(-\lambda(\mathbf{k})\delta), \tag{13}$$

where $\lambda(k) = \sqrt{\eta + k^2}$.

Fourier analysis in 2d - IV



Remark

We have the following properties:

- For all $k \in \mathbb{R}$, $\rho(k) < \exp(-\sqrt{\eta} \, \delta) < 1$ so that $\gamma_i^n(k) \to 0$ uniformly as n goes to infinity.
- $\rho \to 0$ as k tends to infinity, high frequency modes of the error converge very fast.
- When there is no overlap ($\delta=0$), $\rho=1$ and there is stagnation of the method.

V. Dolean

About FreeFem++ (survival kit)

FreeFem++ allows a very simple and natural way to solve a great variety of variational problems (FEM, DG).

It is possible to have access to the underlying linear algebra such as the stiffness or mass matrices.

```
Tutorial: http://www.cmap.polytechnique.fr/spip.php?article239.
```

A very detailed documentation of FreeFem++ is available on the official website http://www.freefem.org/ff++

```
http://www.freefem.org/ff++/ftp/freefem++doc.pdf
```

Let a homogeneous Dirichlet boundary value problem for a Laplacian defined on a unit square $\Omega =]0,1[^2]$:

$$\begin{cases} -\Delta u = f & \text{dans } \Omega \\ u = 0 & \text{sur } \partial \Omega \end{cases}$$
 (14)

The variational formulation of the problem

Find
$$u \in H_0^1(\Omega) := \{ w \in H^1(\Omega) : w = 0, \text{ on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4 \}$$
 such that

$$\int_{\Omega} \nabla u. \nabla v dx - \int_{\Omega} f \, v \, dx = 0, \forall v \in H^1_0(\Omega) \, .$$

Feature of Freefem++: penalization of Dirichlet BC. Let TGV (*Très Grande Valeur* in French) be a very large value, the above variational formulation is approximated by Find $u \in H^1(\Omega)$ such that

$$\int_{\Omega} \nabla u. \nabla v dx + TGV \int_{\square_{i-1} \dots A\Gamma_i} u \, v - \int_{\Omega} \text{fv } dx = 0, \forall v \in H^1(\Omega) \, .$$

The following FreeFem++ script is solving this problem

```
// Number of mesh points in x and y directions int Nbnoeuds=10;
```

The text after // symbols are comments ignored by the FreeFem++ language.

Each new variable must be declared with its type (here int designs integers).

```
//Mesh definition
mesh Th=square(Nbnoeuds, Nbnoeuds, [x,y]);
```

The function square returns a structured mesh of the square, the sides of the square are labelled from 1 to 4 in trigonometrical sense.

Define the function representing the right hand side

```
// Function of x and y
func f=x*y;
```

and the P_1 finite element space Vh over the mesh Th.

```
// Finite element space on the mesh Th
fespace Vh(Th,P1);
//uh and vh are of type Vh
Vh uh,vh;
```

The functions u_h and v_h belong to the P_1 finite element space V_h which is an approximation to $H^1(\Omega)$.

```
// variational problem definition
problem heat(uh, vh, solver=LU) =
    int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))
    -int2d(Th)(f*vh)
    +on(1,2,3,4,uh=0);
```

The keyword <code>problem</code> allows the definition of a variational problem (without solving it)

$$\int_{\Omega} \nabla u_h. \nabla v_h \text{d}x + \textit{TGV} \int_{\cup_{i=1,...,4}\Gamma_i} u_h \, v_h - \int_{\Omega} \textit{fv}_h \text{d}x = 0, \forall v_h \in \textit{V}_h \,.$$

where TGV is equal to 10^{30} .

The parameter solver sets the method that will be used to solve the resulting linear system. To solve the problem we need

```
//Solving the problem
heat;
// Plotting the result
plot(uh,wait=1);
```

The Freefem++ script can be saved with your favourite text editor (e.g. under the name heat.edp). In order to execute the script write the shell command

```
FreeFem++ heat.edp
```

The result will be displayed in a graphic window.

Solve Neumann or Fourier boundary conditions such as

$$\begin{cases}
-\Delta u + u = f & \text{dans } \Omega \\
\frac{\partial u}{\partial n} = 0 & \text{sur } \Gamma_1 \\
u = 0 & \text{sur } \Gamma_2 \\
\frac{\partial u}{\partial n} + \alpha u = g & \text{sur } \Gamma_3 \cup \Gamma_4
\end{cases}$$
(15)

The new variational formulation consists in determining $u_h \in V_h$ such that

$$\begin{split} &\int_{\Omega} \nabla u_h.\nabla v_h \text{d}x + \int_{\Gamma_3 \cup \Gamma_4} \alpha u_h v_h + \textit{TGV} \int_{\Gamma_2} u_h.v_h \\ &- \int_{\Gamma_3 \cup \Gamma_4} \textit{g}v_h - \int_{\Omega} \textit{f}v_h \text{d}x = 0, \forall v_h \in \textit{V}_h. \end{split}$$

The Freefem++ definition of the problem

```
problem heat(uh, vh) =
int2d(Th) (dx(uh) *dx(vh) +dy(uh) *dy(vh))
+int1d(Th, 3, 4) (alpha*uh*vh)
-int1d(Th, 3, 4) (g*vh)
-int2d(Th) (f*vh)
+on(2, uh=0);
```

In order to use some **linear algebra** package, we need the matrices. The keyword <code>varf</code> allows the definition of a variational formulation

```
varf heat(uh, vh) =
int2d(Th) (dx(uh) *dx(vh) +dy(uh) *dy(vh))
+int1d(Th, 3, 4) (alpha*uh*vh)
-int1d(Th, 3, 4) (g*vh)
-int2d(Th) (f*vh)
+on(2, uh=0);
matrix Aglobal; // stiffness sparse matrix
Aglobal = heat(Vh, Vh, solver=UMFPACK); // UMFPACK solver
Vh rhsglobal; //right hand side vector
rhsglobal[] = heat(0, Vh);
```

Here rhsglobal is a FE function and the associated vector of d.o.f. is rhsglobal[].

The linear system is solved by using UMFPACK

```
// Solving the problem by a sparse LU sover
uh[] = Aqlobal^-1*rhsqlobal[];
```

Decomposition into overlapping domains I

Suppose we want a decomposition of a rectangle Ω into $nn \times mm$ domains with approximately nloc points in one direction.

```
int nn=4, mm=4;
int npart= nn*mm;
int nloc = 20;
real allong = 1;
allong = real(nn)/real(mm);
mesh Th=square(nn*nloc*allong,mm*nloc,[x*allong,y]);
fespace Vh(Th,P1);
fespace Ph(Th, P0);
Ph part;
Ph xx=x,yy=y;
part = int(xx/allong*nn)*mm + int(yy*mm);
plot(part, fill=1, value=1, wait=1, ps="decompunif.eps");
```

For arbitrary decompositions, use METIS or SCOTCH.

```
int nn=4, mm=4;
int npart= nn*mm;
int nloc = 20;
real allong = 1;
allong = real(nn)/real(mm);
mesh Th=square(nn*nloc*allong,mm*nloc,[x*allong,y]);
fespace Vh(Th, P1);
fespace Ph(Th, P0);
Ph part;
bool withmetis = 1;
if (withmetis) // Metis partition
    load "metis";
    int[int] nupart(Th.nt);
    metisdual(nupart, Th, npart);
    for(int i=0;i<nupart.n;++i)</pre>
      part[][i]=nupart[i];
plot(part,fill=1,value=1,wait=1,ps="decompMetis.eps");
```

Decomposition into overlapping domains II

To build the overlapping decomposition and the associated algebraic call the routine SubdomainsPartitionUnity. Output:

- overlapping meshes aTh[i]
- the restriction/interpolation operators Rih[i] from the local finite element space Vh[i] to the global one Vh
- the diagonal local matrices Dih[i] from the partition of unity.

```
include "createPartition.edp";
include "decompMetis.edp";

// overlapping partition
int sizeovr = 3;
mesh[int] aTh(npart); // sequence of ovr. meshes
matrix[int] Rih(npart); // local restriction operators
matrix[int] Dih(npart); // partition of unity operators
```

RAS and ASM: global data

We first need to define the global data.

```
// Solve Dirichlet subproblem Delta (u) = f
// u = 1 on the global boundary
int[int] chlab=[1,1,2,1,3,1,4,1];
Th=change(Th, refe=chlab);
macro Grad(u) [dx(u),dy(u)]
                                    // EOM
                                    // right hand side
func f = 1;
                                    // Dirichlet data
func q = 1;
// global problem
Vh rhsqlobal, uqlob;
varf vaglobal(u, v) =
    int2d(Th)(Grad(u)'*Grad(v))
    +on(1, u=g) + int2d(Th)(f*v);
matrix Aglobal;
Aglobal = vaglobal(Vh, Vh, solver = UMFPACK); // matrix
rhsglobal[] = vaglobal(0, Vh);
                                              // rhs
uglob[] = Aglobal^-1*rhsglobal[];
```

RAS and ASM: local data

And then the local problems

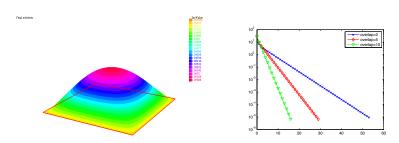
```
// overlapping partition
int sizeovr = 4;
                           // overlapping meshes
mesh[int] aTh(npart);
matrix[int] Rih(npart);
                           // restriction operators
SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rih,Dih);
                            // Dirichlet matrices
matrix[int] aA(npart);
for (int i = 0; i < npart; ++i)
   cout << " Domain :" << i << "/" << npart << endl;
   matrix aT = Aglobal*Rih[i]';
   aA[i] = Rih[i]*aT;
   set(aA[i], solver = UMFPACK);// direct solvers
```

RAS and ASM: Schwarz iteration

```
int nitermax = 1000;
Vh un = 0, rn = rhsglobal; // initial guess
for(int iter = 0;iter<nitermax;++iter)</pre>
 {real err = 0;}
 Vh er = 0;
  for (int i = 0; i < npart; ++i)
     {real[int] bi = Rih[i]*rn[];  // restriction
      real[int] ui = aA[i] ^-1 * bi; // local solve
     bi = Dih[i]*ui;
                                  // bi = ui; ASM
        er[] += Rih[i]'*bi; }
   un[] += er[];  // build new iterate
    rn[] = Aglobal*un[];  // global residual
    rn[] = rn[] - rhsqlobal[];
    rn[] *= -1;
    err = sqrt(er[]'*er[]);
    cout << "Iter: " << iter << " Err = " << err << endl
    if (err < 1e-5) break;
    plot(un, wait=1, value=1, fill=1, dim=3);}
plot(un, wait=1, value=1, fill=1, dim=3, ps = "solution.eps")
```

Convergence

Convergence history of the RAS solver for different values of the overlapping parameter.



Note that this convergence, not very fast even in a simple configuration of 4 subdomains.

The iterative version of ASM does not converge. For this reason, the ASM method is always used a preconditioner for a Krylov method such as CG, GMRES or BiCGSTAB.

Outline

- 1 Introduction
- Schwarz algorithms as solvers
- Schwarz algorithms as preconditioners
 - Neumann series and Krylov spaces
 - Krylov methods
 - Application to DDM
 - Schwarz preconditioners using FreeFEM++
- Classical coarse grid method
- 5 Coarse grid for heterogeneous problems
- 6 An abstract 2-level Schwarz the GenEO algorithm

Fixed point method

Consider a well-posed but difficult to solve linear system

$$Ax = b$$

and *B* an "easy to invert" matrix of the same size than *A*. A possible iterative method is a fixed point algorithm

$$x^{n+1} = x^n + B^{-1}(b - Ax^n)$$

and *x* is a fixed point of the operator:

$$x \longmapsto x + B^{-1}(b - Ax)$$
.

Let $r_0 := b - Ax^0$ and $C := B^{-1}A$, a direct computation shows that we have:

$$x^{n} = \sum_{i=0}^{n} (I_{ci} - C)^{i} B^{-1} r_{0} + x^{0}.$$
 (16)

We have convergence iff the spectral radius of the matrix $I_d - C$ is smaller than one.

Why Krylov methods I

Consider now a preconditioned Krylov applied to the linear system:

$$B^{-1} A x = B^{-1} b$$

Let us denote x^0 an initial guess and $r^0 := B^{-1} b - C x^0$ the initial residual. Then $y := x - x^0$ solves

$$C y = r^0$$
.

The basis for Krylov methods is the following

Lemma

Let C be an invertible matrix of size $N \times N$. Then, there exists a polynomial $\mathcal P$ of degree p < N such that

$$C^{-1}=\mathcal{P}(C).$$

Proof.

Let be a minimal polynomial of C of degree $d \leq N$:

$$\mathcal{M}(X) := \sum_{i=0}^d a_i X^i$$

We have $\sum_{i=0}^{d} a_i C^i = 0$ and there is no non zero polynomial of lower degree that annihilates C. Thus, a_0 cannot be zero since

$$C \sum_{i=1}^d a_i C^{i-1} = 0 \Rightarrow \sum_{i=1}^d a_i C^{i-1} = 0.$$

Then, $\sum_{i=0}^{d-1} a_{i+1} X^i$ would be an annihiling polynomial of C of degree lower than d. This implies

$$I_d + C \sum_{i=1}^d \frac{a_i}{a_0} C^{i-1} = 0 \Rightarrow C^{-1} := -\sum_{i=1}^d \frac{a_i}{a_0} C^{i-1}.$$

Coming back to the linear system, we have

$$x = x^{0} + \sum_{i=1}^{d} (-\frac{a_{i}}{a_{0}}) C^{i-1} r^{0}$$
.

Thus, it makes sense to introduce Krylov spaces, $K^n(C, r^0)$

$$\mathcal{K}^{n}(C, r^{0}) := Span\{r^{0}, Cr^{0}, \dots, C^{n-1}r^{0}\}, n \geq 1.$$

to seek y^n an approximation to y.

Example: The CG methods applies to symmetric positive definite (SPD) matrices and minimizes the A^{-1} -norm of the residual when solving Ax = b:

$$\mathsf{C} G \, \left\{ \begin{array}{l} \mathsf{Find} \, \, y^n \in \mathcal{K}^n(A, r^0) \, \, \mathsf{such that} \\ \|A \, y^n - r^0\|_{A^{-1}} = \min_{w \in \mathcal{K}^n(A, r^0)} \|A \, w - r^0\|_{A^{-1}} \, . \end{array} \right.$$

A detailed analysis reveals that $x^n = y^n + x_0$ can be obtained by the quite cheap recursion formula:

for
$$i=1,2,\ldots$$
 do $ho_{i-1}=(r_{i-1},r_{i-1})_2$ if $i=1$ then $p_1=r_0$ else $\beta_{i-1}=\rho_{i-1}/\rho_{i-2}$ $p_i=r_{i-1}+\beta_{i-1}p_{i-1}$ end if $q_i=Ap_{i-1}$ $\alpha_i=\frac{\rho_{i-1}}{(p_i,q_i)_2}$ $x_i=x_{i-1}+\alpha_ip_i$ $r_i=r_{i-1}-\alpha_iq_i$ check convergence; continue if necessary end for

Preconditioned Krylov

By solving an optimization problem:

GMRES
$$\begin{cases} \text{ Find } y^n \in \mathcal{K}^n(C, r^0) \text{ such that} \\ \|C y^n - r^0\|_2 = \min_{w \in \mathcal{K}^n(C, r^0)} \|C w - r^0\|_2 \end{cases}$$

a preconditioned Krylov solve will generate an optimal x_K^n in

$$\mathcal{K}^{n}(C, B^{-1}r_0) := x_0 + Span\{B^{-1}r_0, CB^{-1}r_0, \dots, C^{n-1}B^{-1}r_0\}.$$

This minimization problem is of size n. When n is small w.r.t. N, its solving has a marginal cost. Thus, x_K^n has a computing cost similar to that of x^n . But, since $x^n \in \mathcal{K}^n(B^{-1}A, B^{-1}r_0)$ as well but with "frozen" coefficients, we have that x_n is less optimal (actually much much less) than x_K^n .

Schwarz methods as preconditioners

In the previous Krylov methods we can use as preconditioner

RAS (in conjunction with BiCGStab or GMRES)

$$B^{-1} := M_{RAS}^{-1} = \sum_{i=1}^{N} R_i^T D_i (R_i A R_i^T)^{-1} R_i$$

ASM (in a CG methods)

$$B^{-1} := M_{ASM}^{-1} = \sum_{i=1}^{N} R_i^T (R_i A R_i^T)^{-1} R_i$$

Preconditioner in CG

We use

- M_{ASM}^{-1} as a preconditioner
- a Krylov method: conjugate gradient since M_{ASM}^{-1} and A are symmetric.

At iteration m the error for the PCG method is bounded by:

$$||\bar{x} - x_m||_{M_{ASM}^{-\frac{1}{2}}AM_{ASM}^{-\frac{1}{2}}} \le 2\left[\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right]^m ||\bar{x} - x_0||_{M_{ASM}^{-\frac{1}{2}}AM_{ASM}^{-\frac{1}{2}}}.$$

where κ is the condition number of $M_{ASM}^{-1}A$ and \bar{x} is the exact solution.

The CG with the ASM preconditioner becomes:

for
$$i=1,2,\ldots$$
 do
$$\rho_{i-1}=(r_{i-1},M_{ASM}^{-1}r_{i-1})_2$$
 if $i=1$ then
$$p_1=M_{ASM}^{-1}r_0$$
 else
$$\beta_{i-1}=\rho_{i-1}/\rho_{i-2}$$

$$p_i=M_{ASM}^{-1}r_{i-1}+\beta_{i-1}p_{i-1}$$
 end if
$$q_i=Ap_{i-1}$$

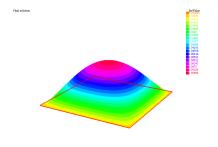
$$\alpha_i=\frac{\rho_{i-1}}{(p_i,q_i)_2}$$

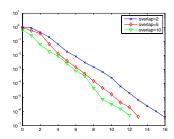
$$x_i=x_{i-1}+\alpha_ip_i$$
 $r_i=r_{i-1}-\alpha_iq_i$ check convergence; continue if necessary end for

The action of the global operator is given by

```
Vh rn, s;
func real[int] A(real[int] &1)
                                           // A*u
  rn[] = Aglobal * 1;
  return rn[];
The preconditioning method can be Additive Schwarz (ASM)
func real[int] Mm1(real[int] &1)
   s = 0:
   for(int i=0;i<npart;++i)</pre>
       mesh Thi = aTh[i];
       real[int] bi = Rih[i] *l;
                                 // restricts rhs
       real[int] ui = aA[i] ^-1 * bi; // local solves
       s[] += Rih[i]'*ui;
                                         // prolongation
   return s[];
```

The Krylov method applied in this case is the CG. The performance is now less sensitive to the overlap size.





We can also use RAS as a preconditioner, by taking into account the partition of unity

```
func real[int] Mm1(real[int] &1)
   s = 0;
   for(int i=0;i<npart;++i)</pre>
       mesh Thi = aTh[i];
       real[int] bi = Rih[i]*l;  // restricts rhs
       real[int] ui = aA[i] ^-1 * bi; // local solves
       bi = Dih[i]*ui;
       s[] += Rih[i]'*bi;
                                       // prolongation
   return s[];
```

this time in conjuction with BiCGStab since we deal with non-symmetric problems.

Weak scalability

How to evaluate the efficiency of a domain decomposition?

Weak scalability – definition

"How the solution time varies with the number of processors for a fixed problem size per processor."

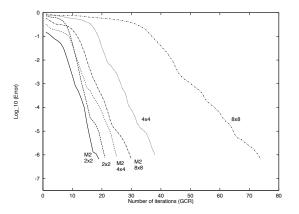
It is not achieved with the one level method

Number of subdomains	8	16	32	64
ASM	18	35	66	128

The iteration number increases linearly with the number of subdomains in one direction.

Convergence curves- more subdomains

Plateaus appear in the convergence of the Krylov methods.



How to achieve scalability

Stagnation corresponds to a few very low eigenvalues in the spectrum of the preconditioned problem. They are due to the lack of a global exchange of information in the preconditioner.

$$-\Delta u = f \text{ in } \Omega$$
$$u = 0 \text{ on } \partial \Omega$$

The mean value of the solution in domain i depends on the value of f on all subdomains.

A classical remedy consists in the introduction of a coarse grid problem that couples all subdomains. This is closely related to deflation technique classical in linear algebra (see Nabben and Vuik's papers in SIAM J. Sci. Comp, 200X).

Outline

- 1 Introduction
- Schwarz algorithms as solvers
- 3 Schwarz algorithms as preconditioners
- Classical coarse grid method
 - Coarse grid correction
 - Theoretical convergence result
 - Deflation and coarse grid
 - Classical coarse grid using FreeFEM++
- 5 Coarse grid for heterogeneous problems
- 6 An abstract 2-level Schwarz the GenEO algorithm

Adding a coarse grid

We add a coarse space correction (aka second level) Let V_H be the coarse space and z be a basis, $V_H = \operatorname{span} z$, writing $R_0 = Z^T$ we define the two level preconditioner as:

$$M_{ASM,2}^{-1} := R_0^T (R_0 A R_0^T)^{-1} R_0 + \sum_{i=1}^N R_i^T A_i^{-1} R_i.$$

The Nicolaides approach is to use the kernel of the operator as a coarse space, this is the constant vectors, in local form this writes:

$$Z := (R_i^T D_i R_i \mathbf{1})_{1 \leq i \leq N}$$

where D_i are chosen so that we have a partition of unity:

$$\sum_{i=1}^{N} R_i^T D_i R_i = Id.$$

Theoretical convergence result

Theorem (Widlund, Sarkis)

Let $M_{ASM,2}^{-1}$ be the two-level additive Schwarz method:

$$\kappa(M_{ASM,2}^{-1}A) \leq C\left(1+\frac{H}{\delta}\right)$$

where δ is the size of the overlap between the subdomains and H the subdomain size.

This does indeed work very well

Number of subdomains	8	16	32	64
ASM	18	35	66	128
ASM + Nicolaides	20	27	28	27

Idea of the proof (Upper bound)

Lemma

If each point in Ω belongs to at most k_0 of the subdomains Ω_j , then the largest eigenvalue of $M_{ASM,2}^{-1}$ A satisfies

$$\lambda_{max}(M_{ASM,2}^{-1}A) \leq k_0 + 1.$$

Assumption (Stable decomposition)

There exists a constant C_0 , such that every $u \in V$ admits a decomposition $u = \sum_{i=0}^{N} R_i^T u_i$, $u_i \in V_i$, i = 0, ..., N that satisfies:

$$\sum_{i=0}^N \tilde{a}_i(u_i,u_i) \leq C_0^2 a(u,u).$$

Idea of the proof (Lower bound)

Theorem

If every $v \in V$ admits a C_0 -stable decomposition (with uniform C_0), then the smallest eigenvalue of $M_{AS,2}^{-1}$ A satisfies

$$\lambda_{min}(M_{ASM,2}^{-1} A) \geq C_0^{-2}.$$

Therefore, the condition number of the two-level Schwarz preconditioner can be bounded by

$$\kappa(M_{ASM,2}^{-1}A) \leq C_0^2(k_0+1).$$

Deflation and Coarse grid correction

Let A be a SPD matrix, we want to solve

$$Ax = b$$

with a preconditioner M (for example the Schwarz method). Let Z be a rectangular matrix so that the "bad eigenvectors" belong to the space spanned by its columns. Define

$$P := I - AQ, \ Q := ZE^{-1}Z^{T}, \ E := Z^{T}AZ,$$

Examples of coarse grid preconditioners

$$\mathcal{P}_{A-DEF2} := P^T M^{-1} + Q$$
, $\mathcal{P}_{BNN} := P^T M^{-1} P + Q$ (Mandel, 1993)

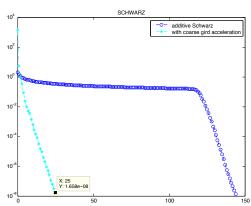
Some properties: QAZ = Z, $P^TZ = 0$ and $P^TQ = 0$. Let r_n be the residual at step n of the algorithm: $Z^Tr_n = 0$.

How to choose *Z*?

Coarse grid correction for smooth problems

For a Poisson like problem, Nicolaides (1987), Sarkis (2002). Let $(\chi_i)_{1 < i < N}$ denote a partition of unity :

$$Z = \begin{bmatrix} \chi_1 & 0 & \cdots & 0 \\ \vdots & \chi_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \chi_N \end{bmatrix}$$



Coarse grid implementation - I

It is enough to replace the Schwarz preconditioner by P_{BNN} as follows. First build $E = Z^T A Z$

```
Vh[int] Z(npart);
for(int i=0;i<npart;++i)</pre>
{ Z[i]=1.;
real[int] zit = Rih[i] * Z[i][];
real[int] zitemp = Dih[i]*zit;
Z[i][]=Rih[i]'*zitemp;
real[int,int] Ef(npart,npart); // E = Z^T*A*Z
for(int i=0;i<npart;++i)</pre>
{ real[int] vaux = A(Z[i][]);
   for (int j=0; j < npart; ++ j)
  Ef(j,i) = Z[j][]'*vaux;
matrix E;
E = Ef;
set (E, solver=UMFPACK);
```

Then the coarse space correction $Q = ZE^{-1}Z^{T}$:

```
func real[int] Q(real[int] \&l) // Q = Z*E^-1*Z^T
   real[int] res(l.n);
   res=0.;
   real[int] vaux(npart);
   for(int i=0;i<npart;++i)</pre>
     vaux[i]=Z[i][]'*1;
   real[int] zaux=E^-1*vaux; // zaux=E^-1*Z^T*l
   for(int i=0; i < npart; ++i) // Z * zaux
      res +=zaux[i]*Z[i][];
   return res;
```

Coarse grid implementation - III

The projector out of the coarse space P = I - QA and its transpose P^T :

```
func real[int] P(real[int] \& l) // P = I - A*O
   real[int] res=Q(1);
   real[int] res2=A(res);
   res2 -= 1;
   res2 *= -1.;
   return res2;
func real[int] PT(real[int] &1) // P^T = I-Q*A
   real[int] res=A(1);
   real[int] res2=0(res);
   res2 -= 1;
   res2 *= -1.;
   return res2;
```

Coarse grid implementation - IV

And finally the preconditioner $P_{BNN} = P^T M^{-1} P + Q$:

```
int j;
func real[int] BNN(real[int] &u)  // precond BNN
{
    real[int] aux1 = Q(u);
    real[int] aux2 = P(u);
    real[int] aux3 = Mm1(aux2);
    aux2 = PT(aux3);
    aux2 += aux1;
    ++j;
return aux2;
}
```

Outline

- 1 Introduction
- Schwarz algorithms as solvers
- 3 Schwarz algorithms as preconditioners
- 4 Classical coarse grid method
- Coarse grid for heterogeneous problems
 - The heterogeneous coefficient case
 - Coarse grid for problems with high heterogeneities
 - The DtN algorithm
 - Theoretical and numerical results
- 6 An abstract 2-level Schwarz the GenEO algorithm

Motivation

Large discretized system of PDEs strongly heterogeneous coefficients (high contrast, nonlinear, multiscale)

E.g. Darcy pressure equation, *P*¹-finite elements:

$$Au = f$$

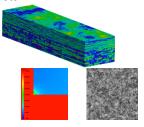
$$\mathrm{cond}(\mathbf{A}) \sim rac{lpha_{\mathrm{max}}}{lpha_{\mathrm{min}}} \, h^{-2}$$

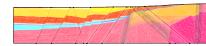
Goal:

iterative solvers robust in size and heterogeneities

Applications:

flow in heterogeneous / stochastic / layered media structural mechanics electromagnetics etc.





Darcy equation with heterogeneities

$$\begin{array}{cccccccc} -\nabla\cdot(\alpha(\textbf{\textit{x}},\textbf{\textit{y}})\nabla\textbf{\textit{u}}) & = & 0 & \text{in} & \Omega\subset\mathbb{R}^2,\\ \textbf{\textit{u}} & = & 0 & \text{on} & \partial\Omega_D,\\ \frac{\partial\textbf{\textit{u}}}{\partial\textbf{\textit{n}}} & = & 0 & \text{on} & \partial\Omega_N. \end{array}$$

Decomposition

$$\alpha(\mathbf{x}, \mathbf{y})$$

Jump	1	10	10 ²	10 ³	10 ⁴
ASM	39	45	60	72	73
ASM + Nicolaides	30	36	50	61	65

Objectives

Strategy

Define an appropriate coarse space $V_{H2} = \operatorname{span}(z_2)$ and use the framework previously introduced, writing $R_0 = Z_2^T$ the two level preconditioner is:

$$P_{ASM2}^{-1} := R_0^T (R_0 A R_0^T)^{-1} R_0 + \sum_{i=1}^N R_i^T A_i^{-1} R_i.$$

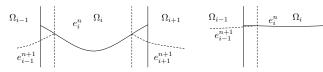
The coarse grid must be

- Local (calculated on each subdomain) → parallel
- Adaptive (calculated automatically)
- Easy and cheap to compute (on the boundary for instance)
- Robust (must lead to an algorithm whose convergence does not depend on the partition or the jumps in coefficients)

V. Dolean

Heuristic approach: what functions should be in \mathbb{Z}_2 ?

The error satisfies the Schwarz algorithm, it is harmonic, so it satisfies a maximum principle.



Fast convergence

Slow convergence

Idea

Ensure that the error decreases quickly on the subdomain boundaries which translates to making $\frac{\partial e}{\partial n_i}\Big|_{\Gamma_i}$ big.

Ensuring that the error decreases quickly on the subdomain boundaries

The Dirichlet to Neumann operator is defined as follows: Let $g: \Gamma_i \mapsto \mathbb{R}$,

$$\mathsf{DtN}_{\Omega_i}(g) = \left. \alpha \frac{\partial v}{\partial n_i} \right|_{\Gamma_i},$$

where *v* satisfies

$$\begin{cases} (-\mathsf{div}(\alpha\nabla))v = 0, & \text{in } \Omega_i, \\ v = g, & \text{on } \partial\Omega_i. \end{cases}$$

To construct the coarse space, we use the **low** frequency modes associated with the DtN operator:

$$\mathsf{DtN}_{\Omega_i}(\mathbf{v}_i^{\lambda}) = \lambda \, \alpha \, \mathbf{v}_i^{\lambda}$$

with λ small. The functions v_i^{λ} are extended harmonically to the subdomains.

Theoretical convergence result

Suppose we have $(v_i^{\lambda_k}, \lambda_i^k)_{1 \le k \le n_{\Gamma_i}}$ the eigenpairs of the local DtN maps $(\lambda_i^1 \le \lambda_i^2 \le \ldots)$ and that we have selected m_i in each subdomain. Then let Z be the coarse space built via the local DtN maps:

$$Z := (R_i^T D_i \tilde{V}_i^{\lambda_i^k})_{1 \leq i \leq N; \ 1 \leq k \leq m_i}$$

Theorem (D., Nataf, Scheichl and Spillane 2010)

Under the monotonicity of α in the overlapping regions:

$$\kappa(M_{ASM,2}^{-1}A) \leq C(1 + \max_{1 \leq i \leq N} \frac{1}{\delta_i \lambda_i^{m_i+1}})$$

where δ_i is the size of the overlap of domain Ω_i and C is independent of the jumps of α .

If m_i is chosen so that, $\lambda_i^{m_i+1} \ge 1/H_i$ the convergence rate will be analogous to the constant coefficient case.

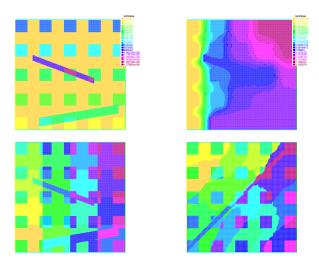
Results with the new DtN method

Jump	1	10	10 ²	10 ³	10 ⁴
ASM	39	45	60	72	73
ASM + Nicolaides	30	36	50	61	65
ASM + DtN	31	35	36	36	36

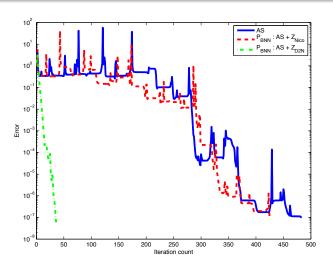
Decomposition

 $\alpha(\mathbf{x},\mathbf{y})$

With DtN the jumps do not affect convergence We put at most two modes per subdomain in the coarse grid (using the automatic selection process)



Channels and inclusions: $1 \le \alpha \le 1.5 \times 10^6$, the solution and partitionings (Metis or not)



ASM convergence for channels and inclusions – 4×4 Metis partitioning

subdomain <i>i</i>	m _i	total number of eigenvalues
1	3	155
2	1	109
3	5	175
10	4	174
11	2	71
12	2	128
13	3	166
14	3	127
15	3	188
16	3	106

Metis 4 by 4 decomposition

	ASM	ASM+Nico	ASM+DtN
2 × 2	103	110	22
2 × 2 Metis	76	76	22
4 × 4	603	722	26
4 × 4 Metis	483	425	36
8 × 8	461	141	34
8 × 8 Metis	600	542	31

Convergence results for the "hard" test case

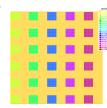
Numerical results – Optimality

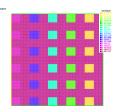
#Z per subd.	ASM	ASM+Z _{Nico}	ASM+Z _{D2N}
$\max(m_i-1,1)$			273
m_i	614	543	36
$m_i + 1$			32

 m_i is given automatically by the strategy.

- Taking one fewer eigenvalue has a huge influence on the iteration count
- Taking one more has only a small influence

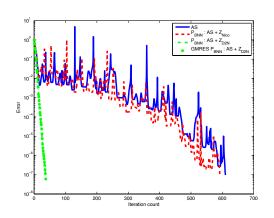
Results for elasticity (Problem)





Young's modulus (1 $\leq E \leq 10^6$) Poisson's ratio (0.35 $\leq \nu \leq$ 0.48)

Results for 2d elasticity (Solution)



Overlap is two grid cells

Outline

- Introduction
- Schwarz algorithms as solvers
- Schwarz algorithms as preconditioners
- 4 Classical coarse grid method
- 5 Coarse grid for heterogeneous problems
- 6 An abstract 2-level Schwarz the GenEO algorithm
 - Schwarz abstract setting
 - Numerical results

Problem setting – I

Given
$$f \in (V^h)^*$$
 find $u \in V^h$

$$a(u, v) = \langle f, v \rangle \quad \forall v \in V^h$$
 \iff
 $\mathbf{A}\mathbf{u} = \mathbf{f}$

Assumption throughout: A symmetric positive definite (SPD)

Examples:

- Darcy $a(u, v) = \int_{\Omega} \kappa \nabla u \cdot \nabla v \, dx$
- Elasticity $a(\boldsymbol{u}, \boldsymbol{v}) = \int_{\Omega} \boldsymbol{c} \, \boldsymbol{\varepsilon}(\boldsymbol{u}) : \boldsymbol{\varepsilon}(\boldsymbol{v}) \, dx$
- Eddy current $a(\boldsymbol{u}, \boldsymbol{v}) = \int_{\Omega} \boldsymbol{v} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v} + \boldsymbol{\sigma} \boldsymbol{u} \cdot \boldsymbol{v} dx$

Heterogeneities / high contrast / nonlinearities in parameters

Problem setting – II

- **①** $V^h \dots$ FE space of functions in Ω based on mesh $\mathcal{T}^h = \{\tau\}$
- A given as set of element stiffness matrices
 + connectivity (list of DOF per element)

Assembling property:

$$a(v, w) = \sum_{\tau} a_{\tau}(v_{|\tau}, w_{|\tau})$$

where $a_{\tau}(\cdot,\cdot)$ symm. pos. semi-definite

 $\{\phi_k\}_{k=1}^n$ (FE) basis of V^h on each element: *unisolvence* set of non-vanishing basis functions linearly independent

fulfilled by standard FE continuous, Nédélec, Raviart-Thomas of low/high order

4 Two more assumptions on $a(\cdot, \cdot)$ later!

Schwarz setting – I

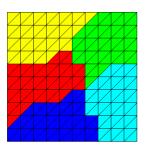
Overlapping partition: $\Omega = \bigcup_{j=1}^{N} \Omega_{j}$ (Ω_{j} union of elements)

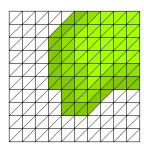
$$V_j := \operatorname{span}\{\phi_k : \operatorname{supp}(\phi_k) \subset \overline{\Omega}_j\}$$

such that every ϕ_k contained in one of those spaces, i.e.

$$V^h = \sum_{j=1}^N V_j$$

Example: adding "layers" to non-overlapping partition (partition and adding layers based on matrix information only!)





Schwarz setting – II

Local subspaces:

$$V_j \subset V^h$$
 $j=1,\ldots,N$

Coarse space (defined later):

$$V_0 \subset V^h$$

Additive Schwarz preconditioner:

$$\mathbf{M}_{ASM,2}^{-1} = \sum_{j=0}^{N} \mathbf{R}_{j}^{\top} \mathbf{A}_{j}^{-1} \mathbf{R}_{j}$$

where $\mathbf{A}_j = \mathbf{R}_j^{\top} \mathbf{A} \mathbf{R}_j$ and $\mathbf{R}_j^{\top} \leftrightarrow R_j^{\top} : V_j \to V^h$ natural embedding

Partition of unity

Definitions:

$$dof(\Omega_j) := \{k : \operatorname{supp}(\phi_k) \cap \Omega_j \neq \emptyset\}$$

 $idof(\Omega_j) := \{k : \operatorname{supp}(\phi_k) \subset \overline{\Omega}_j\}$ $V_j = \operatorname{span}\{\phi_k\}_{k \in idof(\Omega_j)}$
 $imult(k) := \#\{j : k \in idof(\Omega_j)\}$

Partition of unity:

(used for design of coarse space and for stable splitting)

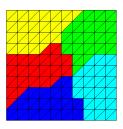
$$\Xi_j v = \sum_{k \in idof(\Omega_j)} \frac{1}{imult(k)} v_k \phi_k \quad \text{for } v = \sum_{k=1}^n v_k \phi_k$$

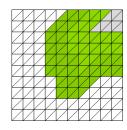
Properties:

$$\sum_{i=1}^{N} \Xi_{j} v = v \qquad \qquad \Xi_{j} v \in V_{j}$$

Overlapping zone / Choice of coarse space

Overlapping zone:
$$\Omega_j^{\circ} = \{x \in \Omega_j : \exists i \neq j : x \in \Omega_i\}$$





Observation: $\Xi_{j|\Omega_j\setminus\Omega_i^{\circ}}=\operatorname{id}$

Coarse space should be local:

$$V_0 = \sum_{j=1}^N V_{0,j}$$
 where $V_{0,j} \subset V_j$

E.g.
$$V_{0,j} = \text{span}\{\Xi_{j} p_{j,k}\}_{k=1}^{m_{j}}$$

Abstract eigenvalue problem

Gen.EVP per subdomain:

Find
$$p_{j,k} \in V_{h|\Omega_j}$$
 and $\lambda_{j,k} \geq 0$:
$$a_{\Omega_j}(p_{j,k}, v) = \lambda_{j,k} a_{\Omega_j^{\circ}}(\Xi_j p_{j,k}, \Xi_j v) \qquad \forall v \in V_{h|\Omega_j}$$
$$\mathbf{A}_j \mathbf{p}_{j,k} = \lambda_{j,k} \mathbf{X}_j \mathbf{A}_j^{\circ} \mathbf{X}_j \mathbf{p}_{j,k} \qquad (\mathbf{X}_j \dots \text{diagonal})$$

(properties of eigenfunctions discussed soon)

 $a_D \dots$ restriction of a to D

In the two-level ASM:

Choose first m_i eigenvectors per subdomain:

$$V_0 = \text{span}\{\Xi_j p_{j,k}\}_{k=1,...,m_j}^{j=1,...,N}$$

Theory

Two technical assumptions.

Theorem (D., Hauret, Nataf, Pechstein, Scheichl, Spillane)

If for all j: $0 < \lambda_{j,m_{j+1}} < \infty$:

$$\kappa(\mathbf{M}_{ASM,2}^{-1}\mathbf{A}) \leq (1+k_0)\Big[2+k_0(2k_0+1)\max_{j=1}^N\Big(1+\frac{1}{\lambda_{j,m_j+1}}\Big)\Big]$$

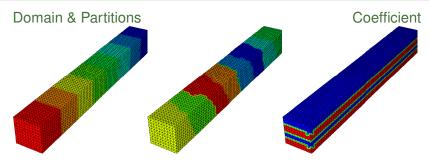
Possible criterion for picking m_i :

(used in our Numerics)

$$\lambda_{j,m_j+1} < \frac{\delta_j}{H_j}$$

 H_i ... subdomain diameter, δ_i ... overlap

Numerics – Darcy – I



Iterations (CG) vs. jumps

Code: Matlab & FreeFem++

κ_2	ASM-1	ASM-2-low	$dim(V_H)$	GenEO	$dim(V_H)$
1	22	16	(8)	16	(8)
10 ²	31	24	(8)	17	(15)
10 ⁴	37	30	(8)	21	(15)
10 ⁶	36	29	(8)	18	(15)

ASM-1: 1-level ASM

ASM-2-low: $m_i = 1$

NEW: $\lambda_{j,m_j+1} < \delta_j/H_j$

Numerics - Darcy - II

Iterations (CG) vs. number of subdomains

regular partition

subd.	dofs	ASM-1	ASM-2-low	$dim(V_H)$	GenEO	dim(V
4	4840	14	15	(4)	10	(6)
8	9680	26	22	(8)	11	(14)
16	19360	51	36	(16)	13	(30)
32	38720	> 100	61	(32)	13	(62)

METIS partition

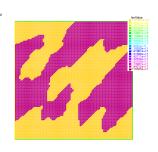
subd.	dofs	ASM-1	ASM-2-low	$dim(V_H)$	GenEO	$dim(V_t)$
4	4840	21	18	(4)	15	(7)
8	9680	36	29	(8)	18	(15)
16	19360	65	45	(16)	22	(31)
32	38720	>100	79	(32)	34	(63)

Numerics - Darcy - III

Iterations (CG) vs. overlap

(added) layers	ASM-1	ASM-2-low	(V_H)	GenEO	(V_H)
1	26	22	(8)	11	(14)
2	22	18	(8)	9	(14)
3	16	15	(8)	9	(14)

Numerics – 2D Elasticity



$$E_1 = 2 \cdot 10^{11}$$

$$\nu_1 = 0.3$$

$$E_2 = 2 \cdot 10^7$$

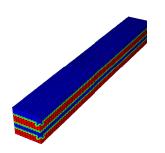
 $\nu_2 = 0.45$

METIS partitions with 2 layers added

subd.	dofs	ASM-1	ASM-2-low	(V_H)	GenEO	(V_H)
4	13122	93	134	(12)	42	(42)
16	13122	164	165	(48)	45	(159)
25	13122	211	229	(75)	47	(238)
64	13122	279	167	(192)	45	(519)

Numerics – 3D Elasticity

Iterations (CG) vs. number of subdomains



$$E_1 = 2 \cdot 10^{11}$$

 $\nu_1 = 0.3$

$$E_2 = 2 \cdot 10^7$$

 $\nu_2 = 0.45$

Relative error vs. iterations 16 regular subdomains

subd.	dofs	ASM-1	ASM-2-low	(V_H)	GenEO	(V_H)
4	1452	79	54	(24)	16	(46)
8	29040	177	87	(48)	16	(102)
16	58080	378	145	(96)	16	(214)