#### An introduction to Schwarz methods

#### Victorita Dolean







Université de Nice and University of Geneva

École thematique CNRS Décomposition de domaine November 15-16, 2011

#### **Outline**

- 1 Introduction
- Schwarz algorithms as solvers
- Schwarz algorithms as preconditioners
- Classical coarse grid method
- Coarse grid for heterogeneous problems
- 6 An abstract 2-level Schwarz the GenEO algorithm

### Motivation: pro and cons of direct solvers

#### Complexity of the Gauss factorization

| Gauss                | <i>d</i> = 1       | d = 2                  | <i>d</i> = 3           |
|----------------------|--------------------|------------------------|------------------------|
| dense matrix         | $\mathcal{O}(n^3)$ | $\mathcal{O}(n^3)$     | $\mathcal{O}(n^3)$     |
| using band structure | $\mathcal{O}(n)$   | $\mathcal{O}(n^2)$     | $\mathcal{O}(n^{7/3})$ |
| using sparsity       | $\mathcal{O}(n)$   | $\mathcal{O}(n^{3/2})$ | $\mathcal{O}(n^2)$     |

#### Different sparse direct solvers

- PARDISO (http://www.pardiso-project.org)
- SUPERLU (http://crd.lbl.gov/~xiaoye/SuperLU)
- SPOOLES (www.netlib.org/linalg/spooles/spooles.2.2.html)
- MUMPS (http://graal.ens-lyon.fr/MUMPS/)
- UMFPACK (http: //www.cise.ufl.edu/research/sparse/umfpack)

### Why iterative solvers?

#### Limitations of direct solvers

In practice all direct solvers work well until a certain barrier:

- two-dimensional problems (100K unknowns)
- three-dimensional problems (10K unknowns).

Beyond, the factorization cannot be stored in memory any more.

#### To summarize:

- below a certain size, direct solvers are chosen.
- beyond the critical size, iterative solvers are needed.

# Why domain decomposition?

#### Natural iterative/direct trade-off

- Parallel processing is the only way to have faster codes, new generation processors are parallel: dual, quadri core.
- Large scale computations need for an "artificial" decomposition
- Memory requirements, direct solvers are too costly
- Iterative solvers are not robust enough.

# New iterative/direct solvers are welcome: these are domain decomposition methods

In some situations, the decomposition is natural

- Moving domains (rotor and stator in an electric motor)
- Strongly heterogeneous media
- Different physics in different subdomains

# Linear Algebra from the End User point of view

| Direct             | DDM                    | Iterative          |
|--------------------|------------------------|--------------------|
| Cons: Memory       | Pro: Flexible          | Pros: Memory       |
| Difficult to       | Naurally               | Easy to            |
| Pros: Robustness   |                        | Cons: Robustness   |
| solve(MAT,RHS,SOL) | Few black box routines | solve(MAT,RHS,SOL) |
|                    | Few implementations    |                    |
|                    | of efficient DDM       |                    |

Multigrid methods: very efficient but may lack robustness, not always applicable (Helmholtz type problems, complex systems) and difficult to parallelize.

#### Outline

- 1 Introduction
- Schwarz algorithms as solvers
  - Three continuous Schwarz algorithms
  - Connection with the Block-Jacobi algorithm
  - Discrete setting
  - Iterative Schwarz methods
  - Convergence analysis
  - Schwarz methods using Freefem++
  - Schwarz algorithms as solvers
- 3 Schwarz algorithms as preconditioners
- 4 Classical coarse grid method
- Coarse grid for heterogeneous problems

### The First Domain Decomposition Method

#### The original Schwarz Method (H.A. Schwarz, 1870)

$$-\Delta(u) = f \quad \text{in } \Omega$$
 $u = 0 \quad \text{on } \partial\Omega.$ 

Schwarz Method :  $(u_1^n, u_2^n) \rightarrow (u_1^{n+1}, u_2^{n+1})$  with

$$\begin{split} -\Delta(u_1^{n+1}) &= f \quad \text{in } \Omega_1 \\ u_1^{n+1} &= 0 \text{ on } \partial\Omega_1 \cap \partial\Omega \\ u_1^{n+1} &= u_2^n \quad \text{on } \partial\Omega_1 \cap \overline{\Omega_2}. \end{split} \qquad \begin{aligned} -\Delta(u_2^{n+1}) &= f \quad \text{in } \Omega_2 \\ u_2^{n+1} &= 0 \text{ on } \partial\Omega_2 \cap \partial\Omega \\ u_2^{n+1} &= u_1^{n+1} \quad \text{on } \partial\Omega_2 \cap \overline{\Omega_1}. \end{aligned}$$

Parallel algorithm, converges but very slowly, overlapping subdomains only.

The parallel version is called **Jacobi Schwarz method (JSM)**.

#### Continuous ASM and RAS - I

The algorithm acts on the local functions  $(u_i)_{i=1,2}$ . To make things global, we need:

- extension operators,  $E_i$ , s.t. for a function  $w_i : \Omega_i \mapsto \mathbb{R}$ ,  $E_i(w_i) : \Omega \mapsto \mathbb{R}$  is the extension of  $w_i$  by zero outside  $\Omega_i$ .
- partition of unity functions  $\chi_i : \Omega_i \mapsto \mathbb{R}$ ,  $\chi_i \ge 0$  and  $\chi_i(x) = 0$  for  $x \in \partial \Omega_i$  and s.t.

$$w = \sum_{i=1}^2 E_i(\chi_i w_{|\Omega_i}).$$

Let  $u^n$  be an approximation to the solution to the global Poisson problem and  $u^{n+1}$  is computed by solving first local subproblems and then gluing them together.

#### Continuous ASM and RAS - II

Local problems to solve

$$-\Delta(u_i^{n+1}) = f \quad \text{in} \quad \Omega_i$$

$$u_i^{n+1} = 0 \quad \text{on} \quad \partial\Omega_i \cap \partial\Omega$$

$$u_i^{n+1} = u^n \quad \text{on} \quad \partial\Omega_i \cap \overline{\Omega}_{3-i}.$$

Two ways to "glue" solutions

Using the partition of unity functions
 Restricted Additive Schwarz (RAS)

$$u^{n+1} := \sum_{i=1}^{2} E_i(\chi_i u_i^{n+1}).$$

 Not based on the partition of unity Additive Schwarz (ASM)

$$u^{n+1} := \sum_{i=1}^{2} E_i(u_i^{n+1}).$$

#### Block Jacobi methods - I

Let us consider a linear system:

$$AU = F$$

with a matrix A of size  $m \times m$ , a right handside  $F \in \mathbb{R}^m$  and a solution  $U \in \mathbb{R}^m$  where m is an integer. Let D be the diagonal of A, the Jacobi algorithm reads:

$$DU^{n+1} = DU^n + (b - AU^n),$$

or equivalently,

$$U^{n+1} = U^n + D^{-1}(b - AU^n) = U^n + D^{-1}r^n$$

where  $r^n$  is the residual of the equation.

#### Block Jacobi methods - II

We now define a block Jacobi algorithm. The set of indices  $\{1, \ldots, m\}$  is partitioned into two sets

$$\mathcal{N}_1 := \{1, \dots, m_s\} \text{ and } \mathcal{N}_2 := \{m_s + 1, \dots, m\}.$$

Let  $U_1:=U_{|\mathcal{N}_1},\ U_2:=U_{|\mathcal{N}_2}$  and similarly  $F_1:=F_{|\mathcal{N}_1},\ F_2:=F_{|\mathcal{N}_2}.$  The linear system has the following block form:

$$\left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right) \left(\begin{array}{c} U_1 \\ U_2 \end{array}\right) = \left(\begin{array}{c} F_1 \\ F_2 \end{array}\right)$$

where  $A_{ij} := A_{|\mathcal{N}_i \times \mathcal{N}_i}$ ,  $1 \le i, j \le 2$ .

#### Block Jacobi methods - III

The block-Jacobi algorithm reads:

$$\begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} U_1^{n+1} \\ U_2^{n+1} \end{pmatrix} = \begin{pmatrix} F_1 - A_{12} U_2^n \\ F_2 - A_{21} U_1^n \end{pmatrix}. \tag{1}$$

Let  $U^n = (U_1^n, U_2^n)^T$ , algorithm (1) becomes

$$\begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} U^{n+1} = F - \begin{pmatrix} 0 & A_{12} \\ A_{21} & 0 \end{pmatrix} U^{n}.$$
 (2)

On the other hand, it can be rewritten equivalently

$$\begin{pmatrix} U_1^{n+1} \\ U_2^{n+1} \end{pmatrix} = \begin{pmatrix} U_1^n \\ U_2^n \end{pmatrix} + \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}^{-1} \begin{pmatrix} r_1^n \\ r_2^n \end{pmatrix}$$
(3)

where

$$r^n := F - AU^n, r_i^n := r_{|\mathcal{N}_i}^n, \ i = 1, 2.$$

### Block-Jacobi compact form

In order to have a more compact form, let us introduce

- $R_1$  the restriction operator from  $\mathcal{N}$  into  $\mathcal{N}_1$
- $R_2$  the restriction operator from  $\mathcal{N}$  into  $\mathcal{N}_2$ .

The transpose operator  $R_1^T$  is an extension operator from  $\mathcal{N}_1$  into  $\mathcal{N}$  and the same holds for  $R_2^T$ . Notice that  $A_{ii} = R_i A R_i^T$ .

#### Block-Jacobi in compact form

$$U^{n+1} = U^n + (R_1^T (R_1 A R_1^T)^{-1} R_1 + R_2^T (R_2 A R_2^T)^{-1} R_2) r^n.$$
 (4)

where

$$r^n := F - AU^n, r_i^n := r_{|\mathcal{N}_i}^n, \ i = 1, 2.$$

### Schwarz algorithms as block Jacobi methods - I

Let  $\Omega := (0,1)$  and consider the following BVP

$$-\Delta u = f \text{ in } \Omega$$
  
 
$$u(0) = u(1) = 0.$$

discretized by a three point finite difference scheme on the grid  $x_j := j h$ ,  $1 \le j \le m$  where h := 1/(m+1). Let  $u_i \simeq u(x_i)$ ,  $f_i := f(x_i)$ ,  $1 \le j \le m$  and the discrete problem

$$AU = F, U = (u_j)_{1 \le j \le m}, F = (f_j)_{1 \le j \le m}.$$

where  $A_{jj} := 2/h^2$  and  $A_{jj+1} = A_{j+1j} := -1/h^2$ . Let domains  $\Omega_1 := (0, (m_s + 1) h)$  and  $\Omega_2 := (m_s h, 1)$  define an overlapping decomposition with a minimal overlap of width h. The discretization of the **JSM** for domain  $\Omega_1$  reads

$$\left\{ \begin{array}{l} -\frac{u_{1,j-1}^{n+1}-2u_{1,j}^{n+1}+u_{1,j+1}^{n+1}}{h^2}=f_j,\ 1\leq j\leq m_s\\ u_{1,0}^{n+1}=0\\ u_{1,m_s+1}^{n+1}=u_{2,m_s+1}^n \end{array} \right..$$

Solving for  $U_1^{n+1} = (u_{1,j}^{n+1})_{1 \le j \le m_s}$  corresponds to solving a Dirichlet boundary value problem in subdomain  $\Omega_1$  with Dirichlet data taken from the other subdomain at the previous step. Then,  $U_1^{n+1}$  and  $U_1^{n+1}$  satisfy

$$\begin{split} A_{11} U_1^{n+1} + A_{12} U_2^n &= F_1, \\ A_{22} U_2^{n+1} + A_{21} U_1^n &= F_2 \,. \end{split}$$

#### Schwarz as block Jacobi methods - III

The discrete counterpart of the extension operator  $E_1$  (resp.  $E_2$ ) is defined by  $E_1(U_1) = (U_1, 0)^T$  (resp.  $E_2(U_2) = (0, U_2)^T$ ).



then 
$$E_1(U_1) + E_2(U_2) = E_1(\chi_1 U_1) + E_2(\chi_2 U_2) = \begin{pmatrix} U_1 \\ U_2 \end{pmatrix}$$
.

When the overlap is minimal, the discrete counterparts of the three Schwarz methods are equivalent to the same block Jacobi algorithm.

#### Continuous level

- $\Omega$  and an overlapping decomposition  $\Omega = \bigcup_{i=1}^{N} \Omega_i$ .
- A function  $u: \Omega \to \mathbb{R}$ .
- Restriction of  $u : \Omega \to \mathbb{R}$  to  $\Omega_i$ ,  $1 \le i \le N$ .
- The extension  $E_i$  of a function  $\Omega_i \to \mathbb{R}$  to a function  $\Omega \to \mathbb{R}$ .
- Partition of unity functions  $\chi_i$ ,  $1 \le i \le N$ .

#### Discrete level

- A set of d.o.f.  $\mathcal{N}$  and a decomposition  $\mathcal{N} = \bigcup_{i=1}^{N} \mathcal{N}_{i}$ .
- A vector  $U \in \mathbb{R}^{\#\mathcal{N}}$ .
- The restriction  $R_i$  U where  $U \in \mathbb{R}^{\#\mathcal{N}}$  and  $R_i$  is a rectangular  $\#\mathcal{N}_i \times \#\mathcal{N}$  boolean matrix.
- Extension  $R_i^T$ .
- Diagonal matrices with positive entries, of size  $\#\mathcal{N}_i \times \#\mathcal{N}_i$  s. t.  $Id = \sum_{i=1}^{N} R_i^T D_i R_i$ .

### Restrictions operators

Let  $\mathcal{T}_h$  be a mesh of a domain  $\Omega$  and  $u_h$  some discretization of a function u which is the solution of an elliptic Dirichlet BVP. This yields a linear algebra problem

Find 
$$U \in \mathbb{R}^{\#\mathcal{N}}$$
s.t.  $AU = F$ .

Define the restriction operator  $r_i = E_i^T$ :

$$r_i: u_h \mapsto u_{h|\Omega_i}$$

Let  $R_i$  be the boolean matrix corresponding to the restriction operator  $r_i$ :

$$R_i := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \dots \end{bmatrix}$$

$$R_i: \mathbb{R}^{\#\mathcal{N}} \longmapsto \mathbb{R}^{\#\mathcal{N}_i}$$

# Partition of unity

We have

$$R_i: \mathbb{R}^{\#\mathcal{N}} \longmapsto \mathbb{R}^{\#\mathcal{N}_i}$$

and the transpose is a prolongation operator

$$R_i^T: \mathbb{R}^{\#\mathcal{N}_i} \longmapsto \mathbb{R}^{\#\mathcal{N}}$$
.

The local Dirichlet matrices are given by

$$A_i := R_i A R_i^T$$
.

We also need a kind of partition of unity defined by matrices  $D_i$ 

$$D_i: \mathbb{R}^{\#\mathcal{N}_i} \longmapsto \mathbb{R}^{\#\mathcal{N}_i}$$

so that we have:

$$\sum_{i=1}^{N} R_i^T D_i R_i = Id$$

# Two subdomain case: 1d algebraic setting

Let 
$$\mathcal{N} := \{1, \dots, 5\}$$
 be partitioned into  $\mathcal{N}_1 := \{1, 2, 3\}$  and  $\mathcal{N}_2 := \{4, 5\}$ .



Then, matrices  $R_1$ ,  $R_2$ ,  $D_1$  and  $D_2$  are:

$$R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \ \text{ and } R_2 = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \ .$$

$$D_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and  $D_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ .

#### Consider now the case overlapping case

$$\mathcal{N}_1^{\delta=1} := \{1,2,3,4\} \text{ and } \mathcal{N}_2^{\delta=1} := \{3,4,5\} \,.$$



Then, matrices  $R_1$ ,  $R_2$ ,  $D_1$ ,  $D_2$  are:

$$R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \text{ and } R_2 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$D_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{pmatrix} \text{ and } D_2 = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

# Two subdomain case: 1d finite element decomposition

Partition of the 1D mesh corresponds to an ovr. decomp. of  $\mathcal{N}$ :

$$\mathcal{N}_1 := \{1, 2, 3\} \text{ and } \mathcal{N}_2 := \{3, 4, 5\}.$$



Then, matrices  $R_1$ ,  $R_2$ ,  $D_1$ ,  $D_2$  are:

$$R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \text{ and } R_2 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$D_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/2 \end{pmatrix} \text{ and } D_2 = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

V. Dolean

#### Consider now the situation of an overlapping partition.

$$\mathcal{N}_1^{\delta=1} := \{1,2,3,4\} \text{ and } \mathcal{N}_2^{\delta=1} := \{2,3,4,5\} \,.$$



Then, matrices  $R_1$ ,  $R_2$ ,  $D_1$ ,  $D_2$  are:

$$R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \text{ and } R_2 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \,.$$

$$D_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \end{pmatrix} \text{ and } D_2 = \begin{pmatrix} 1/2 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

### Multi-D and many subdomains: General procedure

The set of indices  $\mathcal N$  can be partitioned by an automatic graph partitioner such as **METIS** or **SCOTCH**.

- From the input matrix A, a connectivity graph is created.
- Two indices  $i, j \in \mathcal{N}$  are connected if the matrix coefficient  $A_{ii} \neq 0$ .
- Even if matrix A is not symmetric, the connectivity graph is symmetrized.
- Algorithms that find a good partitioning of highly unstructured graphs are used.
- This distribution must be done so that the number of elements assigned to each processor is roughly the same (balance the computations among the processors).
- The number of adjacent elements assigned to different processors is minimized (minimize the communication between different processors).

# Multi-D algebraic setting

Let us consider a partition into *N* subsets

$$\mathcal{N} := \cup_{i=1}^{N} \mathcal{N}_{i}, \quad \mathcal{N}_{i} \cap \mathcal{N}_{j} = \emptyset \text{ for } i \neq j.$$



Extend each subset  $\mathcal{N}_i$  with its direct neighbors to form  $\mathcal{N}_i^{\delta=1}$ . Let  $R_i$  be the restriction matrix from set  $\mathcal{N}$  to the subset  $\mathcal{N}_i^{\delta=1}$  and  $D_i$  be a diagonal matrix of size  $\#\mathcal{N}_i^{\delta=1} \times \#\mathcal{N}_i^{\delta=1}$ ,  $1 \leq i \leq N$  such that for

$$\mathcal{M}_j := \{1 \leq i \leq N | j \in \mathcal{N}_i^{\delta=1}\}.$$

and  $j \in \mathcal{N}_i^{\delta=1}$ , we define  $(D_i)_{jj} := 1/\# \mathcal{M}_j$ .

# Multi-D algebraic finite element decomposition

In a FE setting, the computational domain is the union of elements of the finite element mesh  $\mathcal{T}_h$ .



It is possible to create overlapping subdomains resolved by the finite element meshes:

$$\Omega_i = \bigcup_{\tau \in \mathcal{T}_{i,h}} \tau \text{ for } 1 \le i \le N.$$
(5)

Let  $\{\phi_k\}_{k\in\mathcal{N}}$  be a basis of the finite element space. For  $1\leq i\leq N$ , we define

$$\mathcal{N}_i := \{ k \in \mathcal{N} : \mathsf{supp}(\phi_k) \cap \Omega_i \neq \emptyset \}.$$

For all degree of freedom  $k \in \mathcal{N}$ , let

$$\mu_k := \# \{ j : 1 \le j \le N \text{ and } \operatorname{supp}(\phi_k) \cap \Omega_j \ne \emptyset \}.$$

Let  $R_i$  be the restriction matrix from set  $\mathcal{N}$  to the subset  $\mathcal{N}_i$  and  $D_i$  be a diagonal matrix of size  $\#\mathcal{N}_i \times \#\mathcal{N}_i$ ,  $1 \le i \le N$ . Then, for  $k \in \mathcal{N}_i$ , we define  $(D_i)_{kk} := 1/\mu_k$ .

### Algebraic formulation - JSM

Define local unknowns  $U_i := R_i U$  for i = 1, ..., N and local right handside  $F_i := R_i F$ .

$$R_{i} A U = R_{i} A R_{i}^{T} (R_{i} U) + R_{i} A (Id - R_{i}^{T} R_{i}) U = F_{i}$$

$$= R_{i} A R_{i}^{T} U_{i} + R_{i} A (Id - R_{i}^{T} R_{i}) \sum_{j=1}^{N} R_{j}^{T} D_{j} R_{j} U$$

$$= R_{i} A R_{i}^{T} U_{i} + \sum_{j=1}^{N} R_{i} A (Id - R_{i}^{T} R_{i}) R_{j}^{T} D_{j} U_{j}$$

Notice that  $(Id - R_i^T R_i)R_i^T R_i = 0$  so we have

$$R_i A R_i^T U_i + \sum_{j \neq i} R_i A (Id - R_i^T R_i) R_j^T D_j U_j = F_i$$
 (6)

### Algebraic formulation - JSM

Let us define the block matrix  $\tilde{A}$  (extended matrix)

$$(\widetilde{A})_{ii} := R_i \, A \, R_i^T, \, (\widetilde{A})_{ij} := R_i \, A \, (Id - R_i^T \, R_i) R_j^T \, D_j, \, 1 \leq i \neq j \leq N$$

Define (extended) unknown vector and right-hand side

$$\begin{split} \widetilde{\boldsymbol{U}} &:= (\boldsymbol{U}_1, \dots, \boldsymbol{U}_i, \dots, \boldsymbol{U}_N)^T \in \mathbb{R}^{\sum_{i=1}^N \# \mathcal{N}_i}, \\ \widetilde{\boldsymbol{F}} &:= (\boldsymbol{R}_1 \, \boldsymbol{F}, \dots, \boldsymbol{R}_i \, \boldsymbol{F}, \dots, \boldsymbol{R}_N \, \boldsymbol{F})^T \in \mathbb{R}^{\sum_{i=1}^N \# \mathcal{N}_i}. \end{split}$$

Let  $(M_{JSM})_{ii} := (\widetilde{A})_{ii} = R_i A R_i^T$ . The block Jacobi method applied to the (extended) system

$$\widetilde{A}\widetilde{U}=\widetilde{F}$$

is the JSM:

$$\widetilde{\boldsymbol{U}}^{n+1} = \widetilde{\boldsymbol{U}}^n + \boldsymbol{M}_{JSM}^{-1} \widetilde{\boldsymbol{r}}^n, \widetilde{\boldsymbol{r}}^n := \widetilde{\boldsymbol{F}} - \widetilde{\boldsymbol{A}} \widetilde{\boldsymbol{U}}^n. \tag{7}$$

### Algebraic formulation - RAS and ASM

As for (RAS), we give the following definition

$$M_{RAS}^{-1} := \sum_{i=1}^{N} R_i^T D_i (R_i A R_i^T)^{-1} R_i$$
 (8)

so that the iterative RAS algorithm reads:

$$U^{n+1} = U^n + M_{RAS}^{-1} r^n, r^n := F - A U^n.$$

For (ASM), we give the following definition

$$M_{ASM}^{-1} := \sum_{i=1}^{N} R_i^T (R_i A R_i^T)^{-1} R_i$$
 (9)

so that the iterative ASM algorithm reads:

$$U^{n+1} = U^n + M_{RAS}^{-1} r^n$$
.

### Geometrical analysis in 1d

Let L>0 and the domain  $\Omega=(0,L)$  be decomposed into two subodmains  $\Omega_1:=(0,L_1)$  and  $\Omega_2:=(I_2,L)$  with  $I_2\leq L_1$ . The error  $e_i^n:=u_i^n-u_{|\Omega_i},\ i=1,2$  satisfies

$$-\frac{d^{2}e_{1}^{n+1}}{dx^{2}} = 0 \quad \text{in } (0, L_{1}) \\ e_{1}^{n+1}(0) = 0 \\ e_{1}^{n+1}(L_{1}) = e_{2}^{n}(L_{1}) \qquad \text{then,} \qquad -\frac{d^{2}e_{2}^{n+1}}{dx^{2}} = 0 \quad \text{in } (I_{2}, L) \\ e_{2}^{n+1}(I_{2}) = e_{1}^{n+1}(I_{2}) \\ e_{2}^{n+1}(L) = 0 . \tag{10}$$

Thus the errors are affine functions in each subdomain:

$$e_1^{n+1}(x) = e_2^n(L_1) \frac{x}{L_1}$$
 and  $e_2^{n+1}(x) = e_1^{n+1}(I_2) \frac{L-x}{L-I_2}$ .

Thus, we have

$$e_2^{n+1}(L_1) = e_1^{n+1}(l_2) \frac{L-L_1}{L-l_2} = e_2^n(L_1) \frac{l_2}{L_1} \frac{L-L_1}{L-l_2}$$
.

Let  $\delta := L_1 - I_2$  denote the size of the overlap, we have

$$e_2^{n+1}(L_1) = \frac{I_2}{I_2 + \delta} \frac{L - I_2 - \delta}{L - I_2} e_2^n(L_1) = \frac{1 - \delta/(L - I_2)}{1 + \delta/I_2} e_2^n(L_1).$$

It is clear that  $\delta > 0$  is sufficient and necessary to have convergence.



### Fourier analysis in 2d - I

Let  $\mathbb{R}^2$  decomposed into two half-planes  $\Omega_1=(-\infty,\delta)\times\mathbb{R}$  and  $\Omega_2=(0,\infty)\times\mathbb{R}$  with an overlap of size  $\delta>0$  and the problem

$$(\eta - \Delta)(u) = f$$
 in  $\mathbb{R}^2$ ,  
  $u$  is bounded at infinity,

By linearity, the errors  $e_i^n := u_i^n - u|_{\Omega_i}$  satisfy the JSM f = 0:

$$(\eta - \Delta)(e_1^{n+1}) = 0$$
 in  $\Omega_1$ 
 $e_1^{n+1}$  is bounded at infinity
 $e_1^{n+1}(\delta, y) = e_2^n(\delta, y),$ 
 $(11)$ 

$$(\eta - \Delta)(e_2^{n+1}) = 0$$
 in  $\Omega_2$ 

$$e_2^{n+1}$$
 is bounded at infinity
$$e_2^{n+1}(0,y) = e_1^n(0,y).$$
(12)

### Fourier analysis in 2d - II

By taking the partial Fourier transform of the equation in the *y* direction we get:

$$\left(\eta - \frac{\partial^2}{\partial x^2} + k^2\right) \left(\hat{\mathbf{e}}_1^{n+1}(x,k)\right) = 0 \quad \text{in} \quad \Omega_1.$$

For a given k, the solution

$$\hat{e}_{1}^{n+1}(x,k) = \gamma_{+}^{n+1}(k) \exp(\lambda^{+}(k)x) + \gamma_{-}^{n+1}(k) \exp(\lambda^{-}(k)x).$$

must be bounded at  $x = -\infty$ . This implies

$$\hat{e}_1^{n+1}(x,k) = \gamma_+^{n+1}(k) \exp(\lambda^+(k)x)$$

and similarly,

$$\hat{\mathbf{e}}_{2}^{n+1}(x,k) = \gamma_{-}^{n+1}(k) \exp(\lambda^{-}(k)x)$$

### Fourier analysis in 2d - III

From the interface conditions we get

$$\gamma_{+}^{n+1}(k) = \gamma_{-}^{n}(k) \exp(\lambda^{-}(k)\delta), \ \gamma_{-}^{n+1}(k) = \gamma_{+}^{n}(k) \exp(-\lambda^{+}(k)\delta).$$

Combining these two and denoting  $\lambda(k) = \lambda^+(k) = -\lambda^-(k)$ , we get for i = 1, 2,

$$\gamma_{\pm}^{n+1}(\mathbf{k}) = \rho(\mathbf{k}; \alpha, \delta)^2 \gamma_{\pm}^{n-1}(\mathbf{k})$$

with  $\rho$  the convergence rate given by:

$$\rho(\mathbf{k}; \alpha, \delta) = \exp(-\lambda(\mathbf{k})\delta), \tag{13}$$

where  $\lambda(k) = \sqrt{\eta + k^2}$ .

# Fourier analysis in 2d - IV



#### Remark

We have the following properties:

- For all  $k \in \mathbb{R}$ ,  $\rho(k) < \exp(-\sqrt{\eta} \, \delta) < 1$  so that  $\gamma_i^n(k) \to 0$  uniformly as n goes to infinity.
- $\rho \to 0$  as k tends to infinity, high frequency modes of the error converge very fast.
- When there is no overlap ( $\delta=0$ ),  $\rho=1$  and there is stagnation of the method.

V. Dolean

# About FreeFem++ (survival kit)

FreeFem++ allows a very simple and natural way to solve a great variety of variational problems (FEM, DG).

It is possible to have access to the underlying linear algebra such as the stiffness or mass matrices.

```
Tutorial: http://www.cmap.polytechnique.fr/spip.php?article239.
```

A very detailed documentation of FreeFem++ is available on the official website http://www.freefem.org/ff++

```
http://www.freefem.org/ff++/ftp/freefem++doc.pdf
```

Let a homogeneous Dirichlet boundary value problem for a Laplacian defined on a unit square  $\Omega = ]0,1[^2]$ :

$$\begin{cases} -\Delta u = f & \text{dans } \Omega \\ u = 0 & \text{sur } \partial \Omega \end{cases}$$
 (14)

The variational formulation of the problem

Find 
$$u \in H_0^1(\Omega) := \{ w \in H^1(\Omega) : w = 0, \text{ on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4 \}$$
 such that

$$\int_{\Omega} \nabla u. \nabla v dx - \int_{\Omega} f \, v \, dx = 0, \forall v \in H^1_0(\Omega) \, .$$

Feature of Freefem++: penalization of Dirichlet BC. Let TGV (*Très Grande Valeur* in French) be a very large value, the above variational formulation is approximated by Find  $u \in H^1(\Omega)$  such that

$$\int_{\Omega} \nabla u. \nabla v dx + TGV \int_{\square_{i-1} \dots A\Gamma_i} u \, v - \int_{\Omega} \text{fv } dx = 0, \forall v \in H^1(\Omega) \, .$$

### The following FreeFem++ script is solving this problem

```
// Number of mesh points in x and y directions int Nbnoeuds=10;
```

The text after // symbols are comments ignored by the FreeFem++ language.

Each new variable must be declared with its type (here int designs integers).

```
//Mesh definition
mesh Th=square(Nbnoeuds, Nbnoeuds, [x,y]);
```

The function square returns a structured mesh of the square, the sides of the square are labelled from 1 to 4 in trigonometrical sense.

### Define the function representing the right hand side

```
// Function of x and y
func f=x*y;
```

and the  $P_1$  finite element space Vh over the mesh Th.

```
// Finite element space on the mesh Th
fespace Vh(Th,P1);
//uh and vh are of type Vh
Vh uh,vh;
```

The functions  $u_h$  and  $v_h$  belong to the  $P_1$  finite element space  $V_h$  which is an approximation to  $H^1(\Omega)$ .

```
// variational problem definition
problem heat(uh, vh, solver=LU) =
    int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))
    -int2d(Th)(f*vh)
    +on(1,2,3,4,uh=0);
```

The keyword <code>problem</code> allows the definition of a variational problem (without solving it)

$$\int_{\Omega} \nabla u_h. \nabla v_h \text{d}x + \textit{TGV} \int_{\cup_{i=1,...,4}\Gamma_i} u_h \, v_h - \int_{\Omega} \textit{fv}_h \text{d}x = 0, \forall v_h \in \textit{V}_h \,.$$

where TGV is equal to  $10^{30}$ .

The parameter solver sets the method that will be used to solve the resulting linear system. To solve the problem we need

```
//Solving the problem
heat;
// Plotting the result
plot(uh,wait=1);
```

The Freefem++ script can be saved with your favourite text editor (e.g. under the name heat.edp). In order to execute the script write the shell command

```
FreeFem++ heat.edp
```

The result will be displayed in a graphic window.

Solve Neumann or Fourier boundary conditions such as

$$\begin{cases}
-\Delta u + u = f & \text{dans } \Omega \\
\frac{\partial u}{\partial n} = 0 & \text{sur } \Gamma_1 \\
u = 0 & \text{sur } \Gamma_2 \\
\frac{\partial u}{\partial n} + \alpha u = g & \text{sur } \Gamma_3 \cup \Gamma_4
\end{cases}$$
(15)

The new variational formulation consists in determining  $u_h \in V_h$  such that

$$\begin{split} &\int_{\Omega} \nabla u_h.\nabla v_h \text{d}x + \int_{\Gamma_3 \cup \Gamma_4} \alpha u_h v_h + \textit{TGV} \int_{\Gamma_2} u_h.v_h \\ &- \int_{\Gamma_3 \cup \Gamma_4} \textit{g}v_h - \int_{\Omega} \textit{f}v_h \text{d}x = 0, \forall v_h \in \textit{V}_h. \end{split}$$

### The Freefem++ definition of the problem

```
problem heat(uh, vh) =
int2d(Th) (dx(uh) *dx(vh) +dy(uh) *dy(vh))
+int1d(Th, 3, 4) (alpha*uh*vh)
-int1d(Th, 3, 4) (g*vh)
-int2d(Th) (f*vh)
+on(2, uh=0);
```

In order to use some **linear algebra** package, we need the matrices. The keyword <code>varf</code> allows the definition of a variational formulation

```
varf heat(uh, vh) =
int2d(Th) (dx(uh) *dx(vh) +dy(uh) *dy(vh))
+int1d(Th, 3, 4) (alpha*uh*vh)
-int1d(Th, 3, 4) (g*vh)
-int2d(Th) (f*vh)
+on(2, uh=0);
matrix Aglobal; // stiffness sparse matrix
Aglobal = heat(Vh, Vh, solver=UMFPACK); // UMFPACK solver
Vh rhsglobal; //right hand side vector
rhsglobal[] = heat(0, Vh);
```

Here rhsglobal is a FE function and the associated vector of d.o.f. is rhsglobal[].

The linear system is solved by using UMFPACK

```
// Solving the problem by a sparse LU sover
uh[] = Aqlobal^-1*rhsqlobal[];
```

# Decomposition into overlapping domains I

Suppose we want a decomposition of a rectangle  $\Omega$  into  $nn \times mm$  domains with approximately nloc points in one direction.

```
int nn=4, mm=4;
int npart= nn*mm;
int nloc = 20;
real allong = 1;
allong = real(nn)/real(mm);
mesh Th=square(nn*nloc*allong,mm*nloc,[x*allong,y]);
fespace Vh(Th,P1);
fespace Ph(Th, P0);
Ph part;
Ph xx=x,yy=y;
part = int(xx/allong*nn)*mm + int(yy*mm);
plot(part, fill=1, value=1, wait=1, ps="decompunif.eps");
```

### For arbitrary decompositions, use METIS or SCOTCH.

```
int nn=4, mm=4;
int npart= nn*mm;
int nloc = 20;
real allong = 1;
allong = real(nn)/real(mm);
mesh Th=square(nn*nloc*allong,mm*nloc,[x*allong,y]);
fespace Vh(Th, P1);
fespace Ph(Th, P0);
Ph part;
bool withmetis = 1;
if (withmetis) // Metis partition
    load "metis";
    int[int] nupart(Th.nt);
    metisdual(nupart, Th, npart);
    for(int i=0;i<nupart.n;++i)</pre>
      part[][i]=nupart[i];
plot(part,fill=1,value=1,wait=1,ps="decompMetis.eps");
```

# Decomposition into overlapping domains II

To build the overlapping decomposition and the associated algebraic call the routine SubdomainsPartitionUnity. Output:

- overlapping meshes aTh[i]
- the restriction/interpolation operators Rih[i] from the local finite element space Vh[i] to the global one Vh
- the diagonal local matrices Dih[i] from the partition of unity.

```
include "createPartition.edp";
include "decompMetis.edp";

// overlapping partition
int sizeovr = 3;
mesh[int] aTh(npart); // sequence of ovr. meshes
matrix[int] Rih(npart); // local restriction operators
matrix[int] Dih(npart); // partition of unity operators
```

# RAS and ASM: global data

### We first need to define the global data.

```
// Solve Dirichlet subproblem Delta (u) = f
// u = 1 on the global boundary
int[int] chlab=[1,1,2,1,3,1,4,1];
Th=change(Th, refe=chlab);
macro Grad(u) [dx(u),dy(u)]
                                    // EOM
                                    // right hand side
func f = 1;
                                    // Dirichlet data
func q = 1;
// global problem
Vh rhsqlobal, uqlob;
varf vaglobal(u, v) =
    int2d(Th)(Grad(u)'*Grad(v))
    +on(1, u=g) + int2d(Th)(f*v);
matrix Aglobal;
Aglobal = vaglobal(Vh, Vh, solver = UMFPACK); // matrix
rhsglobal[] = vaglobal(0, Vh);
                                              // rhs
uglob[] = Aglobal^-1*rhsglobal[];
```

### RAS and ASM: local data

#### And then the local problems

```
// overlapping partition
int sizeovr = 4;
                           // overlapping meshes
mesh[int] aTh(npart);
matrix[int] Rih(npart);
                           // restriction operators
SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rih,Dih);
                            // Dirichlet matrices
matrix[int] aA(npart);
for (int i = 0; i < npart; ++i)
   cout << " Domain :" << i << "/" << npart << endl;
   matrix aT = Aglobal*Rih[i]';
   aA[i] = Rih[i]*aT;
   set(aA[i], solver = UMFPACK);// direct solvers
```

# RAS and ASM: Schwarz iteration

```
int nitermax = 1000;
Vh un = 0, rn = rhsglobal; // initial guess
for(int iter = 0;iter<nitermax;++iter)</pre>
 {real err = 0;}
 Vh er = 0;
  for (int i = 0; i < npart; ++i)
     {real[int] bi = Rih[i]*rn[];  // restriction
      real[int] ui = aA[i] ^-1 * bi; // local solve
     bi = Dih[i]*ui;
                                  // bi = ui; ASM
        er[] += Rih[i]'*bi; }
   un[] += er[];  // build new iterate
    rn[] = Aglobal*un[];  // global residual
    rn[] = rn[] - rhsqlobal[];
    rn[] *= -1;
    err = sqrt(er[]'*er[]);
    cout << "Iter: " << iter << " Err = " << err << endl
    if (err < 1e-5) break;
    plot(un, wait=1, value=1, fill=1, dim=3);}
plot(un, wait=1, value=1, fill=1, dim=3, ps = "solution.eps")
```

### Convergence

Convergence history of the RAS solver for different values of the overlapping parameter.



Note that this convergence, not very fast even in a simple configuration of 4 subdomains.

The iterative version of ASM does not converge. For this reason, the ASM method is always used a preconditioner for a Krylov method such as CG, GMRES or BiCGSTAB.

### Outline

- 1 Introduction
- Schwarz algorithms as solvers
- Schwarz algorithms as preconditioners
  - Neumann series and Krylov spaces
  - Krylov methods
  - Application to DDM
  - Schwarz preconditioners using FreeFEM++
- Classical coarse grid method
- 5 Coarse grid for heterogeneous problems
- 6 An abstract 2-level Schwarz the GenEO algorithm

# Fixed point method

Consider a well-posed but difficult to solve linear system

$$Ax = b$$

and *B* an "easy to invert" matrix of the same size than *A*. A possible iterative method is a fixed point algorithm

$$x^{n+1} = x^n + B^{-1}(b - Ax^n)$$

and *x* is a fixed point of the operator:

$$x \longmapsto x + B^{-1}(b - Ax)$$
.

Let  $r_0 := b - Ax^0$  and  $C := B^{-1}A$ , a direct computation shows that we have:

$$x^{n} = \sum_{i=0}^{n} (I_{ci} - C)^{i} B^{-1} r_{0} + x^{0}.$$
 (16)

We have convergence iff the spectral radius of the matrix  $I_d - C$  is smaller than one.

# Why Krylov methods I

Consider now a preconditioned Krylov applied to the linear system:

$$B^{-1} A x = B^{-1} b$$

Let us denote  $x^0$  an initial guess and  $r^0 := B^{-1} b - C x^0$  the initial residual. Then  $y := x - x^0$  solves

$$C y = r^0$$
.

The basis for Krylov methods is the following

#### Lemma

Let C be an invertible matrix of size  $N \times N$ . Then, there exists a polynomial  $\mathcal P$  of degree p < N such that

$$C^{-1}=\mathcal{P}(C).$$

#### Proof.

Let be a minimal polynomial of C of degree  $d \leq N$ :

$$\mathcal{M}(X) := \sum_{i=0}^d a_i X^i$$

We have  $\sum_{i=0}^{d} a_i C^i = 0$  and there is no non zero polynomial of lower degree that annihilates C. Thus,  $a_0$  cannot be zero since

$$C \sum_{i=1}^d a_i C^{i-1} = 0 \Rightarrow \sum_{i=1}^d a_i C^{i-1} = 0.$$

Then,  $\sum_{i=0}^{d-1} a_{i+1} X^i$  would be an annihiling polynomial of C of degree lower than d. This implies

$$I_d + C \sum_{i=1}^d \frac{a_i}{a_0} C^{i-1} = 0 \Rightarrow C^{-1} := -\sum_{i=1}^d \frac{a_i}{a_0} C^{i-1}.$$

Coming back to the linear system, we have

$$x = x^{0} + \sum_{i=1}^{d} (-\frac{a_{i}}{a_{0}}) C^{i-1} r^{0}$$
.

Thus, it makes sense to introduce Krylov spaces,  $K^n(C, r^0)$ 

$$\mathcal{K}^{n}(C, r^{0}) := Span\{r^{0}, Cr^{0}, \dots, C^{n-1}r^{0}\}, n \geq 1.$$

to seek  $y^n$  an approximation to y.

Example: The CG methods applies to symmetric positive definite (SPD) matrices and minimizes the  $A^{-1}$ -norm of the residual when solving Ax = b:

$$\mathsf{C} G \, \left\{ \begin{array}{l} \mathsf{Find} \, \, y^n \in \mathcal{K}^n(A, r^0) \, \, \mathsf{such that} \\ \|A \, y^n - r^0\|_{A^{-1}} = \min_{w \in \mathcal{K}^n(A, r^0)} \|A \, w - r^0\|_{A^{-1}} \, . \end{array} \right.$$

A detailed analysis reveals that  $x^n = y^n + x_0$  can be obtained by the quite cheap recursion formula:

for 
$$i=1,2,\ldots$$
 do  $ho_{i-1}=(r_{i-1},r_{i-1})_2$  if  $i=1$  then  $p_1=r_0$  else  $\beta_{i-1}=\rho_{i-1}/\rho_{i-2}$   $p_i=r_{i-1}+\beta_{i-1}p_{i-1}$  end if  $q_i=Ap_{i-1}$   $\alpha_i=\frac{\rho_{i-1}}{(p_i,q_i)_2}$   $x_i=x_{i-1}+\alpha_ip_i$   $r_i=r_{i-1}-\alpha_iq_i$  check convergence; continue if necessary end for

# Preconditioned Krylov

By solving an optimization problem:

GMRES 
$$\begin{cases} \text{ Find } y^n \in \mathcal{K}^n(C, r^0) \text{ such that} \\ \|C y^n - r^0\|_2 = \min_{w \in \mathcal{K}^n(C, r^0)} \|C w - r^0\|_2 \end{cases}$$

a preconditioned Krylov solve will generate an optimal  $x_K^n$  in

$$\mathcal{K}^{n}(C, B^{-1}r_0) := x_0 + Span\{B^{-1}r_0, CB^{-1}r_0, \dots, C^{n-1}B^{-1}r_0\}.$$

This minimization problem is of size n. When n is small w.r.t. N, its solving has a marginal cost. Thus,  $x_K^n$  has a computing cost similar to that of  $x^n$ . But, since  $x^n \in \mathcal{K}^n(B^{-1}A, B^{-1}r_0)$  as well but with "frozen" coefficients, we have that  $x_n$  is less optimal (actually much much less) than  $x_K^n$ .

# Schwarz methods as preconditioners

In the previous Krylov methods we can use as preconditioner

RAS (in conjunction with BiCGStab or GMRES)

$$B^{-1} := M_{RAS}^{-1} = \sum_{i=1}^{N} R_i^T D_i (R_i A R_i^T)^{-1} R_i$$

ASM (in a CG methods)

$$B^{-1} := M_{ASM}^{-1} = \sum_{i=1}^{N} R_i^T (R_i A R_i^T)^{-1} R_i$$

### Preconditioner in CG

#### We use

- $M_{ASM}^{-1}$  as a preconditioner
- a Krylov method: conjugate gradient since  $M_{ASM}^{-1}$  and A are symmetric.

At iteration m the error for the PCG method is bounded by:

$$||\bar{x} - x_m||_{M_{ASM}^{-\frac{1}{2}}AM_{ASM}^{-\frac{1}{2}}} \le 2\left[\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right]^m ||\bar{x} - x_0||_{M_{ASM}^{-\frac{1}{2}}AM_{ASM}^{-\frac{1}{2}}}.$$

where  $\kappa$  is the condition number of  $M_{ASM}^{-1}A$  and  $\bar{x}$  is the exact solution.

The CG with the ASM preconditioner becomes:

for 
$$i=1,2,\ldots$$
 do 
$$\rho_{i-1}=(r_{i-1},M_{ASM}^{-1}r_{i-1})_2$$
 if  $i=1$  then 
$$p_1=M_{ASM}^{-1}r_0$$
 else 
$$\beta_{i-1}=\rho_{i-1}/\rho_{i-2}$$
 
$$p_i=M_{ASM}^{-1}r_{i-1}+\beta_{i-1}p_{i-1}$$
 end if 
$$q_i=Ap_{i-1}$$
 
$$\alpha_i=\frac{\rho_{i-1}}{(p_i,q_i)_2}$$
 
$$x_i=x_{i-1}+\alpha_ip_i$$
  $r_i=r_{i-1}-\alpha_iq_i$  check convergence; continue if necessary end for

### The action of the global operator is given by

```
Vh rn, s;
func real[int] A(real[int] &1)
                                           // A*u
  rn[] = Aglobal * 1;
  return rn[];
The preconditioning method can be Additive Schwarz (ASM)
func real[int] Mm1(real[int] &1)
   s = 0:
   for(int i=0;i<npart;++i)</pre>
       mesh Thi = aTh[i];
       real[int] bi = Rih[i] *l;
                                 // restricts rhs
       real[int] ui = aA[i] ^-1 * bi; // local solves
       s[] += Rih[i]'*ui;
                                         // prolongation
   return s[];
```

The Krylov method applied in this case is the CG. The performance is now less sensitive to the overlap size.





# We can also use RAS as a preconditioner, by taking into account the partition of unity

```
func real[int] Mm1(real[int] &1)
   s = 0;
   for(int i=0;i<npart;++i)</pre>
       mesh Thi = aTh[i];
       real[int] bi = Rih[i]*l;  // restricts rhs
       real[int] ui = aA[i] ^-1 * bi; // local solves
       bi = Dih[i]*ui;
       s[] += Rih[i]'*bi;
                                       // prolongation
   return s[];
```

this time in conjuction with BiCGStab since we deal with non-symmetric problems.

# Weak scalability

### How to evaluate the efficiency of a domain decomposition?

### Weak scalability – definition

"How the solution time varies with the number of processors for a fixed problem size per processor."

#### It is not achieved with the one level method

| Number of subdomains | 8  | 16 | 32 | 64  |
|----------------------|----|----|----|-----|
| ASM                  | 18 | 35 | 66 | 128 |

The iteration number increases linearly with the number of subdomains in one direction.

# Convergence curves- more subdomains

Plateaus appear in the convergence of the Krylov methods.



# How to achieve scalability

Stagnation corresponds to a few very low eigenvalues in the spectrum of the preconditioned problem. They are due to the lack of a global exchange of information in the preconditioner.

$$-\Delta u = f \text{ in } \Omega$$
$$u = 0 \text{ on } \partial \Omega$$



The mean value of the solution in domain i depends on the value of f on all subdomains.

A classical remedy consists in the introduction of a coarse grid problem that couples all subdomains. This is closely related to deflation technique classical in linear algebra (see Nabben and Vuik's papers in SIAM J. Sci. Comp, 200X).

### Outline

- 1 Introduction
- Schwarz algorithms as solvers
- 3 Schwarz algorithms as preconditioners
- Classical coarse grid method
  - Coarse grid correction
  - Theoretical convergence result
  - Deflation and coarse grid
  - Classical coarse grid using FreeFEM++
- 5 Coarse grid for heterogeneous problems
- 6 An abstract 2-level Schwarz the GenEO algorithm

### Adding a coarse grid

We add a coarse space correction (aka second level) Let  $V_H$  be the coarse space and z be a basis,  $V_H = \operatorname{span} z$ , writing  $R_0 = Z^T$  we define the two level preconditioner as:

$$M_{ASM,2}^{-1} := R_0^T (R_0 A R_0^T)^{-1} R_0 + \sum_{i=1}^N R_i^T A_i^{-1} R_i.$$

The Nicolaides approach is to use the kernel of the operator as a coarse space, this is the constant vectors, in local form this writes:

$$Z := (R_i^T D_i R_i \mathbf{1})_{1 \leq i \leq N}$$

where  $D_i$  are chosen so that we have a partition of unity:

$$\sum_{i=1}^{N} R_i^T D_i R_i = Id.$$

# Theoretical convergence result

### Theorem (Widlund, Sarkis)

Let  $M_{ASM,2}^{-1}$  be the two-level additive Schwarz method:

$$\kappa(M_{ASM,2}^{-1}A) \leq C\left(1+\frac{H}{\delta}\right)$$

where  $\delta$  is the size of the overlap between the subdomains and H the subdomain size.

### This does indeed work very well

| Number of subdomains | 8  | 16 | 32 | 64  |
|----------------------|----|----|----|-----|
| ASM                  | 18 | 35 | 66 | 128 |
| ASM + Nicolaides     | 20 | 27 | 28 | 27  |

# Idea of the proof (Upper bound)

#### Lemma

If each point in  $\Omega$  belongs to at most  $k_0$  of the subdomains  $\Omega_j$ , then the largest eigenvalue of  $M_{ASM,2}^{-1}$  A satisfies

$$\lambda_{max}(M_{ASM,2}^{-1}A) \leq k_0 + 1.$$

### Assumption (Stable decomposition)

There exists a constant  $C_0$ , such that every  $u \in V$  admits a decomposition  $u = \sum_{i=0}^{N} R_i^T u_i$ ,  $u_i \in V_i$ , i = 0, ..., N that satisfies:

$$\sum_{i=0}^N \tilde{a}_i(u_i,u_i) \leq C_0^2 a(u,u).$$

# Idea of the proof (Lower bound)

#### Theorem

If every  $v \in V$  admits a  $C_0$ -stable decomposition (with uniform  $C_0$ ), then the smallest eigenvalue of  $M_{AS,2}^{-1}$  A satisfies

$$\lambda_{min}(M_{ASM,2}^{-1} A) \geq C_0^{-2}.$$

Therefore, the condition number of the two-level Schwarz preconditioner can be bounded by

$$\kappa(M_{ASM,2}^{-1}A) \leq C_0^2(k_0+1).$$

## Deflation and Coarse grid correction

Let A be a SPD matrix, we want to solve

$$Ax = b$$

with a preconditioner M (for example the Schwarz method). Let Z be a rectangular matrix so that the "bad eigenvectors" belong to the space spanned by its columns. Define

$$P := I - AQ, \ Q := ZE^{-1}Z^{T}, \ E := Z^{T}AZ,$$

Examples of coarse grid preconditioners

$$\mathcal{P}_{A-DEF2} := P^T M^{-1} + Q$$
,  $\mathcal{P}_{BNN} := P^T M^{-1} P + Q$  (Mandel, 1993)

Some properties: QAZ = Z,  $P^TZ = 0$  and  $P^TQ = 0$ . Let  $r_n$  be the residual at step n of the algorithm:  $Z^Tr_n = 0$ .

How to choose *Z*?

## Coarse grid correction for smooth problems

For a Poisson like problem, Nicolaides (1987), Sarkis (2002). Let  $(\chi_i)_{1 < i < N}$  denote a partition of unity :

$$Z = \begin{bmatrix} \chi_1 & 0 & \cdots & 0 \\ \vdots & \chi_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \chi_N \end{bmatrix}$$



## Coarse grid implementation - I

It is enough to replace the Schwarz preconditioner by  $P_{BNN}$  as follows. First build  $E = Z^T A Z$ 

```
Vh[int] Z(npart);
for(int i=0;i<npart;++i)</pre>
{ Z[i]=1.;
real[int] zit = Rih[i] * Z[i][];
real[int] zitemp = Dih[i]*zit;
Z[i][]=Rih[i]'*zitemp;
real[int,int] Ef(npart,npart); // E = Z^T*A*Z
for(int i=0;i<npart;++i)</pre>
{ real[int] vaux = A(Z[i][]);
   for (int j=0; j < npart; ++ j)
  Ef(j,i) = Z[j][]'*vaux;
matrix E;
E = Ef;
set (E, solver=UMFPACK);
```

## Then the coarse space correction $Q = ZE^{-1}Z^{T}$ :

```
func real[int] Q(real[int] \&l) // Q = Z*E^-1*Z^T
   real[int] res(l.n);
   res=0.;
   real[int] vaux(npart);
   for(int i=0;i<npart;++i)</pre>
     vaux[i]=Z[i][]'*1;
   real[int] zaux=E^-1*vaux; // zaux=E^-1*Z^T*l
   for(int i=0; i < npart; ++i) // Z * zaux
      res +=zaux[i]*Z[i][];
   return res;
```

## Coarse grid implementation - III

The projector out of the coarse space P = I - QA and its transpose  $P^T$ :

```
func real[int] P(real[int] \& l) // P = I - A*O
   real[int] res=Q(1);
   real[int] res2=A(res);
   res2 -= 1;
   res2 *= -1.;
   return res2;
func real[int] PT(real[int] &1) // P^T = I-Q*A
   real[int] res=A(1);
   real[int] res2=0(res);
   res2 -= 1;
   res2 *= -1.;
   return res2;
```

## Coarse grid implementation - IV

## And finally the preconditioner $P_{BNN} = P^T M^{-1} P + Q$ :

```
int j;
func real[int] BNN(real[int] &u)  // precond BNN
{
    real[int] aux1 = Q(u);
    real[int] aux2 = P(u);
    real[int] aux3 = Mm1(aux2);
    aux2 = PT(aux3);
    aux2 += aux1;
    ++j;
return aux2;
}
```

## Outline

- 1 Introduction
- Schwarz algorithms as solvers
- 3 Schwarz algorithms as preconditioners
- 4 Classical coarse grid method
- Coarse grid for heterogeneous problems
  - The heterogeneous coefficient case
  - Coarse grid for problems with high heterogeneities
  - The DtN algorithm
  - Theoretical and numerical results
- 6 An abstract 2-level Schwarz the GenEO algorithm

#### Motivation

Large discretized system of PDEs strongly heterogeneous coefficients (high contrast, nonlinear, multiscale)

E.g. Darcy pressure equation, *P*<sup>1</sup>-finite elements:

$$Au = f$$

$$\mathrm{cond}(\mathbf{A}) \sim rac{lpha_{\mathrm{max}}}{lpha_{\mathrm{min}}} \, h^{-2}$$

#### Goal:

iterative solvers robust in size and heterogeneities

#### Applications:

flow in heterogeneous / stochastic / layered media structural mechanics electromagnetics etc.





## Darcy equation with heterogeneities

$$\begin{array}{cccccccc} -\nabla\cdot(\alpha(\textbf{\textit{x}},\textbf{\textit{y}})\nabla\textbf{\textit{u}}) & = & 0 & \text{in} & \Omega\subset\mathbb{R}^2,\\ \textbf{\textit{u}} & = & 0 & \text{on} & \partial\Omega_D,\\ \frac{\partial\textbf{\textit{u}}}{\partial\textbf{\textit{n}}} & = & 0 & \text{on} & \partial\Omega_N. \end{array}$$



#### Decomposition

$$\alpha(\mathbf{x}, \mathbf{y})$$

| Jump             | 1  | 10 | 10 <sup>2</sup> | 10 <sup>3</sup> | 10 <sup>4</sup> |
|------------------|----|----|-----------------|-----------------|-----------------|
| ASM              | 39 | 45 | 60              | 72              | 73              |
| ASM + Nicolaides | 30 | 36 | 50              | 61              | 65              |

## **Objectives**

#### Strategy

Define an appropriate coarse space  $V_{H2} = \operatorname{span}(z_2)$  and use the framework previously introduced, writing  $R_0 = Z_2^T$  the two level preconditioner is:

$$P_{ASM2}^{-1} := R_0^T (R_0 A R_0^T)^{-1} R_0 + \sum_{i=1}^N R_i^T A_i^{-1} R_i.$$

#### The coarse grid must be

- Local (calculated on each subdomain) → parallel
- Adaptive (calculated automatically)
- Easy and cheap to compute (on the boundary for instance)
- Robust (must lead to an algorithm whose convergence does not depend on the partition or the jumps in coefficients)

V. Dolean

## Heuristic approach: what functions should be in $\mathbb{Z}_2$ ?

The error satisfies the Schwarz algorithm, it is harmonic, so it satisfies a maximum principle.



Fast convergence

Slow convergence

#### Idea

Ensure that the error decreases quickly on the subdomain boundaries which translates to making  $\frac{\partial e}{\partial n_i}\Big|_{\Gamma_i}$  big.

# Ensuring that the error decreases quickly on the subdomain boundaries

The Dirichlet to Neumann operator is defined as follows: Let  $g: \Gamma_i \mapsto \mathbb{R}$ ,

$$\mathsf{DtN}_{\Omega_i}(g) = \left. \alpha \frac{\partial v}{\partial n_i} \right|_{\Gamma_i},$$

where *v* satisfies

$$\begin{cases} (-\mathsf{div}(\alpha\nabla))v = 0, & \text{in } \Omega_i, \\ v = g, & \text{on } \partial\Omega_i. \end{cases}$$

To construct the coarse space, we use the **low** frequency modes associated with the DtN operator:

$$\mathsf{DtN}_{\Omega_i}(\mathbf{v}_i^{\lambda}) = \lambda \, \alpha \, \mathbf{v}_i^{\lambda}$$

with  $\lambda$  small. The functions  $v_i^{\lambda}$  are extended harmonically to the subdomains.

## Theoretical convergence result

Suppose we have  $(v_i^{\lambda_k}, \lambda_i^k)_{1 \le k \le n_{\Gamma_i}}$  the eigenpairs of the local DtN maps  $(\lambda_i^1 \le \lambda_i^2 \le \ldots)$  and that we have selected  $m_i$  in each subdomain. Then let Z be the coarse space built via the local DtN maps:

$$Z := (R_i^T D_i \tilde{V}_i^{\lambda_i^k})_{1 \leq i \leq N; \ 1 \leq k \leq m_i}$$

#### Theorem (D., Nataf, Scheichl and Spillane 2010)

Under the monotonicity of  $\alpha$  in the overlapping regions:

$$\kappa(M_{ASM,2}^{-1}A) \leq C(1 + \max_{1 \leq i \leq N} \frac{1}{\delta_i \lambda_i^{m_i+1}})$$

where  $\delta_i$  is the size of the overlap of domain  $\Omega_i$  and C is independent of the jumps of  $\alpha$ .

If  $m_i$  is chosen so that,  $\lambda_i^{m_i+1} \ge 1/H_i$  the convergence rate will be analogous to the constant coefficient case.

#### Results with the new DtN method

| Jump             | 1  | 10 | 10 <sup>2</sup> | 10 <sup>3</sup> | 10 <sup>4</sup> |
|------------------|----|----|-----------------|-----------------|-----------------|
| ASM              | 39 | 45 | 60              | 72              | 73              |
| ASM + Nicolaides | 30 | 36 | 50              | 61              | 65              |
| ASM + DtN        | 31 | 35 | 36              | 36              | 36              |

Decomposition

 $\alpha(\mathbf{x},\mathbf{y})$ 

With DtN the jumps do not affect convergence We put at most two modes per subdomain in the coarse grid (using the automatic selection process)



Channels and inclusions:  $1 \le \alpha \le 1.5 \times 10^6$ , the solution and partitionings (Metis or not)



ASM convergence for channels and inclusions –  $4 \times 4$  Metis partitioning

| subdomain <i>i</i> | m <sub>i</sub> | total number of eigenvalues |
|--------------------|----------------|-----------------------------|
| 1                  | 3              | 155                         |
| 2                  | 1              | 109                         |
| 3                  | 5              | 175                         |
| 10                 | 4              | 174                         |
| 11                 | 2              | 71                          |
| 12                 | 2              | 128                         |
| 13                 | 3              | 166                         |
| 14                 | 3              | 127                         |
| 15                 | 3              | 188                         |
| 16                 | 3              | 106                         |

Metis 4 by 4 decomposition

|             | ASM | ASM+Nico | ASM+DtN |
|-------------|-----|----------|---------|
| 2 × 2       | 103 | 110      | 22      |
| 2 × 2 Metis | 76  | 76       | 22      |
| 4 × 4       | 603 | 722      | 26      |
| 4 × 4 Metis | 483 | 425      | 36      |
| 8 × 8       | 461 | 141      | 34      |
| 8 × 8 Metis | 600 | 542      | 31      |

Convergence results for the "hard" test case

## Numerical results – Optimality

| #Z per subd.    | ASM | ASM+Z <sub>Nico</sub> | ASM+Z <sub>D2N</sub> |
|-----------------|-----|-----------------------|----------------------|
| $\max(m_i-1,1)$ |     |                       | 273                  |
| $m_i$           | 614 | 543                   | 36                   |
| $m_i + 1$       |     |                       | 32                   |

 $m_i$  is given automatically by the strategy.

- Taking one fewer eigenvalue has a huge influence on the iteration count
- Taking one more has only a small influence

## Results for elasticity (Problem)





Young's modulus (1  $\leq E \leq 10^6$ ) Poisson's ratio (0.35  $\leq \nu \leq$  0.48)



## Results for 2d elasticity (Solution)



Overlap is two grid cells

## Outline

- Introduction
- Schwarz algorithms as solvers
- Schwarz algorithms as preconditioners
- 4 Classical coarse grid method
- 5 Coarse grid for heterogeneous problems
- 6 An abstract 2-level Schwarz the GenEO algorithm
  - Schwarz abstract setting
  - Numerical results

## Problem setting – I

Given 
$$f \in (V^h)^*$$
 find  $u \in V^h$ 

$$a(u, v) = \langle f, v \rangle \quad \forall v \in V^h$$
 $\iff$ 
 $\mathbf{A}\mathbf{u} = \mathbf{f}$ 

Assumption throughout: A symmetric positive definite (SPD)

#### **Examples:**

- Darcy  $a(u, v) = \int_{\Omega} \kappa \nabla u \cdot \nabla v \, dx$
- Elasticity  $a(\boldsymbol{u}, \boldsymbol{v}) = \int_{\Omega} \boldsymbol{c} \, \boldsymbol{\varepsilon}(\boldsymbol{u}) : \boldsymbol{\varepsilon}(\boldsymbol{v}) \, dx$
- Eddy current  $a(\boldsymbol{u}, \boldsymbol{v}) = \int_{\Omega} \boldsymbol{v} \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v} + \boldsymbol{\sigma} \boldsymbol{u} \cdot \boldsymbol{v} dx$

Heterogeneities / high contrast / nonlinearities in parameters

## Problem setting – II

- **①**  $V^h \dots$  FE space of functions in  $\Omega$  based on mesh  $\mathcal{T}^h = \{\tau\}$
- A given as set of element stiffness matrices
   + connectivity (list of DOF per element)

Assembling property:

$$a(v, w) = \sum_{\tau} a_{\tau}(v_{|\tau}, w_{|\tau})$$

where  $a_{\tau}(\cdot,\cdot)$  symm. pos. semi-definite

 $\{\phi_k\}_{k=1}^n$  (FE) basis of  $V^h$  on each element: *unisolvence* set of non-vanishing basis functions linearly independent

fulfilled by standard FE continuous, Nédélec, Raviart-Thomas of low/high order

**4** Two more assumptions on  $a(\cdot, \cdot)$  later!

## Schwarz setting – I

Overlapping partition:  $\Omega = \bigcup_{j=1}^{N} \Omega_{j}$  ( $\Omega_{j}$  union of elements)

$$V_j := \operatorname{span}\{\phi_k : \operatorname{supp}(\phi_k) \subset \overline{\Omega}_j\}$$

such that every  $\phi_k$  contained in one of those spaces, i.e.

$$V^h = \sum_{j=1}^N V_j$$

**Example:** adding "layers" to non-overlapping partition (partition and adding layers based on matrix information only!)





## Schwarz setting – II

#### Local subspaces:

$$V_j \subset V^h$$
  $j=1,\ldots,N$ 

Coarse space (defined later):

$$V_0 \subset V^h$$

**Additive Schwarz preconditioner:** 

$$\mathbf{M}_{ASM,2}^{-1} = \sum_{j=0}^{N} \mathbf{R}_{j}^{\top} \mathbf{A}_{j}^{-1} \mathbf{R}_{j}$$

where  $\mathbf{A}_j = \mathbf{R}_j^{\top} \mathbf{A} \mathbf{R}_j$  and  $\mathbf{R}_j^{\top} \leftrightarrow R_j^{\top} : V_j \to V^h$  natural embedding

## Partition of unity

#### **Definitions:**

$$dof(\Omega_j) := \{k : \operatorname{supp}(\phi_k) \cap \Omega_j \neq \emptyset\}$$
  
 $idof(\Omega_j) := \{k : \operatorname{supp}(\phi_k) \subset \overline{\Omega}_j\}$   $V_j = \operatorname{span}\{\phi_k\}_{k \in idof(\Omega_j)}$   
 $imult(k) := \#\{j : k \in idof(\Omega_j)\}$ 

#### Partition of unity:

(used for design of coarse space and for stable splitting)

$$\Xi_j v = \sum_{k \in idof(\Omega_j)} \frac{1}{imult(k)} v_k \phi_k \quad \text{for } v = \sum_{k=1}^n v_k \phi_k$$

#### Properties:

$$\sum_{i=1}^{N} \Xi_{j} v = v \qquad \qquad \Xi_{j} v \in V_{j}$$

## Overlapping zone / Choice of coarse space

**Overlapping zone:** 
$$\Omega_j^{\circ} = \{x \in \Omega_j : \exists i \neq j : x \in \Omega_i\}$$





Observation:  $\Xi_{j|\Omega_j\setminus\Omega_i^{\circ}}=\operatorname{id}$ 

Coarse space should be local:

$$V_0 = \sum_{j=1}^N V_{0,j}$$
 where  $V_{0,j} \subset V_j$ 

E.g. 
$$V_{0,j} = \text{span}\{\Xi_{j} p_{j,k}\}_{k=1}^{m_{j}}$$

## Abstract eigenvalue problem

## **Gen.EVP** per subdomain:

Find 
$$p_{j,k} \in V_{h|\Omega_j}$$
 and  $\lambda_{j,k} \geq 0$ : 
$$a_{\Omega_j}(p_{j,k}, v) = \lambda_{j,k} a_{\Omega_j^{\circ}}(\Xi_j p_{j,k}, \Xi_j v) \qquad \forall v \in V_{h|\Omega_j}$$
$$\mathbf{A}_j \mathbf{p}_{j,k} = \lambda_{j,k} \mathbf{X}_j \mathbf{A}_j^{\circ} \mathbf{X}_j \mathbf{p}_{j,k} \qquad (\mathbf{X}_j \dots \text{diagonal})$$

(properties of eigenfunctions discussed soon)

 $a_D \dots$  restriction of a to D

#### In the two-level ASM:

Choose first  $m_i$  eigenvectors per subdomain:

$$V_0 = \text{span}\{\Xi_j p_{j,k}\}_{k=1,...,m_j}^{j=1,...,N}$$

## Theory

Two technical assumptions.

#### Theorem (D., Hauret, Nataf, Pechstein, Scheichl, Spillane)

If for all j:  $0 < \lambda_{j,m_{j+1}} < \infty$ :

$$\kappa(\mathbf{M}_{ASM,2}^{-1}\mathbf{A}) \leq (1+k_0)\Big[2+k_0(2k_0+1)\max_{j=1}^N\Big(1+\frac{1}{\lambda_{j,m_j+1}}\Big)\Big]$$

Possible criterion for picking  $m_i$ :

(used in our Numerics)

$$\lambda_{j,m_j+1} < \frac{\delta_j}{H_j}$$

 $H_i$ ... subdomain diameter,  $\delta_i$ ... overlap

## Numerics – Darcy – I



Iterations (CG) vs. jumps

Code: Matlab & FreeFem++

| $\kappa_2$      | ASM-1 | ASM-2-low | $dim(V_H)$ | GenEO | $dim(V_H)$ |
|-----------------|-------|-----------|------------|-------|------------|
| 1               | 22    | 16        | (8)        | 16    | (8)        |
| 10 <sup>2</sup> | 31    | 24        | (8)        | 17    | (15)       |
| 10 <sup>4</sup> | 37    | 30        | (8)        | 21    | (15)       |
| 10 <sup>6</sup> | 36    | 29        | (8)        | 18    | (15)       |

ASM-1: 1-level ASM

ASM-2-low:  $m_i = 1$ 

NEW:  $\lambda_{j,m_j+1} < \delta_j/H_j$ 

## Numerics - Darcy - II

#### Iterations (CG) vs. number of subdomains

#### regular partition

| subd. | dofs  | ASM-1 | ASM-2-low | $dim(V_H)$ | GenEO | dim(V |
|-------|-------|-------|-----------|------------|-------|-------|
| 4     | 4840  | 14    | 15        | (4)        | 10    | (6)   |
| 8     | 9680  | 26    | 22        | (8)        | 11    | (14)  |
| 16    | 19360 | 51    | 36        | (16)       | 13    | (30)  |
| 32    | 38720 | > 100 | 61        | (32)       | 13    | (62)  |

#### METIS partition

| subd. | dofs  | ASM-1 | ASM-2-low | $dim(V_H)$ | GenEO | $dim(V_t)$ |
|-------|-------|-------|-----------|------------|-------|------------|
| 4     | 4840  | 21    | 18        | (4)        | 15    | (7)        |
| 8     | 9680  | 36    | 29        | (8)        | 18    | (15)       |
| 16    | 19360 | 65    | 45        | (16)       | 22    | (31)       |
| 32    | 38720 | >100  | 79        | (32)       | 34    | (63)       |

## Numerics - Darcy - III

#### Iterations (CG) vs. overlap

| (added) layers | ASM-1 | ASM-2-low | $(V_H)$ | GenEO | $(V_H)$ |
|----------------|-------|-----------|---------|-------|---------|
| 1              | 26    | 22        | (8)     | 11    | (14)    |
| 2              | 22    | 18        | (8)     | 9     | (14)    |
| 3              | 16    | 15        | (8)     | 9     | (14)    |

## Numerics – 2D Elasticity



$$E_1 = 2 \cdot 10^{11}$$

$$\nu_1 = 0.3$$

$$E_2 = 2 \cdot 10^7$$
  
 $\nu_2 = 0.45$ 

#### METIS partitions with 2 layers added

| subd. | dofs  | ASM-1 | ASM-2-low | $(V_H)$ | GenEO | $(V_H)$ |
|-------|-------|-------|-----------|---------|-------|---------|
| 4     | 13122 | 93    | 134       | (12)    | 42    | (42)    |
| 16    | 13122 | 164   | 165       | (48)    | 45    | (159)   |
| 25    | 13122 | 211   | 229       | (75)    | 47    | (238)   |
| 64    | 13122 | 279   | 167       | (192)   | 45    | (519)   |

## Numerics – 3D Elasticity

#### Iterations (CG) vs. number of subdomains



$$E_1 = 2 \cdot 10^{11}$$
  
 $\nu_1 = 0.3$ 

$$E_2 = 2 \cdot 10^7$$
  
 $\nu_2 = 0.45$ 

## Relative error vs. iterations 16 regular subdomains



| subd. | dofs  | ASM-1 | ASM-2-low | $(V_H)$ | GenEO | $(V_H)$ |
|-------|-------|-------|-----------|---------|-------|---------|
| 4     | 1452  | 79    | 54        | (24)    | 16    | (46)    |
| 8     | 29040 | 177   | 87        | (48)    | 16    | (102)   |
| 16    | 58080 | 378   | 145       | (96)    | 16    | (214)   |