An introduction to Schwarz methods

Victorita Dolean

Université de Nice and University of Geneva

École thematique CNRS
Décomposition de domaine November 15-16, 2011

Outline

(1) Introduction
2) Schwarz algorithms as solvers

3 Schwarz algorithms as preconditioners
(4) Classical coarse grid method
(5) Coarse grid for heterogeneous problems
(6) An abstract 2-level Schwarz - the GenEO algorithm

Motivation: pro and cons of direct solvers

Complexity of the Gauss factorization

Gauss	$d=1$	$d=2$	$d=3$
dense matrix	$\mathcal{O}\left(n^{3}\right)$	$\mathcal{O}\left(n^{3}\right)$	$\mathcal{O}\left(n^{3}\right)$
using band structure	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{7 / 3}\right)$
using sparsity	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{3 / 2}\right)$	$\mathcal{O}\left(n^{2}\right)$

Different sparse direct solvers

- PARDISO (http://www. pardiso-project.org)
- SUPERLU (http://crd.lbl.gov/~xiaoye/SuperLU)
- SPOOLES
(www.netlib.org/linalg/spooles/spooles.2.2.html)
- MUMPS (http://graal.ens-lyon.fr/MUMPS/)
- UMFPACK (http:
//www.cise.ufl.edu/research/sparse/umfpack)

Why iterative solvers?

Limitations of direct solvers
In practice all direct solvers work well until a certain barrier:

- two-dimensional problems (100K unknowns)
- three-dimensional problems (10K unknowns).

Beyond, the factorization cannot be stored in memory any more.
To summarize:

- below a certain size, direct solvers are chosen.
- beyond the critical size, iterative solvers are needed.

Why domain decomposition?

Natural iterative/direct trade-off

- Parallel processing is the only way to have faster codes, new generation processors are parallel: dual, quadri core.
- Large scale computations need for an "artificial" decomposition
- Memory requirements, direct solvers are too costly
- Iterative solvers are not robust enough.

New iterative/direct solvers are welcome : these are domain decomposition methods

In some situations, the decomposition is natural

- Moving domains (rotor and stator in an electric motor)
- Strongly heterogeneous media
- Different physics in different subdomains

Linear Algebra from the End User point of view

Direct	DDM	Iterative			
Cons: Memory	Pro: Flexible	Pros: Memory			
Difficult to \\|	Naurally \\|	Easy to \\|			
Pros: Robustness		Cons: Robustness			
solve(MAT,RHS,SOL)	Few black box routines Few implementations of efficient DDM	solve(MAT,RHS,SOL)			

Multigrid methods: very efficient but may lack robustness, not always applicable (Helmholtz type problems, complex systems) and difficult to parallelize.

Outline

Introduction

(2) Schwarz algorithms as solvers

- Three continuous Schwarz algorithms
- Connection with the Block-Jacobi algorithm
- Discrete setting
- Iterative Schwarz methods
- Convergence analysis
- Schwarz methods using Freefem++
- Schwarz algorithms as solvers
(3) Schwarz algorithms as preconditioners
(4) Classical coarse grid method

The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

$$
\begin{aligned}
& -\Delta(u)=f \quad \text { in } \Omega \\
& u=0 \quad \text { on } \partial \Omega .
\end{aligned}
$$

Schwarz Method: $\left(u_{1}^{n}, u_{2}^{n}\right) \rightarrow\left(u_{1}^{n+1}, u_{2}^{n+1}\right)$ with

$$
\begin{array}{ll}
-\Delta\left(u_{1}^{n+1}\right)=f \quad \text { in } \Omega_{1} & -\Delta\left(u_{2}^{n+1}\right)=f \quad \text { in } \Omega_{2} \\
u_{1}^{n+1}=0 \text { on } \partial \Omega_{1} \cap \partial \Omega & u_{2}^{n+1}=0 \text { on } \partial \Omega_{2} \cap \partial \Omega \\
u_{1}^{n+1}=u_{2}^{n} \quad \text { on } \partial \Omega_{1} \cap \overline{\Omega_{2}} . & u_{2}^{n+1}=u_{1}^{n+1} \quad \text { on } \partial \Omega_{2} \cap \overline{\Omega_{1}} .
\end{array}
$$

Parallel algorithm, converges but very slowly, overlapping subdomains only.
The parallel version is called Jacobi Schwarz method (JSM).

Continuous ASM and RAS - I

The algorithm acts on the local functions $\left(u_{i}\right)_{i=1,2}$.
To make things global, we need:

- extension operators, E_{i}, s.t. for a function $w_{i}: \Omega_{i} \mapsto \mathbb{R}$, $E_{i}\left(w_{i}\right): \Omega \mapsto \mathbb{R}$ is the extension of w_{i} by zero outside Ω_{i}.
- partition of unity functions $\chi_{i}: \Omega_{i} \mapsto \mathbb{R}, \chi_{i} \geq 0$ and $\chi_{i}(x)=0$ for $x \in \partial \Omega_{i}$ and s.t.

$$
w=\sum_{i=1}^{2} E_{i}\left(\chi_{i} w_{\mid \Omega_{i}}\right) .
$$

Let u^{n} be an approximation to the solution to the global Poisson problem and u^{n+1} is computed by solving first local subproblems and then gluing them together.

Continuous ASM and RAS - II

Local problems to solve

$$
\begin{array}{cl}
-\Delta\left(u_{i}^{n+1}\right)=f & \text { in } \quad \Omega_{i} \\
u_{i}^{n+1}=0 & \text { on } \quad \partial \Omega_{i} \cap \partial \Omega \\
u_{i}^{n+1}=u^{n} & \text { on } \quad \partial \Omega_{i} \cap \bar{\Omega}_{3-i}
\end{array}
$$

Two ways to "glue" solutions

- Using the partition of unity functions Restricted Additive Schwarz (RAS)

$$
u^{n+1}:=\sum_{i=1}^{2} E_{i}\left(\chi_{i} u_{i}^{n+1}\right)
$$

- Not based on the partition of unity Additive Schwarz (ASM)

$$
u^{n+1}:=\sum_{i=1}^{2} E_{i}\left(u_{i}^{n+1}\right)
$$

Block Jacobi methods - I

Let us consider a linear system:

$$
A U=F
$$

with a matrix A of size $m \times m$, a right handside $F \in \mathbb{R}^{m}$ and a solution $U \in \mathbb{R}^{m}$ where m is an integer. Let D be the diagonal of A, the Jacobi algorithm reads:

$$
D U^{n+1}=D U^{n}+\left(b-A U^{n}\right)
$$

or equivalently,

$$
U^{n+1}=U^{n}+D^{-1}\left(b-A U^{n}\right)=U^{n}+D^{-1} r^{n}
$$

where r^{n} is the residual of the equation.

Block Jacobi methods - II

We now define a block Jacobi algorithm. The set of indices $\{1, \ldots, m\}$ is partitioned into two sets

$$
\mathcal{N}_{1}:=\left\{1, \ldots, m_{s}\right\} \text { and } \mathcal{N}_{2}:=\left\{m_{s}+1, \ldots, m\right\} .
$$

Let $U_{1}:=U_{\mid \mathcal{N}_{1}}, U_{2}:=U_{\mid \mathcal{N}_{2}}$ and similarly $F_{1}:=F_{\mid \mathcal{N}_{1}}, F_{2}:=F_{\mid N_{2}}$. The linear system has the following block form:

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\binom{U_{1}}{U_{2}}=\binom{F_{1}}{F_{2}}
$$

where $A_{i j}:=A_{\mid \mathcal{N}_{i} \times \mathcal{N}_{j}}, 1 \leq i, j \leq 2$.

Block Jacobi methods - III

The block-Jacobi algorithm reads:

$$
\left(\begin{array}{cc}
A_{11} & 0 \tag{1}\\
0 & A_{22}
\end{array}\right)\binom{U_{1}^{n+1}}{U_{2}^{n+1}}=\binom{F_{1}-A_{12} U_{2}^{n}}{F_{2}-A_{21} U_{1}^{n}}
$$

Let $U^{n}=\left(U_{1}^{n}, U_{2}^{n}\right)^{T}$, algorithm (1) becomes

$$
\left(\begin{array}{cc}
A_{11} & 0 \tag{2}\\
0 & A_{22}
\end{array}\right) U^{n+1}=F-\left(\begin{array}{cc}
0 & A_{12} \\
A_{21} & 0
\end{array}\right) U^{n}
$$

On the other hand, it can be rewritten equivalently

$$
\binom{U_{1}^{n+1}}{U_{2}^{n+1}}=\binom{U_{1}^{n}}{U_{2}^{n}}+\left(\begin{array}{cc}
A_{11} & 0 \tag{3}\\
0 & A_{22}
\end{array}\right)^{-1}\binom{r_{1}^{n}}{r_{2}^{n}}
$$

where

$$
r^{n}:=F-A U^{n}, r_{i}^{n}:=r_{\mid \mathcal{N}_{i}}^{n}, i=1,2 .
$$

Block-Jacobi compact form

In order to have a more compact form, let us introduce

- R_{1} the restriction operator from \mathcal{N} into \mathcal{N}_{1}
- R_{2} the restriction operator from \mathcal{N} into \mathcal{N}_{2}.

The transpose operator R_{1}^{T} is an extension operator from \mathcal{N}_{1} into \mathcal{N} and the same holds for R_{2}^{T}.
Notice that $A_{i j}=R_{i} A R_{i}^{T}$.

Block-Jacobi in compact form

$$
\begin{equation*}
U^{n+1}=U^{n}+\left(R_{1}^{T}\left(R_{1} A R_{1}^{T}\right)^{-1} R_{1}+R_{2}^{T}\left(R_{2} A R_{2}^{T}\right)^{-1} R_{2}\right) r^{n} . \tag{4}
\end{equation*}
$$

where

$$
r^{n}:=F-A U^{n}, r_{i}^{n}:=r_{\mid \mathcal{N}_{i}}^{n}, i=1,2 .
$$

Schwarz algorithms as block Jacobi methods - I

Let $\Omega:=(0,1)$ and consider the following BVP

$$
\begin{aligned}
& -\Delta u=f \text { in } \Omega \\
& u(0)=u(1)=0 .
\end{aligned}
$$

discretized by a three point finite difference scheme on the grid $x_{j}:=j h, 1 \leq j \leq m$ where $h:=1 /(m+1)$.
Let $u_{j} \simeq u\left(x_{j}\right), f_{j}:=f\left(x_{j}\right), 1 \leq j \leq m$ and the discrete problem

$$
A U=F, U=\left(u_{j}\right)_{1 \leq j \leq m}, F=\left(f_{j}\right)_{1 \leq j \leq m}
$$

where $A_{j j}:=2 / h^{2}$ and $A_{j j+1}=A_{j+1 j}:=-1 / h^{2}$.
Let domains $\Omega_{1}:=\left(0,\left(m_{s}+1\right) h\right)$ and $\Omega_{2}:=\left(m_{s} h, 1\right)$ define an overlapping decomposition with a minimal overlap of width h.

Schwarz algorithms as block Jacobi methods - II

The discretization of the JSM for domain Ω_{1} reads

$$
\left\{\begin{array}{l}
-\frac{u_{1, j-1}^{n+1}-2 u_{1, j}^{n+1}+u_{1, j+1}^{n+1}}{h^{2}}=f_{j}, 1 \leq j \leq m_{s} \\
u_{1,0}^{n+1}=0 \\
u_{1, m_{s}+1}^{n+1}=u_{2, m_{s}+1}^{n}
\end{array}\right.
$$

Solving for $U_{1}^{n+1}=\left(u_{1, j}^{n+1}\right)_{1 \leq j \leq m_{s}}$ corresponds to solving a Dirichlet boundary value problem in subdomain Ω_{1} with Dirichlet data taken from the other subdomain at the previous step. Then, U_{1}^{n+1} and U_{1}^{n+1} satisfy

$$
\begin{aligned}
& A_{11} U_{1}^{n+1}+A_{12} U_{2}^{n}=F_{1}, \\
& A_{22} U_{2}^{n+1}+A_{21} U_{1}^{n}=F_{2} .
\end{aligned}
$$

The discrete counterpart of the extension operator E_{1} (resp. E_{2}) is defined by $E_{1}\left(U_{1}\right)=\left(U_{1}, 0\right)^{T}$ (resp. $\left.E_{2}\left(U_{2}\right)=\left(0, U_{2}\right)^{T}\right)$.

then $E_{1}\left(U_{1}\right)+E_{2}\left(U_{2}\right)=E_{1}\left(\chi_{1} U_{1}\right)+E_{2}\left(\chi_{2} U_{2}\right)=\binom{U_{1}}{U_{2}}$.
When the overlap is minimal, the discrete counterparts of the three Schwarz methods are equivalent to the same block Jacobi algorithm.

Continuous level

- Ω and an overlapping decomposition $\Omega=\cup_{i=1}^{N} \Omega$.
- A function $u: \Omega \rightarrow \mathbb{R}$.
- Restriction of $u: \Omega \rightarrow \mathbb{R}$ to $\Omega_{i}, 1 \leq i \leq N$.
- The extension E_{i} of a function $\Omega_{i} \rightarrow \mathbb{R}$ to a function $\Omega \rightarrow \mathbb{R}$.
- Partition of unity functions $\chi_{i}, 1 \leq i \leq N$.

Discrete level

- A set of d.o.f. \mathcal{N} and a decomposition $\mathcal{N}=\cup_{i=1}^{N} \mathcal{N}_{i}$.
- A vector $U \in \mathbb{R}^{\# N}$.
- The restriction $R_{i} U$ where $U \in \mathbb{R}^{\# \mathcal{N}}$ and R_{i} is a rectangular $\# \mathcal{N}_{i} \times \# \mathcal{N}$ boolean matrix.
- Extension R_{i}^{T}.
- Diagonal matrices with positive entries, of size $\# \mathcal{N}_{i} \times \# \mathcal{N}_{i}$ s. t. $I d=\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i}$.

Restrictions operators

Let \mathcal{T}_{h} be a mesh of a domain Ω and u_{h} some discretization of a function u which is the solution of an elliptic Dirichlet BVP. This yields a linear algebra problem

$$
\text { Find } U \in \mathbb{R}^{\# \mathcal{N}_{\text {s.t. }}} A U=F
$$

Define the restriction operator $r_{i}=E_{i}^{T}$:

$$
r_{i}: \quad u_{h} \mapsto u_{h \mid \Omega_{i}}
$$

Let R_{i} be the boolean matrix corresponding to the restriction operator r_{i} :

$$
\begin{gathered}
R_{i}:=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \ldots
\end{array}\right] \\
R_{i}: \mathbb{R}^{\# \mathcal{N}} \longmapsto \mathbb{R}^{\# \mathcal{N}_{i}}
\end{gathered}
$$

Partition of unity

We have

$$
R_{i}: \mathbb{R}^{\# \mathcal{N}} \longmapsto \mathbb{R}^{\# \mathcal{N}_{i}}
$$

and the transpose is a prolongation operator

$$
R_{i}^{T}: \mathbb{R}^{\# \mathcal{N}_{i}} \longmapsto \mathbb{R}^{\# \mathcal{N}}
$$

The local Dirichlet matrices are given by

$$
A_{i}:=R_{i} A R_{i}^{T} .
$$

We also need a kind of partition of unity defined by matrices D_{i}

$$
D_{i}: \mathbb{R}^{\# \mathcal{N}_{i}} \longmapsto \mathbb{R}^{\# \mathcal{N}_{i}}
$$

so that we have:

$$
\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i}=l d
$$

Two subdomain case: 1d algebraic setting

Let $\mathcal{N}:=\{1, \ldots, 5\}$ be partitioned into

$$
\mathcal{N}_{1}:=\{1,2,3\} \text { and } \mathcal{N}_{2}:=\{4,5\} .
$$

Then, matrices R_{1}, R_{2}, D_{1} and D_{2} are:

$$
\begin{gathered}
R_{1}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right) \text { and } R_{2}=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) . \\
D_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and } D_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{gathered}
$$

Consider now the case overlapping case

$$
\mathcal{N}_{1}^{\delta=1}:=\{1,2,3,4\} \text { and } \mathcal{N}_{2}^{\delta=1}:=\{3,4,5\} .
$$

Then, matrices $R_{1}, R_{2}, D_{1}, D_{2}$ are:

$$
\begin{aligned}
R_{1} & =\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \text { and } R_{2}=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) . \\
D_{1} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 1 / 2
\end{array}\right) \text { and } D_{2}=\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Two subdomain case: 1d finite element decomposition

Partition of the 1D mesh corresponds to an ovr. decomp. of \mathcal{N} :

$$
\mathcal{N}_{1}:=\{1,2,3\} \text { and } \mathcal{N}_{2}:=\{3,4,5\} .
$$

Then, matrices $R_{1}, R_{2}, D_{1}, D_{2}$ are:

$$
\begin{aligned}
& R_{1}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right) \text { and } R_{2}=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) . \\
& D_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 / 2
\end{array}\right) \text { and } D_{2}=\left(\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Consider now the situation of an overlapping partition.

$$
\mathcal{N}_{1}^{\delta=1}:=\{1,2,3,4\} \text { and } \mathcal{N}_{2}^{\delta=1}:=\{2,3,4,5\} .
$$

Then, matrices $R_{1}, R_{2}, D_{1}, D_{2}$ are:

$$
\begin{aligned}
R_{1}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \text { and } R_{2} & =\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) . \\
D_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 1 / 2
\end{array}\right) \text { and } D_{2} & =\left(\begin{array}{cccc}
1 / 2 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Multi-D and many subdomains: General procedure

The set of indices \mathcal{N} can be partitioned by an automatic graph partitioner such as METIS or SCOTCH.

- From the input matrix A, a connectivity graph is created.
- Two indices $i, j \in \mathcal{N}$ are connected if the matrix coefficient $A_{i j} \neq 0$.
- Even if matrix A is not symmetric, the connectivity graph is symmetrized.
- Algorithms that find a good partitioning of highly unstructured graphs are used.
- This distribution must be done so that the number of elements assigned to each processor is roughly the same (balance the computations among the processors).
- The number of adjacent elements assigned to different processors is minimized (minimize the communication between different processors).

Multi-D algebraic setting

Let us consider a partition into N subsets

$$
\mathcal{N}:=\cup_{i=1}^{N} \mathcal{N}_{i}, \quad \mathcal{N}_{i} \cap \mathcal{N}_{j}=\emptyset \text { for } i \neq j
$$

Extend each subset \mathcal{N}_{i} with its direct neighbors to form $\mathcal{N}_{i}^{\delta=1}$. Let R_{i} be the restriction matrix from set \mathcal{N} to the subset $\mathcal{N}_{i}^{\delta=1}$ and D_{i} be a diagonal matrix of size $\# \mathcal{N}_{i}^{\delta=1} \times \# \mathcal{N}_{i}^{\delta=1}, 1 \leq i \leq N$ such that for

$$
\mathcal{M}_{j}:=\left\{1 \leq i \leq N \mid j \in \mathcal{N}_{i}^{\delta=1}\right\} .
$$

and $j \in \mathcal{N}_{i}^{\delta=1}$, we define $\left(D_{i}\right)_{j j}:=1 / \# \mathcal{M}_{j}$.

Multi-D algebraic finite element decomposition

In a FE setting, the computational domain is the union of elements of the finite element mesh \mathcal{T}_{h}.

It is possible to create overlapping subdomains resolved by the finite element meshes:

$$
\begin{equation*}
\Omega_{i}=\bigcup_{\tau \in \mathcal{T}_{i, h}} \tau \text { for } 1 \leq i \leq N \tag{5}
\end{equation*}
$$

Let $\left\{\phi_{k}\right\}_{k \in \mathcal{N}}$ be a basis of the finite element space. For $1 \leq i \leq N$, we define

$$
\mathcal{N}_{i}:=\left\{k \in \mathcal{N}: \operatorname{supp}\left(\phi_{k}\right) \cap \Omega_{i} \neq \emptyset\right\}
$$

For all degree of freedom $k \in \mathcal{N}$, let

$$
\mu_{k}:=\#\left\{j: 1 \leq j \leq N \text { and } \operatorname{supp}\left(\phi_{k}\right) \cap \Omega_{j} \neq \emptyset\right\} .
$$

Let R_{i} be the restriction matrix from set \mathcal{N} to the subset \mathcal{N}_{i} and D_{i} be a diagonal matrix of size $\# \mathcal{N}_{i} \times \# \mathcal{N}_{i}, 1 \leq i \leq N$. Then, for $k \in \mathcal{N}_{i}$, we define $\left(D_{i}\right)_{k k}:=1 / \mu_{k}$.

Algebraic formulation - JSM

Define local unknowns $U_{i}:=R_{i} U$ for $i=1, \ldots, N$ and local right handside $F_{i}:=R_{i} F$.

$$
\begin{aligned}
R_{i} A U & =R_{i} A R_{i}^{T}\left(R_{i} U\right)+R_{i} A\left(I d-R_{i}^{T} R_{i}\right) U=F_{i} \\
& =R_{i} A R_{i}^{T} U_{i}+R_{i} A\left(I d-R_{i}^{T} R_{i}\right) \sum_{j=1}^{N} R_{j}^{T} D_{j} R_{j} U \\
& =R_{i} A R_{i}^{T} U_{i}+\sum_{j=1}^{N} R_{i} A\left(I d-R_{i}^{T} R_{i}\right) R_{j}^{T} D_{j} U_{j}
\end{aligned}
$$

Notice that $\left(I d-R_{i}^{T} R_{i}\right) R_{i}^{T} R_{i}=0$ so we have

$$
\begin{equation*}
R_{i} A R_{i}^{T} U_{i}+\sum_{j \neq i} R_{i} A\left(I d-R_{i}^{T} R_{i}\right) R_{j}^{T} D_{j} U_{j}=F_{i} \tag{6}
\end{equation*}
$$

Algebraic formulation - JSM

Let us define the block matrix \widetilde{A} (extended matrix)

$$
(\widetilde{A})_{i i}:=R_{i} A R_{i}^{T},(\widetilde{A})_{i j}:=R_{i} A\left(l d-R_{i}^{T} R_{i}\right) R_{j}^{T} D_{j}, 1 \leq i \neq j \leq N
$$

Define (extended) unknown vector and right-hand side

$$
\begin{aligned}
& \widetilde{U}:=\left(U_{1}, \ldots, U_{i}, \ldots, U_{N}\right)^{T} \in \mathbb{R}^{\sum_{i=1}^{N} \# \mathcal{N}_{i}}, \\
& \widetilde{F}:=\left(R_{1} F, \ldots, R_{i} F, \ldots, R_{N} F\right)^{T} \in \mathbb{R}^{\sum_{i=1}^{N} \# \mathcal{N}_{i}} .
\end{aligned}
$$

Let $\left(M_{J S M}\right)_{i i}:=(\widetilde{A})_{i i}=R_{i} A R_{i}^{T}$. The block Jacobi method applied to the (extended) system

$$
\widetilde{A} \widetilde{U}=\widetilde{F}
$$

is the JSM:

$$
\begin{equation*}
\widetilde{U}^{n+1}=\widetilde{U}^{n}+M_{J S M}^{-1} \widetilde{r}^{n}, \widetilde{r}^{n}:=\widetilde{F}-\widetilde{A} \widetilde{U}^{n} \tag{7}
\end{equation*}
$$

Algebraic formulation - RAS and ASM

As for (RAS), we give the following definition

$$
\begin{equation*}
M_{R A S}^{-1}:=\sum_{i=1}^{N} R_{i}^{T} D_{i}\left(R_{i} A R_{i}^{T}\right)^{-1} R_{i} \tag{8}
\end{equation*}
$$

so that the iterative RAS algorithm reads:

$$
U^{n+1}=U^{n}+M_{R A S}^{-1} r^{n}, r^{n}:=F-A U^{n} .
$$

For (ASM), we give the following definition

$$
\begin{equation*}
M_{A S M}^{-1}:=\sum_{i=1}^{N} R_{i}^{T}\left(R_{i} A R_{i}^{T}\right)^{-1} R_{i} \tag{9}
\end{equation*}
$$

so that the iterative ASM algorithm reads:

$$
U^{n+1}=U^{n}+M_{R A S}^{-1} r^{n} .
$$

Geometrical analysis in 1d

Let $L>0$ and the domain $\Omega=(0, L)$ be decomposed into two subodmains $\Omega_{1}:=\left(0, L_{1}\right)$ and $\Omega_{2}:=\left(l_{2}, L\right)$ with $I_{2} \leq L_{1}$. The error $e_{i}^{n}:=u_{i}^{n}-u_{\mid \Omega_{i}}, i=1,2$ satisfies

$$
\begin{array}{ll}
-\frac{d^{2} e_{1}^{n+1}}{d x^{2}}=0 \quad \text { in }\left(0, L_{1}\right) \\
e_{1}^{n+1}(0)=0 & -\frac{d^{2} e_{2}^{n+1}}{d x^{2}}=0 \quad \text { in }\left(l_{2}, L\right) \\
e_{1}^{n+1}\left(L_{1}\right)=e_{2}^{n}\left(L_{1}\right) & \\
e_{2}^{n+1}\left(l_{2}\right)=e_{1}^{n+1}\left(l_{2}\right) \\
& e_{2}^{n+1}(L)=0 . \tag{10}
\end{array}
$$

Thus the errors are affine functions in each subdomain:

$$
e_{1}^{n+1}(x)=e_{2}^{n}\left(L_{1}\right) \frac{x}{L_{1}} \text { and } e_{2}^{n+1}(x)=e_{1}^{n+1}\left(I_{2}\right) \frac{L-x}{L-I_{2}}
$$

Thus, we have

$$
e_{2}^{n+1}\left(L_{1}\right)=e_{1}^{n+1}\left(I_{2}\right) \frac{L-L_{1}}{L-I_{2}}=e_{2}^{n}\left(L_{1}\right) \frac{I_{2}}{L_{1}} \frac{L-L_{1}}{L-I_{2}} .
$$

Let $\delta:=L_{1}-I_{2}$ denote the size of the overlap, we have

$$
e_{2}^{n+1}\left(L_{1}\right)=\frac{I_{2}}{I_{2}+\delta} \frac{L-I_{2}-\delta}{L-I_{2}} e_{2}^{n}\left(L_{1}\right)=\frac{1-\delta /\left(L-I_{2}\right)}{1+\delta / I_{2}} e_{2}^{n}\left(L_{1}\right) .
$$

It is clear that $\delta>0$ is sufficient and necessary to have convergence.

Let \mathbb{R}^{2} decomposed into two half-planes $\Omega_{1}=(-\infty, \delta) \times \mathbb{R}$ and $\Omega_{2}=(0, \infty) \times \mathbb{R}$ with an overlap of size $\delta>0$ and the problem

$$
(\eta-\Delta)(u)=f \text { in } \mathbb{R}^{2},
$$

u is bounded at infinity,
By linearity, the errors $e_{i}^{n}:=u_{i}^{n}-\left.u\right|_{\Omega_{i}}$ satisfy the $\operatorname{JSM} f=0$:

$$
\begin{align*}
(\eta-\Delta)\left(e_{1}^{n+1}\right) & =0 \text { in } \Omega_{1} \\
e_{1}^{n+1} & \text { is bounded at infinity } \tag{11}\\
e_{1}^{n+1}(\delta, y) & =e_{2}^{n}(\delta, y), \\
(\eta-\Delta)\left(e_{2}^{n+1}\right) & =0 \text { in } \Omega_{2} \\
e_{2}^{n+1} & \text { is bounded at infinity } \tag{12}\\
e_{2}^{n+1}(0, y) & =e_{1}^{n}(0, y) .
\end{align*}
$$

Fourier analysis in 2d - II

By taking the partial Fourier transform of the equation in the y direction we get:

$$
\left(\eta-\frac{\partial^{2}}{\partial x^{2}}+k^{2}\right)\left(\hat{e}_{1}^{n+1}(x, k)\right)=0 \quad \text { in } \quad \Omega_{1} .
$$

For a given k, the solution

$$
\hat{e}_{1}^{n+1}(x, k)=\gamma_{+}^{n+1}(k) \exp \left(\lambda^{+}(k) x\right)+\gamma_{-}^{n+1}(k) \exp \left(\lambda^{-}(k) x\right) .
$$

must be bounded at $x=-\infty$. This implies

$$
\hat{e}_{1}^{n+1}(x, k)=\gamma_{+}^{n+1}(k) \exp \left(\lambda^{+}(k) x\right)
$$

and similarly,

$$
\hat{e}_{2}^{n+1}(x, k)=\gamma_{-}^{n+1}(k) \exp \left(\lambda^{-}(k) x\right)
$$

From the interface conditions we get

$$
\gamma_{+}^{n+1}(k)=\gamma_{-}^{n}(k) \exp \left(\lambda^{-}(k) \delta\right), \gamma_{-}^{n+1}(k)=\gamma_{+}^{n}(k) \exp \left(-\lambda^{+}(k) \delta\right) .
$$

Combining these two and denoting $\lambda(k)=\lambda^{+}(k)=-\lambda^{-}(k)$, we get for $i=1$, 2 ,

$$
\gamma_{ \pm}^{n+1}(k)=\rho(k ; \alpha, \delta)^{2} \gamma_{ \pm}^{n-1}(k)
$$

with ρ the convergence rate given by:

$$
\begin{equation*}
\rho(k ; \alpha, \delta)=\exp (-\lambda(k) \delta) \tag{13}
\end{equation*}
$$

where $\lambda(k)=\sqrt{\eta+k^{2}}$.

Remark

We have the following properties:

- For all $k \in \mathbb{R}, \rho(k)<\exp (-\sqrt{\eta} \delta)<1$ so that $\gamma_{i}^{n}(k) \rightarrow 0$ uniformly as n goes to infinity.
- $\rho \rightarrow 0$ as k tends to infinity, high frequency modes of the error converge very fast.
- When there is no overlap $(\delta=0), \rho=1$ and there is stagnation of the method.

About FreeFem++ (survival kit)

FreeFem++ allows a very simple and natural way to solve a great variety of variational problems (FEM, DG).

It is possible to have access to the underlying linear algebra such as the stiffness or mass matrices.

Tutorial: http://www.cmap.polytechnique.fr/spip. php?article239.

A very detailed documentation of FreeFem++ is available on the official website http://www.freefem.org/ff++
http://www.freefem.org/ff++/ftp/freefem++doc.pdf

Let a homogeneous Dirichlet boundary value problem for a Laplacian defined on a unit square $\Omega=] 0,1\left[{ }^{2}\right.$:

$$
\begin{cases}-\Delta u=f & \operatorname{dans} \Omega \tag{14}\\ u=0 & \text { sur } \partial \Omega\end{cases}
$$

The variational formulation of the problem
Find $u \in H_{0}^{1}(\Omega):=\left\{w \in H^{1}(\Omega): w=0\right.$, on $\left.\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}\right\}$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d x-\int_{\Omega} f v d x=0, \forall v \in H_{0}^{1}(\Omega) .
$$

Feature of Freefem++: penalization of Dirichlet BC. Let TGV (Très Grande Valeur in French) be a very large value, the above variational formulation is approximated by
Find $u \in H^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u . \nabla v d x+T G V \int_{\cup_{i=1, \ldots, 4} \Gamma_{i}} u v-\int_{\Omega} f v d x=0, \forall v \in H^{1}(\Omega)
$$

The following FreeFem++ script is solving this problem

```
// Number of mesh points in x and y directions
int Nbnoeuds=10;
```

The text after // symbols are comments ignored by the FreeFem++ language.
Each new variable must be declared with its type (here int designs integers).
//Mesh definition
mesh Th=square (Nbnoeuds, Nbnoeuds, [x,y]);
The function square returns a structured mesh of the square, the sides of the square are labelled from 1 to 4 in trigonometrical sense.

Define the function representing the right hand side
// Function of x and y
func $f=x * y$;
and the P_{1} finite element space Vh over the mesh Th.
// Finite element space on the mesh Th
fespace Vh(Th,P1);
//uh and vh are of type Vh
Vh uh,vh;
The functions u_{h} and v_{h} belong to the P_{1} finite element space V_{h} which is an approximation to $H^{1}(\Omega)$.

```
// variational problem definition
problem heat (uh,vh, solver=LU)=
    int2d(Th) (dx(uh)*dx(vh)+dy(uh)*dy(vh))
    -int2d(Th) (f*vh)
    +on (1, 2, 3, 4,uh=0);
```

The keyword problem allows the definition of a variational problem (without solving it)
$\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d x+T G V \int_{\cup_{i=1, \ldots, 4} \Gamma_{i}} u_{h} v_{h}-\int_{\Omega} f v_{h} d x=0, \forall v_{h} \in V_{h}$.
where $T G V$ is equal to 10^{30}.
The parameter solver sets the method that will be used to solve the resulting linear system. To solve the problem we need
//Solving the problem
heat;
// Plotting the result
plot(uh,wait=1);
The Freefem++ script can be saved with your favourite text editor (e.g. under the name heat .edp). In order to execute the script write the shell command

FreeFem++ heat.edp
The result will be displayed in a graphic window.

Solve Neumann or Fourier boundary conditions such as

$$
\begin{cases}-\Delta u+u=f & \text { dans } \Omega \tag{15}\\ \frac{\partial u}{\partial n}=0 & \text { sur } \Gamma_{1} \\ u=0 & \text { sur } \Gamma_{2} \\ \frac{\partial u}{\partial n}+\alpha u=g & \operatorname{sur} \Gamma_{3} \cup \Gamma_{4}\end{cases}
$$

The new variational formulation consists in determining $u_{h} \in V_{h}$ such that

$$
\begin{aligned}
& \int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d x+\int_{\Gamma_{3} \cup \Gamma_{4}} \alpha u_{h} v_{h}+T G V \int_{\Gamma_{2}} u_{h} \cdot v_{h} \\
& -\int_{\Gamma_{3} \cup \Gamma_{4}} g v_{h}-\int_{\Omega} f v_{h} d x=0, \forall v_{h} \in V_{h} .
\end{aligned}
$$

The Freefem++ definition of the problem

```
problem heat(uh,vh)=
int2d(Th) (dx(uh) *dx(vh) +dy(uh)*dy(vh))
+int1d(Th, 3,4)(alpha*uh*vh)
-int1d(Th,3,4)(g*vh)
-int2d(Th)(f*vh)
+on(2,uh=0);
```

In order to use some linear algebra package, we need the matrices. The keyword varf allows the definition of a variational formulation

```
varf heat(uh,vh)=
int2d(Th) (dx(uh) *dx(vh) +dy(uh)*dy(vh))
+int1d(Th,3,4)(alpha*uh*vh)
-intld(Th, 3,4)(g*vh)
-int2d(Th)(f*vh)
+on(2,uh=0);
matrix Aglobal; // stiffness sparse matrix
Aglobal = heat(Vh,Vh,solver=UMFPACK);// UMFPACK solver
Vh rhsglobal; //right hand side vector
rhsglobal[] = heat(0,Vh);
Here rhsglobal is a FE function and the associated vector of d.o.f. is rhsglobal [].
The linear system is solved by using UMFPACK
// Solving the problem by a sparse LU sover
uh[] = Aglobal^-1*rhsglobal[];
```


Decomposition into overlapping domains I

Suppose we want a decomposition of a rectangle Ω into $\mathrm{nn} \times \mathrm{mm}$ domains with approximately nloc points in one direction.

```
int nn=4,mm=4;
int npart= nn*mm;
int nloc = 20;
real allong = 1;
allong = real(nn)/real(mm);
```

mesh Th=square ($n \mathrm{n} * \mathrm{nloc} * a l l o n g, m m * n l o c,[x * a l l o n g, y])$;
fespace Vh(Th,P1);
fespace $\mathrm{Ph}(\mathrm{Th}, \mathrm{PO})$;
Ph part;
Ph $x x=x, y y=y$;
part $=$ int (xx/allong*nn) *mm + int (yy*mm);
plot(part,fill=1, value=1,wait=1,ps="decompunif.eps");

For arbitrary decompositions, use METIS or SCOTCH.

```
int nn=4,mm=4;
int npart= nn*mm;
int nloc = 20;
real allong = 1;
allong = real(nn)/real(mm);
mesh Th=square(nn*nloc*allong,mm*nloc,[x*allong,y]);
fespace Vh(Th,P1);
fespace Ph(Th,P0);
Ph part;
bool withmetis = 1;
if(withmetis) // Metis partition
    {
        load "metis";
        int[int] nupart(Th.nt);
        metisdual(nupart,Th,npart);
        for(int i=0;i<nupart.n;++i)
        part[][i]=nupart[i];
    }
plot(part,fill=1,value=1,wait=1,ps="decompMetis.eps");
```


Decomposition into overlapping domains II

To build the overlapping decomposition and the associated algebraic call the routine SubdomainsPartitionUnity. Output:

- overlapping meshes aTh [i]
- the restriction/interpolation operators Rih [i] from the local finite element space Vh [i] to the global one Vh
- the diagonal local matrices Dih [i] from the partition of unity.

```
include "createPartition.edp";
include "decompMetis.edp";
// overlapping partition
int sizeovr = 3;
mesh[int] aTh(npart); // sequence of ovr. meshes
matrix[int] Rih(npart); // local restriction operators
matrix[int] Dih(npart); // partition of unity operators
```

SubdomainsPartitionUnity(Th, part[],sizeovr, aTh, Rih, Dih);

RAS and ASM: global data

We first need to define the global data.
// Solve Dirichlet subproblem Delta (u) = f
// u = 1 on the global boundary
int[int] chlab=[1,1 ,2,1 ,3,1 ,4,1];
Th=change (Th, refe=chlab);

```
macro Grad(u) [dx(u),dy(u)] // EOM
func f = 1; // right hand side
func g = 1; // Dirichlet data
```

// global problem
Vh rhsglobal,uglob;
varf vaglobal (u,v) =
int2d(Th) (Grad(u)'*Grad(v))
+on(1,u=g) + int2d(Th)(f*v);
matrix Aglobal;
Aglobal = vaglobal(Vh,Vh,solver = UMFPACK); // matrix
rhsglobal[] = vaglobal(0,Vh); // rhs
uglob[] = Aglobal^-1*rhsglobal[];

RAS and ASM: local data

And then the local problems

```
// overlapping partition
int sizeovr = 4;
mesh[int] aTh(npart); // overlapping meshes
matrix[int] Rih(npart); // restriction operators
matrix[int] Dih(npart);
// partition of unity
SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rih,Dih)
matrix[int] aA(npart); // Dirichlet matrices
for(int i = 0;i<npart;++i)
    {
        cout << " Domain :" << i << "/" << npart << endl;
        matrix aT = Aglobal*Rih[i]';
        aA[i] = Rih[i]*aT;
        set(aA[i],solver = UMFPACK);// direct solvers
    }
```


RAS and ASM : Schwarz iteration

```
int nitermax = 1000;
Vh un = 0, rn = rhsglobal; // initial guess
for(int iter = 0;iter<nitermax;++iter)
    {real err = 0;
    Vh er = 0;
    for(int i = 0;i<npart;++i)
    {real[int] bi = Rih[i]*rn[]; // restriction
        real[int] ui = aA[i] ^-1 * bi; // local solve
        bi = Dih[i]*ui; // bi = ui; ASM
            er[] += Rih[i]'*bi; }
    un[] += er[]; // build new iterate
    rn[] = Aglobal*un[]; // global residual
    rn[] = rn[] - rhsglobal[];
    rn[] *= -1;
    err = sqrt(er[]'*er[]);
    cout << "Iter: " << iter << " Err = " << err << endl
    if(err < 1e-5) break;
    plot(un,wait=1,value=1,fill=1,dim=3);}
plot(un,wait=1,value=1,fill=1,dim=3,ps = "solution.eps")
```


Convergence

Convergence history of the RAS solver for different values of the overlapping parameter.

Note that this convergence, not very fast even in a simple configuration of 4 subdomains.
The iterative version of ASM does not converge. For this reason, the ASM method is always used a preconditioner for a Krylov method such as CG, GMRES or BiCGSTAB.

Outline

Introduction

Schwarz algorithms as solvers
3 Schwarz algorithms as preconditioners

- Neumann series and Krylov spaces
- Krylov methods
- Application to DDM
- Schwarz preconditioners using FreeFEM++
(4) Classical coarse grid methodCoarse grid for heterogeneous problems
(6) An abstract 2 -level Schwarz - the GenEO algorithm

Consider a well-posed but difficult to solve linear system

$$
A x=b
$$

and B an "easy to invert" matrix of the same size than A. A possible iterative method is a fixed point algorithm

$$
x^{n+1}=x^{n}+B^{-1}\left(b-A x^{n}\right)
$$

and x is a fixed point of the operator:

$$
x \longmapsto x+B^{-1}(b-A x) .
$$

Let $r_{0}:=b-A x^{0}$ and $C:=B^{-1} A$, a direct computation shows that we have:

$$
\begin{equation*}
x^{n}=\sum_{i=0}^{n}\left(I_{d}-C\right)^{i} B^{-1} r_{0}+x^{0} . \tag{16}
\end{equation*}
$$

We have convergence iff the spectral radius of the matrix $I_{d}-C$ is smaller than one.

Why Krylov methods I

Consider now a preconditioned Krylov applied to the linear system:

$$
B^{-1} A x=B^{-1} b
$$

Let us denote x^{0} an initial guess and $r^{0}:=B^{-1} b-C x^{0}$ the initial residual. Then $y:=x-x^{0}$ solves

$$
C y=r^{0} .
$$

The basis for Krylov methods is the following

Lemma

Let C be an invertible matrix of size $N \times N$.
Then, there exists a polynomial \mathcal{P} of degree $p<N$ such that

$$
C^{-1}=\mathcal{P}(C) .
$$

Proof.

Let be a minimal polynomial of C of degree $d \leq N$:

$$
\mathcal{M}(X):=\sum_{i=0}^{d} a_{i} X^{i}
$$

We have $\sum_{i=0}^{d} a_{i} C^{i}=0$ and there is no non zero polynomial of lower degree that annihilates C. Thus, a_{0} cannot be zero since

$$
C \sum_{i=1}^{d} a_{i} C^{i-1}=0 \Rightarrow \sum_{i=1}^{d} a_{i} C^{i-1}=0
$$

Then, $\sum_{i=0}^{d-1} a_{i+1} X^{i}$ would be an annihiling polynomial of C of degree lower than d. This implies

$$
I_{d}+C \sum_{i=1}^{d} \frac{a_{i}}{a_{0}} C^{i-1}=0 \Rightarrow C^{-1}:=-\sum_{i=1}^{d} \frac{a_{i}}{a_{0}} C^{i-1}
$$

Coming back to the linear system, we have

$$
x=x^{0}+\sum_{i=1}^{d}\left(-\frac{a_{i}}{a_{0}}\right) C^{i-1} r^{0} .
$$

Thus, it makes sense to introduce Krylov spaces, $\mathcal{K}^{n}\left(C, r^{0}\right)$

$$
\mathcal{K}^{n}\left(C, r^{0}\right):=\operatorname{Span}\left\{r^{0}, C r^{0}, \ldots, C^{n-1} r^{0}\right\}, n \geq 1 .
$$

to seek y^{n} an approximation to y.
Example: The CG methods applies to symmetric positive definite (SPD) matrices and minimizes the A^{-1}-norm of the residual when solving $A x=b$:

$$
C G\left\{\begin{array}{l}
\text { Find } y^{n} \in \mathcal{K}^{n}\left(A, r^{0}\right) \text { such that } \\
\left\|A y^{n}-r^{0}\right\|_{A^{-1}}=\min _{w \in \mathcal{K}^{n}\left(A, r^{0}\right)}\left\|A w-r^{0}\right\|_{A^{-1}} .
\end{array}\right.
$$

A detailed analysis reveals that $x^{n}=y^{n}+x_{0}$ can be obtained by the quite cheap recursion formula:

$$
\begin{aligned}
& \text { for } i=1,2, \ldots \text { do } \\
& \rho_{i-1}=\left(r_{i-1}, r_{i-1}\right)_{2} \\
& \text { if } i=1 \text { then } \\
& \quad p_{1}=r_{0} \\
& \text { else } \\
& \beta_{i-1}=\rho_{i-1} / \rho_{i-2} \\
& p_{i}=r_{i-1}+\beta_{i-1} p_{i-1} \\
& \text { end if } \\
& q_{i}=A p_{i-1} \\
& \alpha_{i}=\frac{\rho_{i-1}}{\left(p_{i}, q_{i}\right)_{2}} \\
& x_{i}=x_{i-1}+\alpha_{i} p_{i} \\
& r_{i}=r_{i-1}-\alpha_{i} q_{i} \\
& \text { check convergence; continue if necessary } \\
& \text { end for }
\end{aligned}
$$

Preconditioned Krylov

By solving an optimization problem:

$$
\text { GMRES }\left\{\begin{array}{l}
\text { Find } y^{n} \in \mathcal{K}^{n}\left(C, r^{0}\right) \text { such that } \\
\left\|C y^{n}-r^{0}\right\|_{2}=\min _{w \in \mathcal{K}^{n}\left(C, r^{0}\right)}\left\|C w-r^{0}\right\|_{2}
\end{array}\right.
$$

a preconditioned Krylov solve will generate an optimal x_{K}^{n} in

$$
\mathcal{K}^{n}\left(C, B^{-1} r_{0}\right):=x_{0}+\operatorname{Span}\left\{B^{-1} r_{0}, C B^{-1} r_{0}, \ldots, C^{n-1} B^{-1} r_{0}\right\} .
$$

This minimization problem is of size n. When n is small w.r.t. N, its solving has a marginal cost. Thus, x_{k}^{n} has a computing cost similar to that of x^{n}. But, since $x^{n} \in \mathcal{K}^{n}\left(B^{-1} A, B^{-1} r_{0}\right)$ as well but with "frozen" coefficients, we have that x_{n} is less optimal (actually much much less) than x_{K}^{n}.

Schwarz methods as preconditioners

In the previous Krylov methods we can use as preconditioner

- RAS (in conjunction with BiCGStab or GMRES)

$$
B^{-1}:=M_{R A S}^{-1}=\sum_{i=1}^{N} R_{i}^{T} D_{i}\left(R_{i} A R_{i}^{T}\right)^{-1} R_{i}
$$

- ASM (in a CG methods)

$$
B^{-1}:=M_{A S M}^{-1}=\sum_{i=1}^{N} R_{i}^{T}\left(R_{i} A R_{i}^{T}\right)^{-1} R_{i}
$$

Preconditioner in CG

We use

- $M_{A S M}^{-1}$ as a preconditioner
- a Krylov method: conjugate gradient since $M_{A S M}^{-1}$ and A are symmetric.

At iteration m the error for the PCG method is bounded by:

$$
\left\|\bar{x}-x_{m}\right\|_{M_{A S M}^{-\frac{1}{2}} A M_{A S M}^{-\frac{1}{2}}} \leq 2\left[\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right]^{m}\left\|\bar{x}-x_{0}\right\|_{M_{A S M}^{-\frac{1}{2}} A M_{A S M}^{-\frac{1}{2}}} .
$$

where κ is the condition number of $M_{A S M}^{-1} A$ and \bar{x} is the exact solution.

The CG with the ASM preconditioner becomes:

$$
\begin{aligned}
& \text { for } i=1,2, \ldots \text { do } \\
& \rho_{i-1}=\left(r_{i-1}, M_{A S M}^{-1} r_{i-1}\right)_{2} \\
& \text { if } i=1 \text { then } \\
& \quad p_{1}=M_{A S M}^{-1} r_{0} \\
& \text { else } \\
& \beta_{i-1}=\rho_{i-1} / \rho_{i-2} \\
& p_{i}=M_{A S M}^{-1} r_{i-1}+\beta_{i-1} p_{i-1} \\
& \text { end if } \\
& q_{i}=A p_{i-1} \\
& \alpha_{i}=\frac{\rho_{i-1}}{\left(p_{i}, q_{i}\right)_{2}} \\
& x_{i}=x_{i-1}+\alpha_{i} p_{i} \\
& r_{i}=r_{i-1}-\alpha_{i} q_{i} \\
& \text { check convergence; continue if necessary } \\
& \text { end for }
\end{aligned}
$$

The action of the global operator is given by

```
Vh rn, s;
func real[int] A(real[int] &l) // A*u
{
    rn[]= Aglobal*l;
    return rn[];
}
```

The preconditioning method can be Additive Schwarz (ASM)

```
func real[int] Mm1(real[int] &l)
{
    s = 0;
    for(int i=0;i<npart;++i)
    {
        mesh Thi = aTh[i];
        real[int] bi = Rih[i]*l; // restricts rhs
        real[int] ui = aA[i] ^-1 * bi; // local solves
        s[] += Rih[i]'*ui; // prolongation
    }
    return s[];
}
```

The Krylov method applied in this case is the CG. The performance is now less sensitive to the overlap size.

We can also use RAS as a preconditioner, by taking into account the partition of unity

```
func real[int] Mm1(real[int] &l)
{
    s = 0;
    for(int i=0;i<npart;++i)
    {
        mesh Thi = aTh[i];
        real[int] bi = Rih[i]*l; // restricts rhs
        real[int] ui = aA[i] ^-1 * bi; // local solves
        bi = Dih[i]*ui;
        s[] += Rih[i]'*bi; // prolongation
    }
    return s[];
}
```

this time in conjuction with BiCGStab since we deal with non-symmetric problems.

Weak scalability

How to evaluate the efficiency of a domain decomposition?

Weak scalability - definition

"How the solution time varies with the number of processors for a fixed problem size per processor."

It is not achieved with the one level method

Number of subdomains	8	16	32	64
ASM	18	35	66	128

The iteration number increases linearly with the number of subdomains in one direction.

Convergence curves- more subdomains

Plateaus appear in the convergence of the Krylov methods.

How to achieve scalability

Stagnation corresponds to a few very low eigenvalues in the spectrum of the preconditioned problem. They are due to the lack of a global exchange of information in the preconditioner.

$$
\begin{aligned}
& -\Delta u=f \text { in } \Omega \\
& u=0 \text { on } \partial \Omega
\end{aligned}
$$

The mean value of the solution in domain i depends on the value of f on all subdomains.
A classical remedy consists in the introduction of a coarse grid problem that couples all subdomains. This is closely related to deflation technique classical in linear algebra (see Nabben and Vuik's papers in SIAM J. Sci. Comp, 200X).

Outline

IntroductionSchwarz algorithms as solversSchwarz algorithms as preconditioners

4 Classical coarse grid method

- Coarse grid correction
- Theoretical convergence result
- Deflation and coarse grid
- Classical coarse grid using FreeFEM++
(5) Coarse grid for heterogeneous problems
(6) An abstract 2-level Schwarz - the GenEO algorithm

Adding a coarse grid

We add a coarse space correction (aka second level) Let V_{H} be the coarse space and z be a basis, $V_{H}=\operatorname{span} z$, writing $R_{0}=Z^{\top}$ we define the two level preconditioner as:

$$
M_{A S M, 2}^{-1}:=R_{0}^{T}\left(R_{0} A R_{0}^{T}\right)^{-1} R_{0}+\sum_{i=1}^{N} R_{i}^{T} A_{i}^{-1} R_{i}
$$

The Nicolaides approach is to use the kernel of the operator as a coarse space, this is the constant vectors, in local form this writes:

$$
Z:=\left(R_{i}^{T} D_{i} R_{i} \mathbf{1}\right)_{1 \leq i \leq N}
$$

where D_{i} are chosen so that we have a partition of unity:

$$
\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i}=l d
$$

Theoretical convergence result

Theorem (Widlund, Sarkis)

Let $M_{A S M, 2}^{-1}$ be the two-level additive Schwarz method:

$$
\kappa\left(M_{A S M, 2}^{-1} A\right) \leq C\left(1+\frac{H}{\delta}\right)
$$

where δ is the size of the overlap between the subdomains and H the subdomain size.

This does indeed work very well

Number of subdomains	8	16	32	64
ASM	18	35	66	128
ASM + Nicolaides	20	27	28	27

Idea of the proof (Upper bound)

Lemma

If each point in Ω belongs to at most k_{0} of the subdomains Ω_{j}, then the largest eigenvalue of $M_{A S M, 2}^{-1} A$ satisfies

$$
\lambda_{\max }\left(M_{A S M, 2}^{-1} A\right) \leq k_{0}+1
$$

Assumption (Stable decomposition)

There exists a constant C_{0}, such that every $u \in V$ admits a decomposition $u=\sum_{i=0}^{N} R_{i}^{T} u_{i}, u_{i} \in V_{i}, i=0, \ldots, N$ that satisfies:

$$
\sum_{i=0}^{N} \tilde{a}_{i}\left(u_{i}, u_{i}\right) \leq C_{0}^{2} a(u, u)
$$

Idea of the proof (Lower bound)

Theorem

If every $v \in V$ admits a C_{0}-stable decomposition (with uniform C_{0}), then the smallest eigenvalue of $M_{A S, 2}^{-1} A$ satisfies

$$
\lambda_{\min }\left(M_{A S M, 2}^{-1} A\right) \geq C_{0}^{-2}
$$

Therefore, the condition number of the two-level Schwarz preconditioner can be bounded by

$$
\kappa\left(M_{A S M, 2}^{-1} A\right) \leq C_{0}^{2}\left(k_{0}+1\right) .
$$

Deflation and Coarse grid correction

Let A be a SPD matrix, we want to solve

$$
A x=b
$$

with a preconditioner M (for example the Schwarz method). Let Z be a rectangular matrix so that the "bad eigenvectors" belong to the space spanned by its columns. Define

$$
P:=I-A Q, \quad Q:=Z E^{-1} Z^{\top}, \quad E:=Z^{\top} A Z
$$

Examples of coarse grid preconditioners
$\mathcal{P}_{A-D E F 2}:=P^{T} M^{-1}+Q, \quad \mathcal{P}_{B N N}:=P^{T} M^{-1} P+Q$ (Mandel, 1993)
Some properties: $Q A Z=Z, P^{T} Z=0$ and $P^{T} Q=0$.
Let r_{n} be the residual at step n of the algorithm: $Z^{T} r_{n}=0$.
How to choose Z ?

Coarse grid correction for smooth problems

For a Poisson like problem, Nicolaides (1987), Sarkis (2002). Let $\left(\chi_{i}\right)_{1 \leq i \leq N}$ denote a partition of unity :

Coarse grid implementation - I

It is enough to replace the Schwarz preconditioner by $P_{B N N}$ as follows. First build $E=Z^{\top} A Z$

```
Vh[int] Z(npart);
for(int i=0;i<npart;++i)
{ Z[i]=1.;
real[int] zit = Rih[i]*Z[i][];
real[int] zitemp = Dih[i]*zit;
Z[i][]=Rih[i]'*zitemp;
}
real[int,int] Ef(npart,npart); // E = Z^T*A*Z
for(int i=0;i<npart;++i)
{ real[int] vaux = A(Z[i][]);
    for(int j=0;j<npart;++j)
    Ef(j,i) = Z[j][]'*vaux;
}
matrix E;
E = Ef;
set(E,solver=UMFPACK);
```


Coarse grid implementation - II

Then the coarse space correction $Q=Z E^{-1} Z^{T}$:

```
func real[int] Q(real[int] &l) // Q = Z*E^-1*Z^T
{
    real[int] res(l.n);
    res=0.;
    real[int] vaux(npart);
    for(int i=0;i<npart;++i)
    {
    vaux[i]=Z[i][]'*l;
}
real[int] zaux=E^-1*vaux; // zaux=E^-1*Z^T*l
for(int i=0;i<npart;++i) // Z*zaux
{
    res +=zaux[i]*Z[i][];
}
return res;
}
```


Coarse grid implementation - III

The projector out of the coarse space $P=I-Q A$ and its transpose P^{T} :

```
func real[int] P(real[int] &l) // P = I - A*Q
{
    real[int] res=Q(l);
    real[int] res2=A(res);
    res2 -= 1;
    res2 *= -1.;
    return res2;
}
func real[int] PT(real[int] &l) // P^T = I-Q*A
{
    real[int] res=A(l);
    real[int] res2=Q(res);
    res2 -= 1;
    res2 *= -1.;
    return res2;
}
```


Coarse grid implementation - IV

And finally the preconditioner $P_{B N N}=P^{\top} M^{-1} P+Q$:

```
int j;
func real[int] BNN(real[int] &u) // precond BNN
{
        real[int] auxl = Q(u);
        real[int] aux2 = P(u);
        real[int] aux3 = Mm1(aux2);
        aux2 = PT (aux3);
        aux2 += aux1;
        ++j;
return aux2;
}
```


Outline

IntroductionSchwarz algorithms as solversSchwarz algorithms as preconditionersClassical coarse grid method
(5) Coarse grid for heterogeneous problems

- The heterogeneous coefficient case
- Coarse grid for problems with high heterogeneities
- The DtN algorithm
- Theoretical and numerical results
(6) An abstract 2-level Schwarz - the GenEO algorithm

Motivation

Large discretized system of PDEs strongly heterogeneous coefficients (high contrast, nonlinear, multiscale)
E.g. Darcy pressure equation, P^{1}-finite elements:

$$
\mathbf{A u}=\mathbf{f}
$$

$$
\operatorname{cond}(\mathbf{A}) \sim \frac{\alpha_{\max }}{\alpha_{\min }} h^{-2}
$$

Goal:

iterative solvers
robust in size and heterogeneities

Applications:

 flow in heterogeneous / stochastic / layered media structural mechanics electromagnetics etc.

Darcy equation with heterogeneities

$$
\begin{aligned}
-\nabla \cdot(\alpha(x, y) \nabla u) & =0 \quad \text { in } \Omega \subset \mathbb{R}^{2} \\
u & =0 \text { on } \partial \Omega_{D} \\
\frac{\partial u}{\partial n} & =0 \text { on } \partial \Omega_{N}
\end{aligned}
$$

$\alpha(x, y)$

Decomposition

Jump	1	10	10^{2}	10^{3}	10^{4}
ASM	39	45	60	72	73
ASM + Nicolaides	30	36	50	61	65

Objectives

Strategy

Define an appropriate coarse space $V_{H 2}=\operatorname{span}\left(z_{2}\right)$ and use the framework previously introduced, writing $R_{0}=Z_{2}^{\top}$ the two level preconditioner is:

$$
P_{A S M 2}^{-1}:=R_{0}^{T}\left(R_{0} A R_{0}^{T}\right)^{-1} R_{0}+\sum_{i=1}^{N} R_{i}^{T} A_{i}^{-1} R_{i} .
$$

The coarse grid must be

- Local (calculated on each subdomain) \rightarrow parallel
- Adaptive (calculated automatically)
- Easy and cheap to compute (on the boundary for instance)
- Robust (must lead to an algorithm whose convergence does not depend on the partition or the jumps in coefficients)

The error satisfies the Schwarz algorithm, it is harmonic, so it satisfies a maximum principle.

Fast convergence

Slow convergence

Idea

Ensure that the error decreases quickly on the subdomain boundaries which translates to making $\left.\frac{\partial e}{\partial n_{i}}\right|_{\Gamma_{i}}$ big.

Ensuring that the error decreases quickly on the subdomain boundaries

The Dirichlet to Neumann operator is defined as follows: Let $g: \Gamma_{i} \mapsto \mathbb{R}$,

$$
\operatorname{DtN}_{\Omega_{i}}(g)=\left.\alpha \frac{\partial v}{\partial n_{i}}\right|_{\Gamma_{i}}
$$

where v satisfies

$$
\begin{cases}(-\operatorname{div}(\alpha \nabla)) v=0, & \text { in } \Omega_{i} \\ v=g, & \text { on } \partial \Omega_{j}\end{cases}
$$

To construct the coarse space, we use the low frequency modes associated with the DtN operator:

$$
\operatorname{DtN}_{\Omega_{i}}\left(v_{i}^{\lambda}\right)=\lambda \alpha v_{i}^{\lambda}
$$

with λ small. The functions v_{i}^{λ} are extended harmonically to the subdomains.

Theoretical convergence result

Suppose we have $\left(v_{i}^{\lambda_{k}}, \lambda_{i}^{k}\right)_{1 \leq k \leq n_{\Gamma_{i}}}$ the eigenpairs of the local DtN maps $\left(\lambda_{i}^{1} \leq \lambda_{i}^{2} \leq \ldots\right)$ and that we have selected m_{i} in each subdomain. Then let Z be the coarse space built via the local DtN maps:

$$
Z:=\left(R_{i}^{T} D_{i} \tilde{V}_{i}^{\lambda_{i}^{k}}\right)_{1 \leq i \leq N ; 1 \leq k \leq m_{i}}
$$

Theorem (D., Nataf, Scheichl and Spillane 2010)

Under the monotonicity of α in the overlapping regions:

$$
\kappa\left(M_{A S M, 2}^{-1} A\right) \leq C\left(1+\max _{1 \leq i \leq N} \frac{1}{\delta_{i} \lambda_{i}^{m_{i}+1}}\right)
$$

where δ_{i} is the size of the overlap of domain Ω_{i} and C is independent of the jumps of α.

If m_{i} is chosen so that, $\lambda_{i}^{m_{i}+1} \geq 1 / H_{i}$ the convergence rate will be analogous to the constant coefficient case.

Results with the new DtN method

Jump	1	10	10^{2}	10^{3}	10^{4}
ASM	39	45	60	72	73
ASM + Nicolaides	30	36	50	61	65
ASM + DiN	31	35	36	36	36

Decomposition

$$
\alpha(x, y)
$$

With DtN the jumps do not affect convergence We put at most two modes per subdomain in the coarse grid (using the automatic selection process)

Numerical results

Channels and inclusions: $1 \leq \alpha \leq 1.5 \times 10^{6}$, the solution and partitionings (Metis or not)

Numerical results

ASM convergence for channels and inclusions -4×4 Metis partitioning

Numerical results

subdomain i	m_{i}	total number of eigenvalues
1	3	155
2	1	109
3	5	175
10	4	174
11	2	71
12	2	128
13	3	166
14	3	127
15	3	188
16	3	106

Metis 4 by 4 decomposition

	ASM	ASM+Nico	ASM+DtN
2×2	103	110	22
2×2 Metis	76	76	22
4×4	603	722	26
4×4 Metis	483	425	36
8×8	461	141	34
8×8 Metis	600	542	31

Convergence results for the "hard" test case

Numerical results - Optimality

$\# Z$ per subd.	ASM	$\mathrm{ASM}+Z_{\text {Nico }}$	$\mathrm{ASM}+Z_{D 2 N}$
$\max \left(m_{i}-1,1\right)$			273
m_{i}	614	543	36
$m_{i}+1$			32

m_{i} is given automatically by the strategy.

- Taking one fewer eigenvalue has a huge influence on the iteration count
- Taking one more has only a small influence

Young's modulus $\left(1 \leq E \leq 10^{6}\right) \quad$ Poisson's ratio $(0.35 \leq \nu \leq 0.48)$

Results for 2d elasticity (Solution)

Overlap is two grid cells

Outline

Introduction

Schwarz algorithms as solvers

Schwarz algorithms as preconditioners(4) Classical coarse grid method
(5) Coarse grid for heterogeneous problems

6 An abstract 2-level Schwarz - the GenEO algorithm

- Schwarz abstract setting
- Numerical results

Problem setting - I

Given $f \in\left(V^{h}\right)^{*}$ find $u \in V^{h}$

$$
\begin{aligned}
a(u, v) & =\langle f, v\rangle \quad \forall v \in V^{h} \\
\mathbf{A} \mathbf{u} & =\mathbf{f}
\end{aligned}
$$

Assumption throughout: A symmetric positive definite (SPD)
Examples:

- Darcy

$$
a(u, v)=\int_{\Omega} \kappa \nabla u \cdot \nabla v d x
$$

- Elasticity
$a(\boldsymbol{u}, \boldsymbol{v})=\int_{\Omega} \boldsymbol{C} \varepsilon(\boldsymbol{u}): \varepsilon(\boldsymbol{v}) d x$
- Eddy current $a(\boldsymbol{u}, \boldsymbol{v})=\int_{\Omega} \nu$ curl $\boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v}+\sigma \boldsymbol{u} \cdot \boldsymbol{v} d x$

Heterogeneities / high contrast / nonlinearities in parameters

Problem setting - II

(1) $V^{h} \ldots$ FE space of functions in Ω based on mesh $\mathcal{T}^{h}=\{\tau\}$
(2) A given as set of element stiffness matrices

+ connectivity (list of DOF per element)
Assembling property:

$$
a(v, w)=\sum_{\tau} a_{\tau}\left(v_{\mid \tau}, w_{\mid \tau}\right)
$$

where $a_{\tau}(\cdot, \cdot)$ symm. pos. semi-definite
(3) $\left\{\phi_{k}\right\}_{k=1}^{n}$ (FE) basis of V^{h}
on each element: unisolvence
set of non-vanishing basis functions linearly independent
fulfilled by standard FE
continuous, Nédélec, Raviart-Thomas of low/high order
(0) Two more assumptions on $a(\cdot, \cdot)$ later!

Schwarz setting - I

Overlapping partition: $\Omega=\bigcup_{j=1}^{N} \Omega_{j} \quad\left(\Omega_{j}\right.$ union of elements)

$$
V_{j}:=\operatorname{span}\left\{\phi_{k}: \operatorname{supp}\left(\phi_{k}\right) \subset \bar{\Omega}_{j}\right\}
$$

such that every ϕ_{k} contained in one of those spaces, i.e.

$$
V^{h}=\sum_{j=1}^{N} V_{j}
$$

Example: adding "layers" to non-overlapping partition (partition and adding layers based on matrix information only!)

Schwarz setting - II

Local subspaces:

$$
V_{j} \subset V^{h} \quad j=1, \ldots, N
$$

Coarse space (defined later):

$$
V_{0} \subset V^{h}
$$

Additive Schwarz preconditioner:

$$
\mathbf{M}_{A S M, 2}^{-1}=\sum_{j=0}^{N} \mathbf{R}_{j}^{\top} \mathbf{A}_{j}^{-1} \mathbf{R}_{j}
$$

where $\mathbf{A}_{j}=\mathbf{R}_{j}^{\top} \mathbf{A} \mathbf{R}_{j}$
and $\mathbf{R}_{j}^{\top} \leftrightarrow R_{j}^{\top}: V_{j} \rightarrow V^{h}$ natural embedding

Partition of unity

Definitions:

$$
\begin{aligned}
\operatorname{dof}\left(\Omega_{j}\right) & :=\left\{k: \operatorname{supp}\left(\phi_{k}\right) \cap \Omega_{j} \neq \emptyset\right\} \\
\operatorname{idof}\left(\Omega_{j}\right) & :=\left\{k: \operatorname{supp}\left(\phi_{k}\right) \subset \bar{\Omega}_{j}\right\} \quad V_{j}=\operatorname{span}\left\{\phi_{k}\right\}_{k \in \operatorname{idof}\left(\Omega_{j}\right)} \\
\operatorname{imult}(k) & :=\#\left\{j: k \in \operatorname{idof}\left(\Omega_{j}\right)\right\}
\end{aligned}
$$

Partition of unity:

(used for design of coarse space and for stable splitting)

$$
\Xi_{j} v=\sum_{k \in \operatorname{idof}\left(\Omega_{j}\right)} \frac{1}{\operatorname{imult}(k)} v_{k} \phi_{k} \quad \text { for } v=\sum_{k=1}^{n} v_{k} \phi_{k}
$$

Properties:

$$
\sum_{j=1}^{N} \Xi_{j} v=v \quad \Xi_{j} v \in V_{j}
$$

Overlapping zone / Choice of coarse space

Overlapping zone: $\quad \Omega_{j}^{\circ}=\left\{x \in \Omega_{j}: \exists i \neq j: x \in \Omega_{i}\right\}$

Observation: $\bar{\Xi}_{j \mid \Omega_{j} \backslash \Omega_{j}^{\circ}}=$ id
Coarse space should be local:

$$
V_{0}=\sum_{j=1}^{N} V_{0, j} \quad \text { where } V_{0, j} \subset V_{j}
$$

E.g. $V_{0, j}=\operatorname{span}\left\{\bar{\Xi}_{j} p_{j, k}\right\}_{k=1}^{m_{j}}$

Abstract eigenvalue problem

Gen.EVP per subdomain:
Find $p_{j, k} \in V_{h \mid \Omega_{j}}$ and $\lambda_{j, k} \geq 0$:

$$
\begin{aligned}
\mathrm{a}_{\Omega_{j}}\left(p_{j, k}, v\right) & =\lambda_{j, k} a_{\Omega_{j}^{\circ}}\left(\bar{\Xi}_{j} p_{j, k}, \Xi_{j} v\right) & \forall v \in V_{h \mid \Omega_{j}} \\
\mathbf{A}_{j} \mathbf{p}_{j, k} & =\lambda_{j, k} \mathbf{X}_{j} \mathbf{A}_{j}^{\circ} \mathbf{X}_{j} \mathbf{p}_{j, k} & \left(\mathbf{x}_{j} \ldots \text { diagonal }\right)
\end{aligned}
$$

(properties of eigenfunctions discussed soon) $\quad a_{D} \ldots$ restriction of a to D

In the two-level ASM:

Choose first m_{j} eigenvectors per subdomain:

$$
V_{0}=\operatorname{span}\left\{\bar{\Xi}_{j} p_{j, k}\right\}_{k=1, \ldots, m_{j}}^{j=1, \ldots, N}
$$

Two technical assumptions.

Theorem (D., Hauret, Nataf, Pechstein, Scheichl, Spillane)

If for all $j: \quad 0<\lambda_{j, m_{j+1}}<\infty$:

$$
\kappa\left(\mathbf{M}_{A S M, 2}^{-1} \mathbf{A}\right) \leq\left(1+k_{0}\right)\left[2+k_{0}\left(2 k_{0}+1\right) \max _{j=1}^{N}\left(1+\frac{1}{\lambda_{j, m_{j}+1}}\right)\right]
$$

Possible criterion for picking m_{j} :

$$
\lambda_{j, m_{j}+1}<\frac{\delta_{j}}{H_{j}}
$$

$H_{j} \ldots$ subdomain diameter, $\delta_{j} \ldots$ overlap

Numerics - Darcy - I

Domain \& Partitions

Iterations (CG) vs. jumps

Coefficient

Code: Matlab \& FreeFem++

κ_{2}	ASM-1	ASM-2-low	$\operatorname{dim}\left(V_{H}\right)$	GenEO	$\operatorname{dim}\left(V_{H}\right)$
1	22	16	(8)	16	(8)
10^{2}	31	24	(8)	17	(15)
10^{4}	37	30	(8)	21	(15)
10^{6}	36	29	(8)	18	(15)

ASM-1: 1-level ASM
ASM-2-low: $m_{j}=1$
NEW: $\lambda_{j, m_{j}+1}<\delta_{j} / H_{j}$

Numerics - Darcy - II

Iterations (CG) vs. number of subdomains

regular partition

subd. | | dofs | ASM-1 | ASM-2-low $\operatorname{dim}\left(V_{H}\right)$ | $G e n E O \quad \operatorname{dim}\left(V_{H}\right.$ |
| :--- | :--- | :--- | :--- | :--- |

4	4840	14	15	(4)	10	(6)
8	9680	26	22	(8)	11	(14)
16	19360	51	36	(16)	13	(30)
32	38720	>100	61	(32)	13	(62)

METIS partition

subd. dofs $\quad |$| ASM-1 | ASM-2-low $\operatorname{dim}\left(V_{H}\right)$ | GenEO $\operatorname{dim}\left(V_{H}\right.$ |
| :--- | :--- | :--- | :--- |

4	4840	21	18	(4)	15	(7)
8	9680	36	29	(8)	18	(15)
16	19360	65	45	(16)	22	(31)
32	38720	>100	79	(32)	34	(63)

Numerics - Darcy - III

Iterations (CG) vs. overlap

(added) layers	ASM-1	ASM-2-low	$\left(V_{H}\right)$	GenEO	$\left(V_{H}\right)$
1	26	22	(8)	11	(14)
2	22	18	(8)	9	(14)
3	16	15	(8)	9	(14)

Numerics - 2D Elasticity

$$
\begin{aligned}
E_{1} & =2 \cdot 10^{11} \\
\nu_{1} & =0.3 \\
& \\
E_{2} & =2 \cdot 10^{7} \\
\nu_{2} & =0.45
\end{aligned}
$$

METIS partitions with 2 layers added

subd.	dofs	ASM-1	ASM-2-low	$\left(V_{H}\right)$	GenEO	$\left(V_{H}\right)$
4	13122	93	134	(12)	42	(42)
16	13122	164	165	(48)	45	(159)
25	13122	211	229	(75)	47	(238)
64	13122	279	167	(192)	45	(519)

Numerics - 3D Elasticity

Iterations (CG) vs. number of subdomains

$$
\begin{aligned}
E_{1} & =2 \cdot 10^{11} \\
\nu_{1} & =0.3 \\
& \\
E_{2} & =2 \cdot 10^{7} \\
\nu_{2} & =0.45
\end{aligned}
$$

Relative error vs. iterations

16 regular subdomains

subd.	dofs	ASM-1	ASM-2-low	$\left(V_{H}\right)$	GenEO	$\left(V_{H}\right)$
4	1452	79	54	(24)	16	(46)
8	29040	177	87	(48)	16	(102)
16	58080	378	145	(96)	16	(214)

