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Q, bounded polyhedral domain of R3, boundary T =T2UTr™;
the system of Maxwell's equation in three space dimensions is given by :

E
e% —curl(H) = 0,
p%—i: +curl(E) = 0,

where :
e E=1(E(x,t), Ea(x,t), E3(x,t)) & H = t(Hi(x, t), Ha(x, t), H3(x, t)) are
the electric field and the magnetic field

e ¢ = ¢(x), p = u(x), are the electric permittivity and the magnetic
permeability, respectively
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Q, bounded polyhedral domain of R3, boundary T =T2UTr™;
the system of Maxwell's equation in three space dimensions is given by :

E
egt—curI(H) = 0,
OH
Ma+curl(E) = 0,

where :

e E=1(E(x,t), Ea(x,t), E3(x,t)) & H = t(Hi(x, t), Ha(x, t), H3(x, t)) are
the electric field and the magnetic field

e ¢ = ¢(x), p = u(x), are the electric permittivity and the magnetic
permeability, respectively

e Metallic boundary condition on '™ : n x E = 0 (n outwards normal to I)

Silver-Miiller boundary condition on ? : n x E — 1/ﬁn Xx(Hxn)=0
3

e Pseudo-conservative form : Q(9;W)+V-F(W) =0 (W =*(E,H) € R®)
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OBJECTIVE : Formulate, study and validate a DGTD—P,/Q)
method to solve Maxwell’s equations :

e mesh objects with complex geometry by tetrahedra
(triangles in 2D) for high precision

e mesh the surrounding space by square elements
(large size) for simplicity and speed
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Spatial discretization

N
e Q is discretized by &), = U ¢ = %Ue@h, where ¢; are tetrahedra (€ )
i=1
or hexahedra (€ 24) in 3D (triangles or quadrangles in 2D)

e We multiply the system by 1), a test function (scalar) and we integrate on
¢; (integration by parts)

e P,[c;] the space of polynomial functions with degree at most p in ¢; € },
Q«[ci] the space of polynomial functions with degree at most k with
respect to each variable separately on ¢; € 2}, (ex : form of polynomials @
in 2D 1 yo + yiX1 + Y2X2 + Y3X1X2)

® ¢; = (i1, pi2,- - ., pid;) local basis of Pp[c;]
9,’ = (19,'1, 19,'27 e ,19,'1,[.) local basis of Qk[C,']
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Spatial discretization

N
e Q is discretized by &), = U ¢ = %Ue@h, where ¢; are tetrahedra (€ )
i=1
or hexahedra (€ 24) in 3D (triangles or quadrangles in 2D)

e We multiply the system by 1), a test function (scalar) and we integrate on
¢; (integration by parts)

e P,[c;] the space of polynomial functions with degree at most p in ¢; € },
Q«[ci] the space of polynomial functions with degree at most k with
respect to each variable separately on ¢; € 2}, (ex : form of polynomials @
in 2D 1 yo + yiX1 + Y2X2 + Y3X1X2)

® ¢; = (i1, pi2,- - ., pid;) local basis of Pp[c;]
9,’ = (19,'1, 19,'27 e ,19,'1,[.) local basis of Qk[C,']

e The discrete solution vector Wy, is searched for in the approximation space
VP defined by :
Ve € %, Vhlg € IPP[C,']

Vh — Vh S L2 Q
(@) Vei € 2h, il € Qilail
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o Local degrees of freedom denoted by W; € RS

o W, defines the restriction of the approximate solution to the cell ¢; (W)

d;
® G © % — W,' S IPP[C,'] : W,'(X) = ZW;/(,D;/(X) S Re
=1

bj
¢ €2,=—W,;c Qk[c,-] : W,'(X) e ZW,‘/’[?,‘/(X) S Re
I1=1
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Spatial discretization

e Local degrees of freedom denoted by W; € R®

e W, defines the restriction of the approximate solution to the cell ¢; (Wh\q)
d;

e eI —=W,ec IPP[C,'] : W,'(X) = ZW;/(p;/(X) S Rﬁ
=1

b;
¢ €2,=—W,;c Qk[c,-] : W,'(X) e ZW;/@;/(X) S R6
I=1
e The local representation of W does not provide any form of continuity from

one element to another. We use a centered numerical flux on a; = ¢;N ¢

Wi‘a;/- —l—Wj

_ £
Wh‘a,-j - 2

If ajj on the metallic boundary : *(Ej, H;) = *(—E;, H;)

e Two cases for weak formulation
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¢ is a tetrahedron. aj; face of ¢, is either on boundary, or common to another
tetrahedron, or to a hexahedron (hybrid)



¢ is a tetrahedron. aj; face of ¢, is either on boundary, or common to another
tetrahedron, or to a hexahedron (hybrid)

6d; semi-discretized equations system :

+ZXXkH + > XH Y ApHi+ > AH =0,

a;€T] a;e g ajeHN]
WY NE- Y wE Y uE- Y s -0
a; €T} a;e T} ajEH)

with :
® E;="(Ei,Epp,--- ,Eig) and H; = (Hi1, Hip, - - Hig) € R*
 E = “(Ej,Ep,--- Ep) and Hj = (Hj1, Hpp, - Hjp) € R
e X_;and X, ; are mass matrices, X7* gradient matrix, Xj; surface matrix
= All have a 3d; x 3d; size, except A;;, whose size is 3d; x 3b;



¢; is an hexahedron. aj; face of ¢;, is either on boundary, or common to another
hexahedron, or to a tetrahedron (hybrid)



¢; is an hexahedron. aj; face of ¢;, is either on boundary, or common to another
hexahedron, or to a tetrahedron (hybrid)

6b; semi-discretized equations system :

+ZWXkH + 3 WiH + > WinHi+ Y BiH; =0,

a;e2] ;€20 ajeN)
WY wE- Y W Y Webi- X B o
a;€ 2], ;€20 ajeN)

with :
* Ei=*(En,Ep, - ,Ep) and H; = “(Hi, Hi, - Hip,) € R*
e E; ='(Ej1,Ej, -+ ,Ejg) and H; = “(Hj1,Hj2,- -+ [ Hjg) € R3¢
e W, ;and W, ; are mass matrices, W* gradient matrix, Wj; surface matrix
= All have a 3b; x 3b; size, except B;;, whose size is 3b; x 3d;

[m]



Second order Leap-Frog scheme :

gl —n-1 At _
N +7[Xu,i] YA

e Case (A) : ) At '
—n+ —n —1 n+1
E; = E + > [Xe.i] AH?,-LZ
~ntl ~n_1 At _
Hi+2 = Hi 2 +7[WH,/] 1Bs,;7

e Case (B) : At .
Erl = En4 > Wei] ' Bat?
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e We define a discrete energy &". We consider only metallic boundary. We

assume that this is an energy and we check that it is exactly conserved, i.e.
A¢ = ¢l _¢gn=0

o We prove that &” is a positive definite quadratic form under a CFL
condition
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Stability analysis

o We define a discrete energy &"”. We consider only metallic boundary. We

assume that this is an energy and we check that it is exactly conserved, i.e.
A¢ = ¢l _¢gn=0

e We prove that &" is a positive definite quadratic form under a CFL
condition

e For this, we make the hypothesis :
3 T
VX € (Pylc])”, [lrot(X)le; < (af pill X)) /lcil,

o) /il

e of and B} (j € {jlci N ¢; # D}) defining the constant parameters

VX € (Byle])’, IIX

2 < (BjlImgllIIx

a,-j—

e We also admit similar hypothesis VX € (Qx[c;])* with constants af and Bi

e |l and |||, are L2-norm.  |Ing|| = faj ldo with nj; non-unitary normal

to aj oriented from ¢; towards ¢;. |¢;| = [. 1dx and p; = > ey, lIngll
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e For the DGTD—P, method, the sufficient condition on At; is :

4 1 11
VI,VJEV, At—,— |:2a’7-+ﬂ max( [ L [ ):| |C|\/ i

e For DGTD—Q, method, the sufficient condition on At is :

4’ ad]
ViVjeVi: Aty [2a7+5gmax</ [Hi )] |c|\/—eu




3D MAXWELL'S EQUATIONS DGTD METHOD ON HYBRID MESHES 3D CONVERGENCE AND STABILITY 2D NUMERICAL RESULTS (TM;) CONCLUSION
000000 [e] lele] 000000 [e]e]e}
Stability analysis

e For the DGTD—P, method, the sufficient condition on At is :

i i 4lcil\/Eipi
Vi,VvjeV: At [20&7 —&—/87]— max <\/?, \/7)} < M
G VH pi

e For DGTD—Q/ method, the sufficient condition on At is :

i i 4|ci|\/€ipi
Vi,VjeVi: At [204,‘.’ + ﬁf} max (\/?, \/'LT)] < M
o'V u pi

Finally, noting At the global time step for the hybrid method, we have shown
that the sufficient stability condition is defined by :

At = min(At,, Atg)

Under this condition on At and under the hypothesis defined above, €” is a
positive definite quadratic form
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A priori convergence analysis

m(T, T') = 2/Q<QT, T )dx

a(T,T) = / <<§3:agokT, T’> —i(@xﬁTz OkT>> dx
Q k=1

k=1
(VY UT) = Uy IV)-
(V3 VD) +({U'} VD)) do +

[gm(<U,ﬁxV’>+<V,ﬁxU’>) do

b(T,T')

e Summing up weak formulations on each ¢;, the discrete solution W/,
satisfies :

m(0:Wp, T') 4+ a(Wp, T') + b(W),, T') =0, VT € V¢
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A priori convergence analysis

m(T, T') = 2/Q<QT, T )dx

aT,T) = / <<§:8ka’¢, T’> —i(@ﬁsz okT>> dx
Q k=1

k=1
(({v} ., [UT) - {{u}, [V])-
(V3 VD) +({U'} VD)) do +

[gm(<U,ﬁxV’>+<V,ﬁxU’>) do

b(T,T')

T

e Summing up weak formulations on each ¢;, the discrete solution W/,
satisfies :

m(0:Wp, T') 4+ a(Wp, T') + b(W),, T') =0, VT € V¢

e We assume that the exact solution W(t) € (H(curl,Q))®, Vt € [0, t7], then
we prove :

m(O;W,T') + a(W, T') + (W, T') =0, VT € V¢
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e We also prove :

AT, T)+b(T,T)=0, VT € V¢
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A priori convergence analysis
e We also prove :

AT, T)+b(T,T)=0, VT € V¢

min{s, min{s,k
Let h, = TQayx'](hTi), hy = q?éaé(h(hq") and 7, = max {hT {s:p} pmind }}.

Let W € CO([0, t¢]; (PHT1(2))®) for s < 0 with

PH*(Q) = {v | ¥/, vig; € H5+1(Qj)}.

And W, € CY([0, t¢]; VP). Then there is a constant C > 0 independent of h
such that :

2 (IPAW(D) = Wa(®)loa) < C i tr [Wlesgo o o
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A priori convergence analysis
e We also prove :

AT, T)+b(T,T)=0, VT € V¢

min{s, min{s,k
Let h, = ﬂrréayxh(hﬂ.), hy = qr’_rézgh(hqi) and 7, = max {hT {s:p} pmints }}.

Let W € CO([0, t¢]; (PHT1(2))®) for s < 0 with

PH*(Q) = {v | ¥/, vig; € H5+1(Qj)}.

And W, € C([0, t¢]; V). Then there is a constant C > 0 independent of h
such that :

2 (IPAW(D) = Wa(®)loa) < C i tr [Wlesgo o o

Finally, the error w = W — W, satisfies the estimate :

IWllcoqo.en.zy < € mn te IWIleogo, 7, prs1(2))
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Test problem 1 : Eigenmode in PEC square cavity
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Test problem 1 : Eigenmode in PEC square cavity

Exact solution of the evolution of the (1,1) mode in a PEC square cavity :

Hy(x1,x0,t) = —(m/w)sin(mxy) cos(mxz)sin(wt),
Hy (x1, %2, t) (m/w) cos(mxy) sin(mx2) sin(wt),
E.(x1, X2, ) sin(mxy) sin(mxz) cos(wt). w = 2xf, f the frequency
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C. DUROCHAT

CPU time | # dof | Final [?-error
DGTD—P,/Qo 9.7s 1980 | 9.17 x 1072
DGTD-P,/Q: 64.0 s 6012 | 3.23 x 102
DGTD-P,/Q: 395.0s | 12732 | 1.05x 107!
DGTD—P:/Qo 38.2s 3252 | 210x 10T
DGTD-P;/Q; 95.0 s 7284 | 453 x 1072
DGTD—P,/Q. 414.0s | 14004 | 2.20 x 102
DGTD-P,/Qo 129.0 s 5160 | 1.95x 10T
DGTD—P,/Q,; 238.0 s 0192 | 2.09 x 1072
DGTD—1P,/Q. 531.0s | 15912 | 2.70 x 10~

DGTD method on hybrid meshes for Maxwell

July 6, 2011
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CPU time | # dof | Final [%-error
DGTD—P, 155 s 3778 2.37 x 1072
DGTD—P; 127.0 s 11334 | 4.75x 1072
DGTD-P, 601.0 s 22668 | 2.70 x 10~3

3D CONVERGENCE AND STABILITY 2D NUMERICAL RESULTS (TMy)

smaller than IP1), CPU time reduced by about half compared to P

C. DUROCHAT

DGTD method on hybrid meshes for Maxwell

July 6, 2011
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Method stable (energy conserved). The error decreases by refining the mesh
Most accurate results for P»/Q2 (but long CPU time)
Best compromise between accuracy and CPU time : ;1 /Q, and P»/Q;

Same accuracy for P, /Q, and P, (with slightly lower CPU time for P,/Q5)
For P1/Q, and P»/Q1, more important error than P, (but very good and
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Test problem 1 : Eigenmode in PEC square cavity

e Method stable (energy conserved). The error decreases by refining the mesh
e Most accurate results for P2 /Qa (but long CPU time)
® Best compromise between accuracy and CPU time : P1/Q, and P,/Q;
CPU time | # dof | Final [%-error
DGTD-Pq 155 s 3778 | 2.37 x 102
DGTD-P; 127.0s | 11334 | 4.75 x 102
DGTD-P», 601.0 s 22668 2.70 x 1073

Same accuracy for P, /Q, and P, (with slightly lower CPU time for P,/Q5)
For P1/Q, and P»/Q1, more important error than P, (but very good and
smaller than IP1), CPU time reduced by about half compared to P

Time step Time step Time step
DGTD—Py/Qo 58.9 ps DGTD—P1/Q; 14.1 ps DGTD—Q;
DGTD—-Py/Q; DGTD-P,/Qo 12.4 ps DGTD—Q, 14.1 ps

DGTD—Do/Q, | 14.1ps DGTD—P,/Q; | 12.4 ps DGTD—_P, | 580 ps

DGTD—P;/Qo | 23.0 ps DGTD-P,/Q, | 12.4 ps DGTD—_P; | 23.0 ps

DGTD—P;/Q; | 23.0 ps DGTD—Qp 117 ps DGTD—P, | 12.4 ps
We note that each time step used in the DGTD—P,/Q, method exactly
corresponds to the minimum between the time step for DGTD—P, and the
time step for DGTD—Qx = first numerical validation of the stability analysis
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Test problem 2 : Scattering of a plane wave by PEC cylinder
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Test problem 2 : Scattering of a plane wave by PEC cylinder

Contour lines of component E; :

]
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Test problem 2 : Scattering of a plane wave by PEC cylinder

Time evolution of E, at points (0.75,0.75) and (1.3,—1.3) :

e The curves coincide

e CPU time for P2/Q3 (3.1 s) reduced by about half compared to P, (6.3 s)
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e First validation of this method

® Interesting results with the first test case for P1/Q2 and P»/Q;
and with the second test case (IP2/Q3)

o Recent work :

e Fourth order Leap-Frog scheme
e Hybridizations P,/Q« for p=0,...,4and k=0,...,4

e A priori convergence analysis



e First validation of this method

® Interesting results with the first test case for P1/Q2 and P»/Q;
and with the second test case (IP2/Q3)

o Recent work :

e Fourth order Leap-Frog scheme
e Hybridizations P,/Q« for p=0,...,4and k=0,...,4

e A priori convergence analysis

e Work in progress :
e Non-conforming meshes (with a large number of new test cases)

e Transition to 3D
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THANK YOU FOR YOUR
ATTENTION
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