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Ω, bounded polyhedral domain of R3, boundary Γ = Γa ∪ Γm ;
the system of Maxwell’s equation in three space dimensions is given by :

ε
∂E

∂t
− curl(H) = 0,

µ
∂H

∂t
+ curl(E) = 0,

where :

E ≡ t(E1(x, t),E2(x, t),E3(x, t)) & H ≡ t(H1(x, t),H2(x, t),H3(x, t)) are
the electric field and the magnetic field

ε ≡ ε(x), µ ≡ µ(x), are the electric permittivity and the magnetic
permeability, respectively

Metallic boundary condition on Γm : n× E = 0 (n outwards normal to Γ)

Silver-Müller boundary condition on Γa : n× E−
√
µ

ε
n× (H× n) = 0

Pseudo-conservative form : Q(∂tW) +∇ · F (W) = 0 (W = t(E,H) ∈ R6)
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Objective

Objective : Formulate, study and validate a DGTD−Pp/Qk

method to solve Maxwell’s equations :

mesh objects with complex geometry by tetrahedra
(triangles in 2D) for high precision

mesh the surrounding space by square elements
(large size) for simplicity and speed
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Spatial discretization

Ω is discretized by Ch =
N⋃
i=1

ci = Th

⋃
Qh, where ci are tetrahedra (∈ Th)

or hexahedra (∈ Qh) in 3D (triangles or quadrangles in 2D)

We multiply the system by ψ, a test function (scalar) and we integrate on
ci (integration by parts)

Pp[ci ] the space of polynomial functions with degree at most p in ci ∈ Th,
Qk [ci ] the space of polynomial functions with degree at most k with
respect to each variable separately on ci ∈ Qh (ex : form of polynomials Q1

in 2D : γ0 + γ1x1 + γ2x2 + γ3x1x2)

φi = (ϕi1, ϕi2, . . . , ϕidi ) local basis of Pp[ci ]
θi = (ϑi1, ϑi2, . . . , ϑibi ) local basis of Qk [ci ]

The discrete solution vector Wh is searched for in the approximation space
V 6
h defined by :

Vh =

{
vh ∈ L2(Ω)

∣∣∣∣∣ ∀ci ∈ Th, vh ci ∈ Pp[ci ]

∀ci ∈ Qh, vh ci ∈ Qk [ci ]

}
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Spatial discretization

Local degrees of freedom denoted by Wil ∈ R6

Wi defines the restriction of the approximate solution to the cell ci (Wh ci )

ci ∈ Th =⇒Wi ∈ Pp[ci ] : Wi (x) =

di∑
l=1

Wilϕil(x) ∈ R6

ci ∈ Qh =⇒Wi ∈ Qk [ci ] : Wi (x) =

bi∑
l=1

Wilϑil(x) ∈ R6

The local representation of W does not provide any form of continuity from
one element to another. We use a centered numerical flux on aij = ci ∩ cj

Wh aij =
Wi aij + Wj aij

2

If aij on the metallic boundary : t(Ej ,Hj) = t(−Ei ,Hi )

Two cases for weak formulation

C. Durochat DGTD method on hybrid meshes for Maxwell July 6, 2011 7 / 27



3D Maxwell’s equations DGTD method on hybrid meshes 3D Convergence and stability 2D Numerical results (TMz ) Conclusion

Spatial discretization

Local degrees of freedom denoted by Wil ∈ R6

Wi defines the restriction of the approximate solution to the cell ci (Wh ci )

ci ∈ Th =⇒Wi ∈ Pp[ci ] : Wi (x) =

di∑
l=1

Wilϕil(x) ∈ R6

ci ∈ Qh =⇒Wi ∈ Qk [ci ] : Wi (x) =

bi∑
l=1

Wilϑil(x) ∈ R6

The local representation of W does not provide any form of continuity from
one element to another. We use a centered numerical flux on aij = ci ∩ cj

Wh aij =
Wi aij + Wj aij

2

If aij on the metallic boundary : t(Ej ,Hj) = t(−Ei ,Hi )

Two cases for weak formulation

C. Durochat DGTD method on hybrid meshes for Maxwell July 6, 2011 7 / 27



3D Maxwell’s equations DGTD method on hybrid meshes 3D Convergence and stability 2D Numerical results (TMz ) Conclusion

Spatial discretization

Case (A) :

ci is a tetrahedron. aij face of ci , is either on boundary, or common to another
tetrahedron, or to a hexahedron (hybrid)

6di semi-discretized equations system :
2Xε,i

dEi

dt
+

3∑
k=1

X xk
i Hi +

∑
aij∈T i

d

XijHj +
∑

aij∈T i
m

XimHi +
∑

aij∈H i
d

AijH̃j = 0,

2Xµ,i
dHi

dt
−

3∑
k=1

X xk
i Ei −

∑
aij∈T i

d

XijEj +
∑

aij∈T i
m

XimEi −
∑

aij∈H i
d

Aij Ẽj = 0,

with :

Ei = t(Ei1,Ei2, · · · ,Eidi ) and Hi = t(Hi1,Hi2, · · · ,Hidi ) ∈ R3di

Ẽj = t(Ej1,Ej2, · · · ,Ejbj ) and H̃j = t(Hj1,Hj2, · · · ,Hjbj ) ∈ R3bj

Xε,i and Xµ,i are mass matrices, X xk
i gradient matrix, Xij surface matrix

=⇒ All have a 3di × 3di size, except Aij , whose size is 3di × 3bj
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Spatial discretization

Case (B) :

ci is an hexahedron. aij face of ci , is either on boundary, or common to another
hexahedron, or to a tetrahedron (hybrid)

6bi semi-discretized equations system :
2Wε,i

dẼi

dt
+

3∑
k=1

Wxk
i H̃i +

∑
aij∈Qi

d

WijH̃j +
∑

aij∈Qi
m

WimH̃i +
∑

aij∈H i
d

BijHj = 0,

2Wµ,i
dH̃i

dt
−

3∑
k=1

Wxk
i Ẽi −

∑
aij∈Qi

d

Wij Ẽj +
∑

aij∈Qi
m

WimẼi −
∑

aij∈H i
d

BijEj = 0,

with :

Ẽi = t(Ei1,Ei2, · · · ,Eibi ) and H̃i = t(Hi1,Hi2, · · · ,Hibi ) ∈ R3bi

Ej = t(Ej1,Ej2, · · · ,Ejdj ) and Hj = t(Hj1,Hj2, · · · ,Hjdj ) ∈ R3dj

Wε,i and Wµ,i are mass matrices, Wxk
i gradient matrix, Wij surface matrix

=⇒ All have a 3bi × 3bi size, except Bij , whose size is 3bi × 3dj
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WimẼi −
∑

aij∈H i
d

BijEj = 0,

with :
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Time discretization

Second order Leap-Frog scheme :

Case (A) :


H

n+ 1
2

i = H
n− 1

2

i +
∆t

2
[Xµ,i ]−1 An

E,i
,

E
n+1

i = E
n

i +
∆t

2
[Xε,i ]−1 An+ 1

2
H,i

Case (B) :


H̃

n+ 1
2

i = H̃
n− 1

2

i +
∆t

2
[Wµ,i ]

−1 Bn
E,i
,

Ẽn+1
i = Ẽn

i +
∆t

2
[Wε,i ]

−1 B
n+ 1

2
H,i
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Stability analysis

We define a discrete energy En. We consider only metallic boundary. We
assume that this is an energy and we check that it is exactly conserved, i.e.
∆E = En+1 − En = 0

We prove that En is a positive definite quadratic form under a CFL
condition

For this, we make the hypothesis :

∀X ∈ (Pp[ci ])
3
, ‖rot(X)‖ci ≤ (ατi pi‖X‖ci ) /|ci |,

∀X ∈ (Pp[ci ])
3
, ‖X‖2

aij ≤
(
βτij ‖nij‖‖X‖2

ci

)
/|ci |

ατi and βτij (j ∈ {j |ci ∩ cj 6= ∅}) defining the constant parameters

We also admit similar hypothesis ∀X ∈ (Qk [ci ])
3 with constants αq

i and βq
ij

‖.‖ci and ‖.‖aij are L2-norm. ‖nij‖ =
∫
aij

1dσ with nij non-unitary normal

to aij oriented from ci towards cj . |ci | =
∫
ci

1dx and pi =
∑

j∈Vi ‖nij‖
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Stability analysis

For the DGTD−Pp method, the sufficient condition on ∆tτ is :

∀i ,∀j ∈ Vi : ∆tτ

[
2ατi + βτij max

(√
εi
εj
,

√
µi

µj

)]
<

4|ci |
√
εiµi

pi

For DGTD−Qk method, the sufficient condition on ∆tq is :

∀i ,∀j ∈ Vi : ∆tq

[
2αq

i + βq
ij max

(√
εi
εj
,

√
µi

µj

)]
<

4|ci |
√
εiµi

pi

Finally, noting ∆t the global time step for the hybrid method, we have shown
that the sufficient stability condition is defined by :

∆t = min(∆tτ ,∆tq)

Under this condition on ∆t and under the hypothesis defined above, En is a
positive definite quadratic form
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A priori convergence analysis

m(T,T′) = 2

∫
Ω

〈
QT , T′

〉
dx

a(T,T′) =

∫
Ω

(〈
3∑

k=1

∂hxkO
kT , T′

〉
−

3∑
k=1

〈
∂hxkT

′ , OkT
〉)

dx

b(T,T′) =

∫
Fd

( 〈
{V} , JU′K

〉
−
〈
{U} , JV′K

〉
−〈

{V′} , JUK
〉

+
〈
{U′} , JVK

〉 )
dσ +∫

Fm

( 〈
U , n̆× V′

〉
+
〈
V , n̆×U′

〉 )
dσ

Summing up weak formulations on each ci , the discrete solution Wh

satisfies :

m(∂tWh,T
′) + a(Wh,T

′) + b(Wh,T
′) = 0, ∀T′ ∈ V 6

h

We assume that the exact solution W(t) ∈ (H(curl,Ω))6, ∀t ∈ [0, tf ], then
we prove :

m(∂tW,T′) + a(W,T′) + b(W,T′) = 0, ∀T′ ∈ V 6
h

C. Durochat DGTD method on hybrid meshes for Maxwell July 6, 2011 14 / 27



3D Maxwell’s equations DGTD method on hybrid meshes 3D Convergence and stability 2D Numerical results (TMz ) Conclusion

A priori convergence analysis

m(T,T′) = 2

∫
Ω

〈
QT , T′

〉
dx

a(T,T′) =

∫
Ω

(〈
3∑

k=1

∂hxkO
kT , T′

〉
−

3∑
k=1

〈
∂hxkT

′ , OkT
〉)

dx

b(T,T′) =

∫
Fd

( 〈
{V} , JU′K

〉
−
〈
{U} , JV′K

〉
−〈

{V′} , JUK
〉

+
〈
{U′} , JVK

〉 )
dσ +∫

Fm

( 〈
U , n̆× V′

〉
+
〈
V , n̆×U′

〉 )
dσ

Summing up weak formulations on each ci , the discrete solution Wh

satisfies :

m(∂tWh,T
′) + a(Wh,T

′) + b(Wh,T
′) = 0, ∀T′ ∈ V 6

h

We assume that the exact solution W(t) ∈ (H(curl,Ω))6, ∀t ∈ [0, tf ], then
we prove :

m(∂tW,T′) + a(W,T′) + b(W,T′) = 0, ∀T′ ∈ V 6
h

C. Durochat DGTD method on hybrid meshes for Maxwell July 6, 2011 14 / 27



3D Maxwell’s equations DGTD method on hybrid meshes 3D Convergence and stability 2D Numerical results (TMz ) Conclusion

A priori convergence analysis

We also prove :

a(T′,T′) + b(T′,T′) = 0, ∀T′ ∈ V 6
h

Let hτ = max
τi∈Th

(hτi ), hq = max
qi∈Qh

(hqi ) and ηh = max
{
h

min{s,p}
τ , h

min{s,k}
q

}
.

Let W ∈ C0([0, tf ]; (PHs+1(Ω))6) for s ≤ 0 with
PHs+1(Ω) = {v | ∀j , v Ωj ∈ Hs+1(Ωj)}.

And Wh ∈ C1([0, tf ];V 6
h ). Then there is a constant C > 0 independent of h

such that :

max
t∈[0,tf ]

(‖Ph(W(t))−Wh(t)‖0,Ω) ≤ C ηh tf ‖W‖C0([0,tf ],PHs+1(Ω))

Finally, the error w = W −Wh satisfies the estimate :

‖w‖C0([0,tf ],L2(Ω)) ≤ C ηh tf ‖W‖C0([0,tf ],PHs+1(Ω))
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C. Durochat DGTD method on hybrid meshes for Maxwell July 6, 2011 15 / 27



3D Maxwell’s equations DGTD method on hybrid meshes 3D Convergence and stability 2D Numerical results (TMz ) Conclusion

A priori convergence analysis
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h
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τi∈Th
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qi∈Qh

(hqi ) and ηh = max
{
h

min{s,p}
τ , h

min{s,k}
q

}
.
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Test problem 1 : Eigenmode in PEC square cavity

Exact solution of the evolution of the (1,1) mode in a PEC square cavity : Hx(x1, x2, t) = −(π/ω) sin(πx1) cos(πx2) sin(ωt),
Hy (x1, x2, t) = (π/ω) cos(πx1) sin(πx2) sin(ωt),
Ez(x1, x2, t) = sin(πx1) sin(πx2) cos(ωt). ω = 2πf , f the frequency
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Test problem 1 : Eigenmode in PEC square cavity

CPU time # dof Final L2-error

DGTD−P0/Q0 9.7 s 1980 9.17× 10−2

DGTD−P0/Q1 64.0 s 6012 3.23× 10−2

DGTD−P0/Q2 395.0 s 12732 1.05× 10−1

DGTD−P1/Q0 38.2 s 3252 2.10× 10−1

DGTD−P1/Q1 95.0 s 7284 4.53× 10−2

DGTD−P1/Q2 414.0 s 14004 2.20× 10−2

DGTD−P2/Q0 129.0 s 5160 1.95× 10−1

DGTD−P2/Q1 238.0 s 9192 2.09× 10−2

DGTD−P2/Q2 531.0 s 15912 2.70× 10−3
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Test problem 1 : Eigenmode in PEC square cavity

Method stable (energy conserved). The error decreases by refining the mesh

Most accurate results for P2/Q2 (but long CPU time)

Best compromise between accuracy and CPU time : P1/Q2 and P2/Q1

CPU time # dof Final L2-error
DGTD−P0 15.5 s 3778 2.37 × 10−2

DGTD−P1 127.0 s 11334 4.75 × 10−2

DGTD−P2 601.0 s 22668 2.70 × 10−3

Same accuracy for P2/Q2 and P2 (with slightly lower CPU time for P2/Q2)

For P1/Q2 and P2/Q1, more important error than P2 (but very good and
smaller than P1), CPU time reduced by about half compared to P2

Time step Time step Time step
DGTD−P0/Q0 58.9 ps DGTD−P1/Q2 14.1 ps DGTD−Q1 29.5 ps
DGTD−P0/Q1 29.5 ps DGTD−P2/Q0 12.4 ps DGTD−Q2 14.1 ps
DGTD−P0/Q2 14.1 ps DGTD−P2/Q1 12.4 ps DGTD−P0 58.9 ps
DGTD−P1/Q0 23.0 ps DGTD−P2/Q2 12.4 ps DGTD−P1 23.0 ps
DGTD−P1/Q1 23.0 ps DGTD−Q0 117 ps DGTD−P2 12.4 ps

We note that each time step used in the DGTD−Pp/Qk method exactly
corresponds to the minimum between the time step for DGTD−Pp and the
time step for DGTD−Qk =⇒ first numerical validation of the stability analysis
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Test problem 2 : Scattering of a plane wave by PEC cylinder

DGTD−P2 method and DGTD−P2/Q3 method :
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Test problem 2 : Scattering of a plane wave by PEC cylinder

Contour lines of component Ez :
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Test problem 2 : Scattering of a plane wave by PEC cylinder

Time evolution of Ez at points (0.75, 0.75) and (1.3,−1.3) :

The curves coincide

CPU time for P2/Q3 (3.1 s) reduced by about half compared to P2 (6.3 s)
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First validation of this method

Interesting results with the first test case for P1/Q2 and P2/Q1

and with the second test case (P2/Q3)

Recent work :

Fourth order Leap-Frog scheme

Hybridizations Pp/Qk for p = 0, . . . , 4 and k = 0, . . . , 4

A priori convergence analysis

Work in progress :

Non-conforming meshes (with a large number of new test cases)

Transition to 3D
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Thank you for your
attention
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