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Introduction

Introduction
Discontinuous Galerkin (DG) methods were introduced in the 70’s

I Hyperbolic PDE’s (Reed and Hill 73, Lesaint and Raviart 74)

I Elliptic PDE’s (Nitsche 71, Douglas and Dupont 76, Baker 77,
Wheeler 78, Arnold 82)

General principles and motivations
I Handle and compute accurately

discontinuous fields

I FE-based method using piecewise
polynomials discontinuous across mesh
elements

I FV-based high-order method using
numerical fluxes flexibility
(non-matching grids, variable
polynomial degree)

I Locally conservative, stable, high order
accurate methods
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Motivation for DG methods Spurious pressure modes in mixed FE methods

1) – Spurious pressure modes in mixed methods
Let a(., .), b(., .) and c(., .), continuous bilinear forms on V ×V , V ×Q and
Q×Q, resp., where V and Q are some Hilbert spaces. We assume a(., .) is
positive semidefinite.

We introduce the continuous problem: find u ∈ V and p ∈Q such that{
a(u,v)+b(v ,p) =< f ,v >V ′×V ∀v ∈ V ,

b(u,q) =< g,q >Q ′×Q ∀q ∈Q,

{
< grad u,grad v >−< p,div v >=< f ,v >

< div u,q >= 0,

and for the discrete problem we search uh ∈ Vh and ph ∈Qh such that:{
a(uh,vh)+b(vh,ph) =< f ,vh >V ′h×Vh

∀vh ∈ Vh

b(uh,qh) =< g,qh >Q ′h×Qh
∀qh ∈Qh.

We also let A and B the linear continuous operators defined as:
< Au,v >V ′×V= a(u,v), < Bv ,q >Q ′×Q=< v ,Bt q >V×V ′= b(v ,q), ∀u,v ∈ V ,∀q ∈Q.

Finally, let A0 the restriction of A to kerB.
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Motivation for DG methods Spurious pressure modes in mixed FE methods

If the five following conditions are filled:

a(., .)is invertible on kerB, that is there exists α1 > 0 such that

inf
u0∈kerB

sup
v0∈kerB

a(u0,v0)

‖u0‖V ‖v0‖V
≥ α1 > 0, i.e. kerA0 = 0, that is A0 is injective,

inf
v0∈kerB

sup
u0∈kerB

a(u0,v0)

‖u0‖V ‖v0‖V
≥ α1 > 0, i.e. kerAt

0 = 0, that is A0 is surjective,

There exists a positive constant α2 > 0 such that

inf
uh∈kerBh

sup
vh∈kerBh

a(uh,vh)

‖uh‖V ‖vh‖V
≥ α2 > 0,

Im B is closed in Q
′
,

There exists a positive constant β > 0 such that

inf
qh∈Qh

sup
vh∈Vh

b(vh,qh)

‖vh‖V ‖qh‖Q/kerBt
≥ β > 0,

Then, for every f ∈ V
′
and g ∈ Im B, the continuous and discrete problems have a

unique solution and for K a bounded non linear function depending on ‖a‖,‖b‖, α,β:

‖u−uh‖V +‖p−ph‖Q ≤ K
(

inf
vh∈Vh

‖u−vh‖V + inf
qh∈Qh

‖p−qh‖Q
)
.
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Motivation for DG methods Spurious pressure modes in mixed FE methods

If Bh : Vh −→Q′h is such that

< Bhuh,qh >Q′h×Qh
=< uh,Bt

hqh >Vh×V ′h
= b(uh,qh), ∀qh ∈Qh,

then β is the smallest eigenvalue of the matrix
(

0 Bt
h

Bh 0

)
.

If a spurious pressure mode exists (i.e. dim(kerBt
h)> 1) we have

β= 0, and the discrete problem fails to admit a unique solution.

For example, Bt
h is the discrete gradient operator for Stokes flow.

The spurious mode is a numerical artifact introduced by the discrete
scheme. It is a physical eigenmode of the system which appears as a
stationary internode oscillation for pressure (see below for the P1 −P1
FE pair). The velocity part of such a spurious eigenvector is zero.

We need to perform Fourier and kernel discrete operators analyses.
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Motivation for DG methods Other spurious solutions in mixed FE methods

2) – Other spurious solutions in mixed FE methods
The Shallow-water equations are derived by vertical integration of the
Navier-Stokes system assuming several asumptions (uz = vz = 0,
H� L, ρ is constant, pz =−ρg).

Linear shallow-water system in the non con-
servative form with IC and BC, H is constant:

ut + f k×u+g ∇η = 0 ,
ηt +H ∇ ·u = 0.

The continuous solution is examined by considering the behavior of
one Fourier mode: (ũ, ṽ , η̃) = (û, v̂ , η̂)ei(kx+ly+ωt). The so-called
dispersion relation reads: ω

(
ω2 − f 2 −g H (k2 + l2 )

)
= 0.

RT0 BDM1 P0 P1 P2 PNC
1 PDG

1
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Motivation for DG methods Other spurious solutions in mixed FE methods

Table: Number of frequencies of type ω= 0, O(h2), ±f , O(1), O( 1
h ), solutions

of the dispersion relation of degree n for inertia-gravity waves.

FE pair n ω= 0 O(h2)
f O(1) modes Spurious O( 1

h )or −f when h→ 0 η modes

RT0 −P0 5 1 ωAN +O(h2) no 2

RT0 −P1 4 2 ωAN +O(h2) yes

BDM1 −P0 8 4 ωAN +O(h2) no 2

BDM1 −P1 7 3 2 ωAN +O(h4) yes

P1 −P1 3 1 ωAN +O(h4) yes

P2 −P1 9 1 6 ωAN +O(h2) no

PNC
1 −P1 7 1 4 ωAN +O(h4) no

P0 −P1 5 1 2 ωAN +O(h2) no

PDG
1 −P1 13 1 10 ωAN +O(h2) no

PDG
1 −P2 16 4 4 ωAN +O(h4) no 6

Daniel Le Roux (Université Lyon 1) Journées GDR Calcul, 07/11 9 / 35



Motivation for DG methods Other spurious solutions in mixed FE methods

Table: Dimension of the discrete operator kernels on a m×n grid (made up of
biased triangles) for several FE pairs with periodic boundary conditions.

r s C G D
(1) (2) (3) (4)

RT0 −P0
3
2mn 2mn mn 1 mn + 1

A
RT0 −P1

3
2mn mn mn > 1 2mn + > 1

BDM1 −P0 3mn 2mn 2mn 1 4mn + 1
BDM1 −P1 3mn mn 2mn > 1 3mn +2mn + > 1
P1 −P1 mn mn 0 > 1 mn + > 1
P2 −P1 4mn mn 0 1 mn +6mn + 1

B
PNC

1 −P1 3mn mn 0 1 mn +4mn + 1
P0 −P1 2mn mn 0 1 mn +2mn + 1
PDG

1 −P1 6mn mn 0 1 mn +10mn + 1
PDG

1 −P2 6mn 4mn 0 1 4mn +4mn + 1
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Motivation for DG methods Other spurious solutions in mixed FE methods

kerD contains the stationary modes: physical (ω= 0) and spurious
(inertial and pressure). For the inertial modes (kerD (3)) the reason
lies in kerD = (Im G)⊥. Number of inertial spurious modes: 2(r −s).

Since many years there are open questions about problems observed
iin geophysical fluid dynamics involving Coriolis (for pairs of Group B):

Numerical noise observed in the velocity field.
Sub-optimal convergence of velocity, (e.g. O(h) instead of O(h2)).

In fact, the spurious inertial modes are responsible of such behavior.

Example: u component of geostrophic adjustment for the P2 −P1 pair.

t = 0 s t = 20 s t = 80 s t = 100s = 2π/f

The PDG
1 −P1 pair: the inertial modes take the control of the solution.

Daniel Le Roux (Université Lyon 1) Journées GDR Calcul, 07/11 11 / 35



Motivation for DG methods Stabilized Finite element methods

3) – Stabilized Finite element methods
Consider the Stokes problem: Find (uh,ph) ∈ Vh×Qh such that{

(graduh,gradvh)−(ph,divvh) = (f,vh) ∀vh ∈ Vh
div(uh,qh) = 0 ∀qh ∈Qh.

The term (ph,divvh) may be problematic as pressure is obtained via:

(ph,divvh) = (graduh,gradvh)−(f,vh).

When there are not enough functions vh, as it is the case when grad is
not injective (dim(kerBt

h)> 1), there are more ph unknowns than
equations to satisfy them. Hence, the uniqueness for pressure is lost.

This is the case when vh is too "small", and a lot of informations are
lost about gradph, as we only get ΠVhgradph, i.e. the orthogonal
projection of gradph on Vh, w.r.t. the scalar product in L2. Hence, only
the part ΠVhgradph of gradph is retained. For example, for the P1 −P1
and P1 −P0 pairs, ΠVh "kills" too many components.
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Motivation for DG methods Stabilized Finite element methods

The purpose of stabilized methods is to retrieve the information lost by
the projection ΠVh for a bad choice of Vh and Qh (when Vh is too
"small") i.e.: gradph −ΠVhgradph. It is sufficient to put this term in the
system and the problem now reads: Find (uh,ph) ∈ Vh×Qh such that{

(graduh,gradvh)−(ph,divvh) = (f,vh), ∀vh ∈ Vh
−div(uh,qh)−h2(gradph −ΠVhgradph,gradph −ΠVhgradph) = 0, ∀qh ∈Qh.

The sign "-" leads to a symmetric problem, and h2 is for the dimension.
A number of methods follow this idea ...

Example: the Q1 −P0 pair. In this case the stabilization term reads

h2
∑
σ∈Γh

hσ
∫
σ

[ph]σ [qh]σ, where Γh is the set of faces σ of the triangulation,

hσ is the length of hσ and [ph] denotes the jump of ph through σ. Simple
calculation shows it is h2(4p1 −p2 −p3 −p4 −p5), i.e. the discrete
Laplacian on the dual mesh obtained bu joining the element centers.
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Motivation for DG methods Stabilized Finite element methods

The wave equation
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The wave equation

The wave equation
For an enclosed domain of length L, consider the 1–D wave equation

vtt −gH vxx = 0,

written (using u = vt ,η=−H vx ) on the form

ut +gηx = 0, (1)

ηt +H ux = 0, (2)

with apropriate boundary and initial data.
Let w = (η,u), equations (1) and (2) can be conveniently expressed as

wt +Awx = 0, where A =

(
0 H
g 0

)
. (3)

Matrix A as two real eigenvalues ±
√

gH, two eigenvectors (H,±
√

gH) with

A = M D M−1, where M =

(
H H

−
√

gH
√

gH

)
and D =

(
−
√

gH 0
0

√
gH

)
. (4)
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The wave equation

The characteristic variables q = (q1,q2)
T are defined via

q = M−1 w, q1 =
√

gH η−H u, q2 =
√

gH η+H u. (5)

The original system (3) then becomes a simple set of decoupled equations. Indeed,
we have wt = M qt and wx = M qx , and from (3) and (4) we obtain

qt +D qx = 0. (6)

In the following we let q = q1, and will only consider the first equation in (6), i.e.

qt −
√

gH qx = 0, (7)

and will deduce the solution of the second equation in (6) by symmetry arguments.

For this analysis, we assume time is continuous, and we seek periodic Fourier
solutions of the form q1 = q̂(x)eiωt , where q̂(x) is the amplitude. Equation (7) then
becomes (by dropping the hats)

iωq−
√

gH qx = 0. (8)

Equation (8) is now spatially discretized using the DG method.
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The wave equation

Let εh denote a partition of the model domain Ω= (0,L), i.e. εh is a
finite collection of m open elements ej , j = 1,2, ...,m, of the real line,

Ω̄=
⋃

ej∈εh

ēj and ei ∩ej = /0 for i 6= j .

Consider a uniform mesh of m intervals on (0,L) and let h = L/m
denote the meshlength parameter with elements ej = (xj ,xj+1) for
j = 1,2, ...,m and ’knots’ xj = (j −1)h for j = 1,2, ...,m+1.

The so-called (mesh-dependent) broken space H1(εh) is defined as

H1(εh) = {v ∈ L2(Ω); v |e ∈ H1(e), ∀e ∈ εh} ,

where e simply denotes an element ej , j = 1,2, ...,m, of εh.

The discontinuous variables (qh, uh et ηh) are located at the same nodal locations and
both are approximated with linear polynomials on ej . Let say they belong to Q(ej ).
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The wave equation

To obtain the DG formulation we seek a discontinuous approximate solution
qh ∈Q(ej ), integrate over the domain, decompose the integrals

m∑
j=1

∫
ej

qhϕdx −
√

gH
m∑

j=1

(
−

∫
ej

qhϕx dx +qhϕ |
(j+1)−
j+

)
= 0. (9)

Regrouping the boundary terms leads to

m∑
j=1

qhϕ |
(j+1)−
j+ =

m+1∑
j=1

(qj−ϕj− −qj+ϕj+ ), =

m+1∑
j=1

(
< qj >λ [ϕj ] + [qj ] <ϕj >1−λ

)
,

where < χj >λ= (1−λ)χj− +λχj+ and [χj ] = χj− −χj+ , and λ is real.

When qh ∈ H1(Ω)⊂ H1(εh) the jump [qj ] vanishes on each node xj , j = 1,2, ...,m+1,
and we obtain

m∑
j=1

∫
ej

qhϕdx +
√

gH
m∑

j=1

∫
ej

qhϕx dx −
√

gH
m+1∑
j=1

< qj >λ [ϕj ] = 0. (10)

In the present study we use λ= 1 (i.e. the upwind case), due to the choice made
in (8), as the wave is progressing from the right part of the domain to the left one.
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The wave equation

Equation (10) at node j+ for ϕ=ϕj+ becomes

h
3

qj+ +
h
6

q(j+1)− +
1
2

√
gH

1
iω

(qj+ −q(j+1)−) = 0, (11)

and equation (10) at node (j +1)− for ϕ=ϕ(j+1)− , leads to

h
3

q(j+1)− +
h
6

q(j)+ +
1
2

√
gH

1
iω

(qj+ +q(j+1)− −2q(j+1)+) = 0. (12)

Periodic solutions of system (11) - (12) corresponding to q̃j± = q̂±eikxj± are sought.
Substituting in (11) - (12) leads to a matrix system for the amplitudes q̂±. For a
nontrivial solution (q̂+, q̂−)t to exist, the determinant of the matrix must vanish which
leads to a polynomial in ω, the so-called dispersion relation. We obtain the solutions

ω1,2 = i

√
gH
h

(
eikh +2±

√
e2ikh +10eikh −2

)
. (13)

In the limit as mesh spacing h→ 0, it follows

ω1 =
√

g H
(

k +
i

72
k4 h3 +O(h4)

)
, (14)

ω2 =
√

g H
(

6 i
h

−3k − i k2 h+
1
3

k3 h2 +
5 i
72

k4 h3 +O(h4)

)
. (15)

Note that ω1 coincide with the continuous solution obtained in the limit as mesh
spacing h→ 0, while ω2 correspond to spurious modes from the DG scheme.
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The wave equation

A few remarks
The DG method is appealing for its ability to exactly represent discontinuities.
However, one has to carefully choose the variable of which continuity is weakly
enforced.
DG schemes where upwinding weighting is naively applied to the primitive
variables (velocity, pressure) appear to poorly perform for all values of λ.
It is mandatory to impose the continuity of suitable combinations of primitive
variables.
Enforcing the weak continuity of the so-called Riemann variables would perform
quite better. In fact, the numerical flux function (numerical trace) at the element
interfaces is based on the solution of Riemann problems.
Such an approach is known as a DG method with a Riemann solver and its
numerical performances have been well documented in the literature (Roe 81,
Schwanenberger and Kongeter 00, Cockburn and Shu 01, Flaherty et al. 02 ....).
In higher dimensions the definition of Riemann variables is not obvious. The
approach consists in considering a simplified 1–D Riemann problem along the
normal direction of each segment.
The higher is the accuracy order of the numerical method, the less crucial is the
choice of Riemann solver.
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The wave equation

The linear transport equation
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The linear transport equation

The linear transport equation
We consider the space discretization of

ut +div(au) = 0, in R2× (0,T )

u(t = 0) = u0 on R2.

The objective here is to examine three properties of the DG methods:

1 Strong link with FV methods (e.g. up-winding, Lax-Friedrichs).
2 High-order accuracy when high order polynomials are used.
3 The artificial viscosity is given by the size of the jumps associated

with the residual.

To discretize the transport equation in space using DG, we first
triangulate the domain (τh), seek a discontinuous approximation uh
belonging of V (K ) (usually Pk (K )) in each element K of τh, and
determine uh on K by weakly enforcing the transport equation as:
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The linear transport equation∫
K
(uh)t v −

∫
K

auh ·∇v +

∫
∂K

âuh ·nv ds = 0, ∀v ∈ V (K ).

To complete the definition of the DG method it only remains to define
the numerical trace âuh. The choice of the numerical trace is perhaps
the most delicate and crucial aspect of the definition of the DG
methods as it can affect their consistency, stability and even accuracy.

First: a stability result. Taking v = uh in the weak formulation,
integrate over space and time and adding on the elements K, we get

1
2

∫
R2

u2
h(x,T )dx+

1
2

∫T

0

∫
R2

∇ ·a(x)u2
h(x,T )dxdt+

∫T

0
Θh(t)dt =

1
2

∫
R2

u2
h,0(x)dx,

where Θh(t) =
∑
K∈τh

(
−

1
2

∫
K

∇ · (auh)(x, t)dx+
∫
∂K

âuh(x, t) ·nuh(x, t)ds
)
.

Next we investigate if it is possible to define âuh in such a way as to
render Θh non-negative (link with the continuous stability result).
Daniel Le Roux (Université Lyon 1) Journées GDR Calcul, 07/11 23 / 35



The linear transport equation

Notation: Let x be a point on the set e = ∂K+
⋂
∂K− and let n± denote

the unit outward normal to ∂K± at the point x.
Let u±h (x) denote the value limε→0(x−εn±) and set

{uh}=
1
2
(u+

h +u−
h ), [uh] = u−

h n−+u+
h n+.

Finally, let εh denote the set of sets e for all K+ and K− ∈ τh.
By considering a sum over εh and using 1

2 [u
2
h ] = {uh} [uh], we obtain

Θh =
∑
K∈τh

∫
∂K

(
âuh ·nuh −

1
2

au2
h ·n

)
ds,

=
∑
e∈εh

∫
e

(
âuh −a {uh}

)
· [uh]ds.

Thus if we take: âuh = a {uh}+C [uh], we get

Θh =
∑
e∈εh

∫
e

C [uh] · [uh]ds ≥ 0,

if C is a non-negative definite matrix and the method is stable.
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The linear transport equation

Examples of the DG methods:
1 C = 1

2 |a ·n| Id. This implies that the numerical trace is

âuh = lim
ε→0

uh(x−εa),

which is nothing but the classical up-winding numerical flux.
2 C = 1

2 |a| Id. For this choice we have

âuh = a {uh}+
1
2
|a| [uh],

which is the so-called local Lax-Friedrichs numerical flux.
Properties of the DG methods:

From the two examples above, we see that the DG methods are
strongly related to finite volume methods. Indeed, the
discretization in space for up-winding scheme and the local
Lax-Friedrichs scheme coincide with the corresponding DG
method under consideration when the local space V (K ) is taken
to be the space of constant functions.
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The linear transport equation

The DG methods, like finite volume methods, can easily handle
complex computational domains. Also like finite volume methods,
they have the property of being locally conservative, that is,∫

K
(uh)t dx+

∫
∂K

âuh ·nds = 0,

provided V (K ) contains the constant function. This property is
obtained by simply taking the test function v to be a constant.
Unlike finite volume methods, DG achieve with ease high-order
accuracy. Moreover, this is achieved while keeping a high degree
of locality since to evolve the degrees of freedom of the
approximate solution uh in an element, only the degrees of
freedom of uh in the immediate neighbors are involved (block
diagonal mass matrices).
The method is highly parallelizable when time discretized explicit
methods are employed (e.g. RK schemes).
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The linear transport equation

The dissipation of the DG methods is given by the jumps of their
approximate solution. This is because DG has a higher rate of
dissipation of the energy, which here is nothing but the square of
the L2-norm, than the exact solution of the transport equation.

The extra rate of dissipation for the DG method is given by

Θh =
∑
e∈εh

∫
e

C [uh] · [uh]ds.

For monotone finite difference schemes for hyperbolic problems,
the above term, when C = ν Id, is introduced by what could be
considered to be a term modeling a viscosity effect with ν being
the viscosity coefficient, artificially inserted to render the scheme
stable. That is why it is also called artificial viscosity.

We thus see that the artificial viscosity of the DG method solely
depends on the jumps of their approximate solution.
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The linear transport equation

Moreover, the jumps and the local residual (uh)t +div(auh), which we
denote by R are strongly related. Indeed, a simple integration by parts
in the definition of the approximate solution leads to∫

K
R v =

∫
∂K

(
auh ·nv − âuh ·nv

)
ds.

For up-winding fluxes, with ∂K− = {x ∈ ∂K : a(x) ·n(x)≤ 0} we get∫
K

R v =

∫
∂K−

a · [uh]ds.

In other words, the residual of uh in K is linearly related to the jump of
uh on its inflow boundary ∂K−. A similar, but more complicated relation
holds for general DG methods.

The artificial viscosity generated by the method will generally depends
on the polynomial degree of the approximate solution and the way of
computing the fluxes.
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The linear transport equation

Second-order elliptic problems
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Second-order elliptic problems

Second-order elliptic problems
We consider the space discretization of

∆u = f , in Ω
u = 0 on ∂Ω,

where Ω is a bounded domain of Rd . The elliptic problem is rewritten
as

q = ∇u, −∇ ·q = f in Ω,u = 0 on ∂Ω.

The objective here is to examine a few properties of the DG methods:

1 We emphasized the DG methods are a generalization of VF
methods for hyperbolic problems.

Here we show that DG methods are in fact mixed FE methods.
2 Finally, the dissipation mechanism of the DG methods is

associated to the idea of penalization of the discontinuity jumps.
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Second-order elliptic problems

Following the same approach than previously the DG numerical method reads∫
K

qh ·vdx =−

∫
K

uh∇ ·vdx +

∫
∂K

ûh v ·nds = 0, ∀v ∈Q(K ).

∫
K

qh ·∇w dx −

∫
∂K

w q̂h ·nds =

∫
K

f w dx , ∀w ∈ U(K ),

where the approximate solution (qh,uh) is taken in the space Q(K )×U(K ).

The numerical traces q̂h and ûh remain to be defined in order to make the method
stable. It is enough to take , inside Ω

q̂h = {qh}+C11 [uh]+C12 [qh], ûh = {uh}−C12 [uh]+C22 [qh],

and on its boundary
q̂h = qh −C11 uh n, ûh = 0,

to obtain
Θh =

∑
e∈εh

∫
e

(
C22 [qh]

2 +C11 [uh]
2
)

ds+
∫
∂Ω

C11 u2
h ds ≥ 0,

provided C11 and C22 are non-negative. Note that the boundary conditions are
imposed weakly through the definition of the numerical traces.
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Second-order elliptic problems

Some properties
To guarantee the existence and uniqueness of the approximate DG method

I The parameter C11 has to be greater than zero
I The spaces Q(K ) and U(K ) must satisfy the compatibility condition

uh ∈ U(K ) :

∫
K

∇uh vdx = 0, ∀v ∈Q(K ) then ∇uh = 0.

DG methods are in fact mixed FE methods. Indeed, the DG approximate solution
(qh,uh) can be also characterized as the solution of{

a(qh,v)+b(uh,v)0 ∀v ∈Qh

−b(qh,w)+c(uh,w) = F (w) ∀w ∈ Uh.

where c(u,w) =
∫
εh

C11 [u] · [v ]ds+
∫
∂ΩC11 u v ds ≥ 0, which is typical of

stabilized mixed FE method. For DG methods the stabilizing form c(., .) solely
depends on the parameter C11 and the jumps across elements of function in Uh.
This shows that DG methods may be interpreted as stabilized FE methods,
(penalization methods by the jumps). The jumps act as dampers that stabilized
the DG method.
For DG methods penalizing the jumps is also a way of introducing stabilization
by using residuals, as for the hyperbolic case.
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Second-order elliptic problems

Non linear hyperbolic conservation laws
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Non linear hyperbolic conservation laws

Non linear hyperbolic conservation laws

We solve a non linear hyperbolic conservation law on the form

ut +∇ f(u) = 0.

DG space discretization

RK time discretization

The general slope limiter
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Conclusions

Conclusions
The discretization of the shallow-water equations usually leads to spurious (non
physical) modes, dispersion and dissipation effects. In particular the spurious
pressure modes, inertial oscillations (when the Coriolis term is considered) pose
significant problems. Further modes of type 0(1/h) have not been explored.

Modes of type 0(i/h) have been found for the 1–D DG scheme. Such modes are
dissipated quite instantaneously. A 2–D DG approach merits to be studied.

Hence, DG methods have the potential can be an improved alternative for
modelling geophysical flows, compared to FE methods.

The DG method is appealing for its ability to exactly represent discontinuities.

Strong link with FV methods (e.g. up-winding, Lax-Friedrichs).

High-order accuracy when high order polynomials are used.

The artificial viscosity is given by the size of the jumps associated with the
residual for hyperbolic problems.

For elliptic problems, DG methods may be interpreted as stabilized FE methods,
(penalization methods by the jumps). The jumps act as dampers that stabilized
the DG method. Penalizing the jumps is also a way of introducing stabilization by
using residuals, as for the hyperbolic case.
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