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Navier-Stokes equations for incompressible fluid
flow

Given x ∈ Ω ⊂ R2 and t > 0.
Velocity and pressure fields u = u(x, t) ∈ R2, p = p(x, t) ∈ R are
solution of

∂tu + div (u⊗ u)−4u/Re +∇p = f in Ω,

div u = 0 in Ω,

u = g on ∂Ω,

u = u0 at t = 0.

with
Re = U∗L∗/ν,

and
ν = µ/ρ kinematic viscosity.
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Backward F.D. scheme + Projection method (1/2)

Let δt > 0. Given uk (x) ≈ u(x, tk ) and pk (x) ≈ p(x, tk ), tk = kδt,

we solve the prediction step :

3ũk+1 − 4uk + uk−1

2δt
−4ũk+1/Re = −∇pk + fk+1

−2 div
(
uk ⊗ uk

)
+ div

(
uk−1 ⊗ uk−1

)
,

ũk+1 |∂Ω= g.

then the projection step :

uk+1 = ũk+1 − 2δt∇
(
δpk+1

)
/3

div uk+1 = 0(
uk+1 − ũk+1

)
|∂Ω .n = 0.

with δpk+1 = pk+1 − pk .
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Backward F.D. scheme + Projection method (2/2)

Pressure increment δpk+1 is solution of :

4
(
δpk+1

)
= 3 div ũk+1/2δt

∂n

(
δpk+1

)
|∂Ω= 0,

At each iteration,

1. solve prediction step,

2. solve system on
pressure increment,

3. correction of velocity
via projection step.
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M.A.C. Scheme : position of unknowns

Let Ω = (0, L)× (0,H).

We consider ` = L/n`, h = H/nh, xi = i ` and yj = j h.

Ki, j = [xi−1 , xi ]× [yj−1 , yj ]

u i j (t) ' 〈u( . , t)〉K
i+ 1

2
, j
, v i j (t) ' 〈v( . , t)〉K

i, j+ 1
2

,

p i j (t) ' 〈p( . , t)〉Ki, j
, where 〈w〉K =

1

|K |

∫
K

w(x) dx.

u

v

p

1

F.H. Harlow and J.E.

Welch, Numerical calculation of time-

dependent viscous incompressible flow of

fluid with free surface, Phys. Fluids

8, 1965.
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Immersed boundary methods on cartesian grid

I simulation of flows in
complex geometry

I in the literature, several
methods exist : forcing,
ghost cell, penalization, cut
cell
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Taking into account the obstacle

Rectangular domain Ω.

The obstacle ΩS is bounded by
a closed curve Γ.

ΩF

ΩS
Γ

Algebraic distance d : Ω→ R is defined by :

d(x) =

 dist(x, Γ) if x ∈ ΩS ,

− dist(x, Γ) otherwise.
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Cell-face ratio

ru
i j ≈

|σu
i, j ∩ ΩF |
|σu

i, j |
∈ [0, 1],

with

σu
i, j = {xi} × [yj−1, yj ] .

O. Botella and Y. Cheny, The LS-STAG method: A new immersed

boundary/level-set method for the computation of incompressible viscous flows in complex

moving geometries with good conservation properties, J. Comp. Phys. 229, 2010.
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Position of unknows

Γh

pi j

ui j

vi j

xixi−1

yj−1

yj

I Position of velocity field well-adapted to divergence

I Interpolation of the pressure gradient
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Discretization of the prediction step

Far away from the obstacle : second order centered
discretization

Near the obstacle :ß 4u : first order Finite Difference approximation
div (u⊗ u) : first order Finite Volume approximation

N. Matsunaga and T.

Yamamoto, Superconvergence

of the Shortley-Weller approxima-

tion for Dirichlet problems, J.

Comp. Appl. Math. 116,

2000.

linear elliptic
=⇒ Second order

accurate
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Discretization of the prediction step : 4u

First-order Finite Difference approximation is exact on R2[X ,Y ].

V = {O,N,S ,E ,W ,P}

I O the position of ui j ,

I N,S ,E ,W among
unknowns close to O or
on the board Γ,

I P arbitrarily chosen

O

N

S

E

W

P

Find coefficients αM such that :∑
M∈V

αMu(M) = 4u(O) +O(h).
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Discretization of the prediction step : div (u⊗ u)

K̃i, j = Ki, j ∩ ΩF

xi−1 xi xi+1

yj−1

yj

ui j FE
i j

FE
i+1 j

FN
i j

FN
i j−1

FB
i j

Γh

ΩF
h ΩS

h

xi−1 xi xi+1

yj−1

yj

ui j FE
i j

FE
i+1 j

FN
i j

FN
i j−1

FB
i j

Γh

ΩF
h ΩS

h

Ii, j =

∫
K̃

i+ 1
2
, j

(
∂x (u2) + ∂y (uv)

)
dx

=

∫
∂K̃

i+ 1
2
, j

(
u2nx + (uv)ny

)
dS

=F E
i+1, j − FE

i, j + FN
i, j − FN

i, j−1 + FB
i, j .

→ flux reconstruction
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Discretization of the correction step

• div u : Discrete divergence on cut cells

• ∇p : Interpolation of the pressure gradient
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Discretization of the correction step : div u (1/2)

∫∫
K̃i, j

div u dx =

∫
∂K̃i, j

u.n dS

=

∫
σu

i, j
∩ΩF

udS −
∫
σu

i−1, j
∩ΩF

u dS

+

∫
σv

i, j
∩ΩF

vdS −
∫
σv

i, j−1
∩ΩF

v dS +

∫ıAB

u.n dS ,

with ÂB = Γ ∩ Ki, j .

Γ

A

B

n
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Discretization of the correction step : div u (2/2)

g.n

vi j

vi j−1

ui−1 j

ui j

• Assuming h� radius of curvature of Γ :∫ıAB

u.n dS ≈
∫

[AB]

u.n dS

≈ L g
((

A + B
)
/2
)
.ni, j .

•
∫
σu

i, j
∩ΩF

u dS ≈ ru
i, j h ui, j and

∫
σv

i, j
∩ΩF

v dS ≈ r v
i, j h vi, j .

(Dobsu)i, j = h (ru
i, jui, j − ru

i−1, jui−1, j ) + h (r v
i, jvi, j − r v

i, j−1vi, j−1)

+ L g
((

A + B
)
/2
)
.ni, j

= (D0
obsu)i, j + Dsupp

i, j
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Discretization of the correction step : PφGδp

Without

Gp =

Å (
pi+1, j − pi, j

)
/h(

pi, j+1 − pi, j

)
/h

ã
pi j pi+1 j

ui j

D(Gδp) =
3 h2

2 δt
D(ũ)

⇒ u = ũ− 2 δt

3 h2
Gδp

⇒ D(u) = 0

With

Γ

pi j pi+1 j

pi j−1 pi+1 j−1

ui j

D0
obs(Pφ(Gδp)) =

3 h2

2 δt
Dobs(ũ)

⇒ u = ũ− 2 δt

3 h2
Pφ(Gδp)

⇒ Dobs(u) = 0
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Solver

Obstacle → nonsymmetric linear system

• Iterative methods for solving linear systems
Cut cells → ill-conditioned linear systems

→ slow convergence
→ simulation on coarse mesh
→ simulations of flow at moderate Reynolds

• Direct method for solving linear systems

Unmoving obstacle :

I Preprocessing step : O(n3)
operations, once per simulation.

I Every iteration : O
(
n2logn

)
operations (idem without
obstacle).

B.L. Buzbee,

F.W.Dorr, J.A. George

and G.H. Golub, The direct

solution of the discrete Poisson

equation on irregular regions, J.

Num. Anal. 8, 1971.
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Numerical results : Re = 40
Laminar flows

∑
Forces/obstacle =

1

2
ρAu∞

Å
Cd

Cl

ã
R. Bouard and M.

Coutanceau, Experimental deter-

mination of the main features of the

viscous flow in the wake of a circular

cylinder in uniform translation, J.

Fluid Mech. 79, 1977.

Authors Re = 40
Cd θ l a b

Bouard et al 53.8 2.13 0.76 0.59
Calhoun 1.62 54.2 2.18
Dennis et al 1.52 53.8 2.35
Fornberg 1.50 55.6 2.24
Linnick et al 1.54 53.6 2.28 0.72 0.60
Taira et al 1.55 54.1 0.73 0.60
Present study 1.50 53.4 2.26 0.710 0.60
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Numerical results : Re = 9 500

Ω = (−5, 5)× (−2.5, 2.5), obstacle = disk, D = 1
Non-uniform grid, 3072 mesh points in each direction
Near the obstacle h = 1.6 10−3

CFL stability condition ⇒ δt = 10−4

Figure: Evolution of the boundary layer : comparison with experimental
results.
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Numerical results : flow past a NACA airfoil

Figure: Flow behind NACA 0012 at Re = 1 000, incidence 34o :
comparison with experimental results
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Conclusion and prospects

Accurate (second order)
and fast (efficient solver)
new cut cell method.

1. Three Dimensional flows

2. Coupling with :

I H-box method (avoid the small cell problem, δt ↗)
I Turbulence model (flows at high Re)
I Local grid refinement
I Domain decomposition
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Thank you
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