A second-order cut-cell method for the numerical simulation of 2D flows past obstacles

Nicolas JAMES (Nicolas.James@math.univ-bpclermont.fr)

in collaboration with François BOUCHON and Thierry DUBOIS.

EPFL, Lausanne, Switzerland.

Wednesday, July 6, 2011

Fluid flows around obstacles 1/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the correction step

Solver

Numerical results

Summary

Context

Numerical simulation of incompressible fluid flows around obstacles

Conclusion and prospects

Fluid flows around obstacles 2/26

Nicolas JAMES

Summary

Contex

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the correction step Solver Numerical results

Conclusion and prospects

| □ ▶ ◀ 🗇 ▶ ◀ 🖻 ▶ ◀ 🖻 ▶ ▲ 🗐 ▶ ◀ 🖻 ● 🔍 🔍

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacle

Conclusion and prospects

Fluid flows around obstacles 3/26

Nicolas JAMES

Summar

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the correction step Solver

Numerical results

Conclusion and prospects

(ロ) 〈 母) 〈 母) 〈 母) (母) 〈 母)

Navier-Stokes equations for incompressible fluid flow

Given $\mathbf{x} \in \Omega \subset \mathbb{R}^2$ and t > 0. Velocity and pressure fields $\mathbf{u} = \mathbf{u}(\mathbf{x}, t) \in \mathbb{R}^2$, $p = p(\mathbf{x}, t) \in \mathbb{R}$ are solution of

 $\begin{aligned} &\partial_t \mathbf{u} + \operatorname{div} \left(\mathbf{u} \otimes \mathbf{u} \right) - \Delta \mathbf{u} / Re + \nabla p = \mathbf{f} \text{ in } \Omega, \\ &\operatorname{div} \mathbf{u} = 0 \text{ in } \Omega, \\ &\mathbf{u} = \mathbf{g} \text{ on } \partial \Omega, \\ &\mathbf{u} = \mathbf{u}_0 \text{ at } t = 0. \end{aligned}$

with

$$Re = U_*L_*/\nu_*$$

and

$$\nu = \mu / \rho$$
 kinematic viscosity.

Fluid flows around obstacles 4/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows

Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles Immersed boundary

methods Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the correction step Solver

Numerical results

Conclusion and prospects

・ロ・・団・・ヨ・・日・ うへの

Backward F.D. scheme + Projection method (1/2)

Let $\delta t > 0$. Given $\mathbf{u}^k(\mathbf{x}) \approx \mathbf{u}(\mathbf{x}, t_k)$ and $p^k(\mathbf{x}) \approx p(\mathbf{x}, t_k)$, $t_k = k \delta t$,

we solve the prediction step :

$$\frac{3\tilde{\mathbf{u}}^{k+1} - 4\mathbf{u}^k + \mathbf{u}^{k-1}}{2\delta t} - \Delta \tilde{\mathbf{u}}^{k+1}/Re = -\nabla p^k + \mathbf{f}^{k+1}$$
$$-2 \operatorname{div}(\mathbf{u}^k \otimes \mathbf{u}^k) + \operatorname{div}(\mathbf{u}^{k-1} \otimes \mathbf{u}^{k-1}),$$
$$\tilde{\mathbf{u}}^{k+1}|_{\partial\Omega} = \mathbf{g}.$$

then the **projection step** :

$$\mathbf{u}^{k+1} = \tilde{\mathbf{u}}^{k+1} - 2\delta t \,\nabla (\delta p^{k+1})/3$$
$$\operatorname{div} \,\mathbf{u}^{k+1} = 0$$
$$\left(\mathbf{u}^{k+1} - \tilde{\mathbf{u}}^{k+1}\right)|_{\partial\Omega} \,.\mathbf{n} = 0.$$

with $\delta p^{k+1} = p^{k+1} - p^k$.

Fluid flows around obstacles 5/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows

Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the correction step Solver Numerical results

Backward F.D. scheme + Projection method (2/2)

Pressure increment δp^{k+1} is solution of :

At each iteration,

- 1. solve prediction step,
- solve system on pressure increment,
- 3. correction of velocity via projection step.

Fluid flows around obstacles 6/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows

Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the correction step

Solver

Numerical results

M.A.C. Scheme : position of unknowns Let $\Omega = (0, L) \times (0, H)$.

We consider $\ell = L/n_{\ell}$, $h = H/n_h$, $x_i = i \ell$ and $y_i = j h$.

 $K_{i,i} = [x_{i-1}, x_i] \times [y_{i-1}, y_i]$

$$u_{ij}(t) \simeq \langle u(.,t) \rangle_{K_{i+\frac{1}{2},j}}, \quad v_{ij}(t) \simeq \langle v(.,t) \rangle_{K_{i,j+\frac{1}{2}}},$$

 $p_{ij}(t) \simeq \langle p(.,t) \rangle_{K_{i,j}}, \quad \text{where} \quad \langle w \rangle_{K} = \frac{1}{|K|} \int_{K} w(\mathbf{x}) \, d\mathbf{x}$

- 11

v

F H Harlow and 1 F Welch, Numerical calculation of timedependent viscous incompressible flow of fluid with free surface, Phys. Fluids 8, 1965.

Eluid flows around obstacles 7/26

Nicolas JAMES

N-S eq. for M.A.C. Scheme

Immersed boundary Taking into account Cell-face ratio prediction step Discretization of the Solver Numerical results

Summary

Context

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Solver Numerical results

Conclusion and prospects

Fluid flows around obstacles 8/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the correction step Solver

Numerical results

Conclusion and prospects

(□ → 〈□ → 〈三 → 〈三 → 〉三 · りへの

Immersed boundary methods on cartesian grid

simulation of flows in complex geometry

 in the literature, several methods exist : forcing, ghost cell, penalization, cut cell Fluid flows around obstacles 9/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods

Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the correction step Solver Numerical results

Taking into account the obstacle

Rectangular domain Ω .

The obstacle Ω^S is bounded by a closed curve Γ .

Algebraic distance $d : \Omega \to \mathbb{R}$ is defined by :

$$d(\mathbf{x}) = \left\{ egin{array}{ll} \operatorname{dist}(\mathbf{x}, \Gamma) & ext{if } \mathbf{x} \in \Omega^S, \ & \ -\operatorname{dist}(\mathbf{x}, \Gamma) & ext{otherwise.} \end{array}
ight.$$

Fluid flows around obstacles 10/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods

Numerical scheme

Taking into account the obstacle

Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the correction step Solver

Numerical results

Conclusion and prospects

うしつ 同 (二川) (山) (山) (山) (山) (山) (山)

Cell-face ratio

 x_{i-1}

O. Botella and Y. Cheny, *The LS-STAG method: A new immersed* boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties, J. Comp. Phys. **229**, 2010.

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ ○○ ○○

 x_i

Fluid flows around obstacles 11/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle

Cell-face ratio

Position of unknows Discretization of the prediction step Discretization of the correction step Solver Numerical results

prospects

Position of unknows

Position of velocity field well-adapted to divergence

Interpolation of the pressure gradient

Fluid flows around obstacles 12/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods

Numerical scheme

Taking into account the obstacle

Cell-face ratio

Position of unknows

Discretization of the prediction step

Discretization of the correction step

Solver

Numerical results

Discretization of the prediction step

Far away from the obstacle : second order centered discretization

Near the obstacle :

 $\begin{cases} \triangle \mathbf{u} : \text{ first order Finite Difference approximation} \\ \text{div}(\mathbf{u} \otimes \mathbf{u}) : \text{ first order Finite Volume approximation} \end{cases}$

N. Matsunaga and T. Yamamoto, *Superconvergence* of the Shortley-Weller approximation for Dirichlet problems, J. Comp. Appl. Math. **116**, 2000.

Second order accurate Fluid flows around obstacles 13/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods

Numerical scheme

Taking into account the obstacle

Cell-face ratio

Position of unknows

Discretization of the prediction step

Discretization of the correction step Solver

Numerical results

Discretization of the prediction step : $\triangle u$

First-order Finite Difference approximation is exact on $\mathbb{R}_2[X, Y]$.

 $\mathcal{V} = \{O, N, S, E, W, P\}$

- ▶ *O* the position of *u*_{*ij*},
- N, S, E, W among unknowns close to O or on the board Γ,
- P arbitrarily chosen

Find coefficients α_M such that :

$$\sum_{M\in\mathcal{V}}\alpha_M u(M) = \bigtriangleup u(O) + \mathcal{O}(h).$$

Fluid flows around obstacles 14/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio

Cell-lace ratio

Discretization of the prediction step

Discretization of the correction step Solver Numerical results

Conclusion and prospects

トロ・トロ・トロ・トロ・

Discretization of the prediction step : div $(\mathbf{u} \otimes \mathbf{u})$

$$\begin{aligned} \bar{f}_{i,j} &= \int_{\tilde{K}_{i+\frac{1}{2},j}} \left(\partial_x (u^2) + \partial_y (uv) \right) \, d\mathbf{x} \\ &= \int_{\partial \tilde{K}_{i+\frac{1}{2},j}} \left(u^2 n_x + (uv) n_y \right) \, dS \\ &= F_{i+1,j}^E - F_{i,j}^E + F_{i,j}^N - F_{i,j-1}^N + F_{i,j}^B. \end{aligned}$$

 \rightarrow flux reconstruction

Fluid flows around obstacles 15/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods

Taking into account

the obstacle

Cell-face ratio

Position of unknows

Discretization of the prediction step

Discretization of the correction step Solver Numerical results

Discretization of the correction step

- div u : Discrete divergence on cut cells
- ∇p : Interpolation of the pressure gradient

Fluid flows around obstacles 16/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods

Numerical scheme Taking into account

the obstacle

Cell-face ratio

Position of unknows Discretization of the prediction step

Discretization of the correction step

Solver Numerical results

Conclusion and prospects

◆ロ > ◆母 > ◆日 > ◆日 > ● のへの

Discretization of the correction step : div \mathbf{u} (1/2)

$$\iint_{\widetilde{K}_{i,j}} \operatorname{div} \mathbf{u} \, d\mathbf{x} = \int_{\partial \widetilde{K}_{i,j}} \mathbf{u}.\mathbf{n} \, dS$$
$$= \int_{\sigma_{i,j}^{u} \cap \Omega^{F}} u dS - \int_{\sigma_{i-1,j}^{u} \cap \Omega^{F}} u \, dS$$
$$+ \int_{\sigma_{i,j}^{v} \cap \Omega^{F}} v dS - \int_{\sigma_{i,j-1}^{v} \cap \Omega^{F}} v \, dS + \int_{\widehat{AB}} \mathbf{u}.\mathbf{n} \, dS,$$

with
$$\widehat{AB} = \Gamma \cap K_{i,j}$$
.

Fluid flows around obstacles 17/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme

Taking into account the obstacle

Cell-face ratio

Position of unknows Discretization of the prediction step

Discretization of the correction step

Solver Numerical results

Discretization of the correction step : div \mathbf{u} (2/2)

•
$$\int_{\sigma_{i,j}^u \cap \Omega^F} u \, dS \approx r_{i,j}^u \, h \, u_{i,j}$$
 and $\int_{\sigma_{i,j}^v \cap \Omega^F} v \, dS \approx r_{i,j}^v \, h \, v_{i,j}.$

$$(D_{obs}\mathbf{u})_{i,j} = h (r_{i,j}^{u}u_{i,j} - r_{i-1,j}^{u}u_{i-1,j}) + h (r_{i,j}^{v}v_{i,j} - r_{i,j-1}^{v}v_{i,j-1}) + L \mathbf{g} ((A + B)/2) \cdot \mathbf{n}_{i,j} = (D_{obs}^{0}\mathbf{u})_{i,j} + D_{i,j}^{supp}$$

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● のへの

Fluid flows around obstacles 18/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme

Taking into account the obstacle

Cell-face ratio

Position of unknows Discretization of the prediction step

Discretization of the correction step

Solver Numerical results

Discretization of the correction step : $\mathcal{P}_{\phi}G\delta p$

$Gp = \left(\begin{array}{c} (p_{i+1,j} - p_{i,j})/h \\ (p_{i,j+1} - p_{i,j})/h \end{array}\right)$

Without

$$D(G\delta p) = \frac{3}{2} \frac{h^2}{\delta t} D(\tilde{\mathbf{u}})$$

$$\Rightarrow \mathbf{u} = \tilde{\mathbf{u}} - \frac{2}{3} \frac{\delta t}{h^2} G\delta p$$

$$\Rightarrow D(\mathbf{u}) = 0$$

With

$$D_{obs}^{0}(\mathcal{P}_{\phi}(G\delta p)) = \frac{3}{2} \frac{h^{2}}{\delta t} D_{obs}(\tilde{\mathbf{u}})$$

$$\Rightarrow \mathbf{u} = \tilde{\mathbf{u}} - \frac{2}{3} \frac{\delta t}{h^{2}} \mathcal{P}_{\phi}(G\delta p)$$

$$\Rightarrow D_{obs}(\mathbf{u}) = 0$$

Fluid flows around obstacles 19/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle

Cell-face ratio

Position of unknows Discretization of the prediction step

Discretization of the correction step

Solver Numerical results

Solver

 $\mathsf{Obstacle} \to \textbf{nonsymmetric} \text{ linear system}$

• Iterative methods for solving linear systems Cut cells \rightarrow ill-conditioned linear systems \rightarrow slow convergence \rightarrow simulation on coarse mesh \rightarrow simulations of flow at moderate Reynolds

Direct method for solving linear systems

Unmoving obstacle :

- Preprocessing step : O(n³) operations, once per simulation.
- Every iteration : O (n²logn) operations (idem without obstacle).

B.L. Buzbee, F.W.Dorr, J.A. George and G.H. Golub, *The direct* solution of the discrete Poisson equation on irregular regions, J. Num. Anal. **8**, 1971. Fluid flows around obstacles 20/26

Nicolas JAMES

Summary

Contex

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the correction step

Solver Numerical results

Numerical results : Re = 40Laminar flows

$$\sum \text{Forces}_{/\text{obstacle}} = \frac{1}{2} \rho A u_{\infty} \begin{pmatrix} C_d \\ C_l \end{pmatrix}$$

Re = 40				
C _d	θ	1	а	b
	53.8	2.13	0.76	0.59
1.62	54.2	2.18		
1.52	53.8	2.35		
1.50	55.6	2.24		
1.54	53.6	2.28	0.72	0.60
1.55	54.1		0.73	0.60
1.50	53.4	2.26	0.710	0.60
	C _d 1.62 1.52 1.50 1.54 1.55 1.50	$\begin{array}{c c} & \\ \hline C_d & \\ & 53.8 \\ 1.62 & 54.2 \\ 1.52 & 53.8 \\ 1.50 & 55.6 \\ 1.54 & 53.6 \\ 1.55 & 54.1 \\ 1.50 & 53.4 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Fluid flows around obstacles 21/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid lows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the

correction step Solver

Numerical results

Numerical results : Re = 9500

 $\Omega = (-5,5) \times (-2.5,2.5)$, obstacle = disk, D = 1Non-uniform grid, 3072 mesh points in each direction Near the obstacle $h = 1.6 \ 10^{-3}$ CFL stability condition $\Rightarrow \delta t = 10^{-4}$

Figure: Evolution of the boundary layer : comparison with experimental results.

▲□▶ ▲□▶ ▲ ≧▶ ▲ ≧▶ ■ ○ ○○○○

Fluid flows around obstacles 22/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid lows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the prediction step

Solver

Numerical results

Numerical results : flow past a NACA airfoil

Figure: Flow behind NACA 0012 at Re = 1 000, incidence 34° : comparison with experimental results

Fluid flows around obstacles 23/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Taking into account

the obstacle Cell-face ratio

Position of unknows Discretization of the prediction step

Discretization of the correction step

Solver

Numerical results

Conclusion and prospects

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Summary

Context

Numerical simulation of incompressible fluid flows around obstacles

Conclusion and prospects

Fluid flows around obstacles 24/26

Nicolas JAMES

Summary

Context

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the correction step Solver

Numerical results

Conclusion and prospects

| □ ▶ ◀ 🗇 ▶ ◀ 🖻 ▶ ◀ 🖻 ▶ ▲ 🗐 ▶ ◀ 🖻 ● 🔍 🔍

Conclusion and prospects

Accurate (second order) and fast (efficient solver) new cut cell method.

- 1. Three Dimensional flows
- 2. Coupling with :
 - H-box method (avoid the small cell problem, $\delta t \nearrow$)
 - Turbulence model (flows at high Re)
 - Local grid refinement
 - Domain decomposition

Fluid flows around obstacles 25/26

Nicolas JAMES

Summary

Contex

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid lows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the prediction step Discretization of the correction step Solver Numerical results

Fluid flows around obstacles 26/26

Nicolas JAMES

Summary

Contex

N-S eq. for incompressible fluid flows Time discretization M.A.C. Scheme

Numerical simulation of incompressible fluid flows around obstacles

Immersed boundary methods Numerical scheme Taking into account the obstacle Cell-face ratio Position of unknows Discretization of the

prediction step Discretization of the correction step Solver

Numerical results

Conclusion and prospects

Thank you

▲ロ ▶ ▲ 昼 ▶ ▲ 吾 ▶ ▲ 国 ▶ ● のへで