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The isentropic Euler Equations

Gas described by its density ρ, velocity u and pressure p :

∂tρ+ ∇ · ρu = 0,

∂tρu + ∇ · ρu ⊗ u + ∇p = 0,

p = p(ρ).

Nondimensionalization : t = t̄t ′, x = x̄x ′, ρ = ρ̄ρ′, u = ūu′,
p = p̄p′. If one chooses ū = x̄/t̄ and p̄ = p′(ρ̄) ρ̄, one gets

∂tρ+ ∇ · ρu = 0,

∂tρu + ∇ · ρu ⊗ u +
1

M2
∇p = 0,

with M = ū/cs is the Mach number and cs =
√

p′(ρ̄) is a
reference sound speed.



Low Mach asymptotics

∂tρ+ ∇ · ρu = 0, (1)

∂tρu + ∇ · ρu ⊗ u +
1

M2
∇p = 0, (2)

From an asymptotic expansion of (2) when M ≪ 1, we have
p(x , t) = p0(t) + O(M2).

Then, from the state law : ρ(x , t) = ρ0(t) + O(M2) and from the
integration of (1) over Ω and periodic boundary conditions one
gets that ρ0(t) ≡ ρ0, and then p(x , t) = p0 + O(M2).

Then u = u0 + Mu1 and (1) implies that ∇ · u0 = 0.

It is simpler to work with a rescaling of the pressure such that
r(x , t) = (p(x , t) − p0)/M (we thus have 1

M2∇p = 1
M
∇r .)

The solution is thus a constant pressure (r) field and an
incompressible velocity plus a perturbation of size M.



Statement of our study

The Godunov scheme fails to reproduce this : spurious O(∆x)
waves appear. To be accurate you would have to pay for ∆x ≤ M.

We shall study the simpler linearized case

∂tr +
1

M
∇ · u = 0, ∂tu +

1

M
∇r = 0

with I.C. q0 = (r0, u0) such that q0 = q̂0 + q̃0 ∈ E
⊥
⊕ E

⊥,
||q̃0|| = O(M). The incompressible and acoustic subspaces are

E = {(r , u), r ≡ c , ∇ · u = 0} , E
⊥ =

{
(r , u),

∫

Ω
r = 0, u = ∇φ

}
.

By linearity and energy conservation of the wave equation, we have
q(t) = q̂0 + q̃(t) and ||q̃(t)|| = O(M).

A scheme able to reproduce this behaviour at the discrete level will
be said to be accurate at low Mach number.
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Basic properties of 1D advection on Ω =]0, 1[

∂tu + M−1∂xu = 0

• Energy conservation :

1

2

d

dt

∫

Ω
u2(x , t)dx +

1

2
M−1

∫

Ω
∂xu

2(x , t)dx = 0

Periodicity yields
∫
Ω ∂xu

2(x , t)dx = u2(1) − u2(0) = 0.

And thus
∫
Ω u2(x , t)dx = cte.

• Invariant space : ∂xu = 0, i.e. u ∈ E with

E = {u, u ≡ c , c ∈ R} , E
⊥ =

{
u,

∫

Ω
u = 0

}
.

So if u(x , t = 0) = û0 + ũ0 with (û0, ũ0) ∈ E × E
⊥, and

||ũ0|| = O(M), then u(x , t) = û0 + ũ(x , t) and ||ũ(t)|| = O(M).



The semi-discrete upwind scheme for 1D advection (1)

Mesh : ]0, 1[ devided into cells Si := [xi−1/2, xi+1/2] of equal size
∆x . Integrating over Si :

1

∆x

∫

Si

∂tu(x , t)dx +
M−1

∆x

∫

Si

∂xu(x , t)dx = 0

Setting ui (t) := 1
∆x

∫
Si

u(x , t)dx one gets

d

dt
ui (t) +

M−1

∆x

[
u(xi+1/2, t) − u(xi−1/2, t)

]
= 0.

If one chooses ui(t) as unknowns, one has to approach u(xi+1/2, t)
as a function of the set (uj(t)).



The semi-discrete upwind scheme for 1D advection (2)

Solution of the Riemann problem

ui+1

ui

x i+3/2       x i+1/2x i−1/2

If u(x , t) =

{
ui if x < xi+1/2

ui+1 if x > xi+1/2

Then since M−1 > 0, the caracteristics method yields that
u(xi+1/2, s) = ui for t < s < t + M−1∆x . Upwind scheme :

d

dt
ui(t) +

M−1

∆x
(ui − ui−1) (t) = 0.



Discrete invariant space

d

dt
ui(t) +

M−1

∆x
(ui − ui−1) (t) = 0.

Invariant space : (ui − ui−1) = 0 for all i , thus

Eh = {(ui ), ui ≡ c , ∀i , c ∈ R} , E
⊥
h =

{
(ui ),

∑

i

∆x ui = 0

}
.

What is the projection of the solution on this invariant space ?

d

dt

∑

i

∆x ui(t) + M−1
∑

i

(ui − ui−1) (t) = 0.

So, by periodicity : (
∑

i ∆x ui ) (t) =
(∑

i ∆x u0
i

)
.

ui(t) =
1

|Ω|

∑

i

∆x u0
i + vi(t) with

∑

i

∆xvi(t) = 0.



Numerical diffusion towards the invariant space (1)

d

dt
ui(t) +

M−1

∆x
(ui − ui−1) (t) = 0.

Truncation error :

u(xi−1) = u(xi ) − ∆x∂xu(xi ) +
1

2
∆x2∂xxu(xi) + O(∆x3)

so that the scheme is consistant up to ∆x2 with

∂tu + M−1∂xu −
M−1∆x

2
∂xxu = 0

convection diffusion equation with diffusion rate M−1∆x/2.
Another way to see this

d

dt
ui +

M−1

2∆x
(ui+1 − ui−1) −

M−1∆x

2

(
ui+1 − 2ui + ui−1

∆x2

)
= 0.



Numerical diffusion towards the invariant space (2)

With vi(t) := ui(t) −
1
|Ω|

∑
i ∆x u0

i we have
∑

i ∆xvi = 0 and

d

dt
vi (t) +

M−1

∆x
(vi − vi−1) (t) = 0.

Multiplying by ∆x vi and sum over i , we get the
discrete energy e(t) =

∑
i ∆xv2

i evolution equation

1

2

d

dt
e(t) +

a∆x

2

∑

i

∆x

(
vi − vi−1

∆x

)2

= 0.

With the discrete Poincaré inequality : ∃C (Ω) such that for any
(vi ) such that

∑
i ∆xvi = 0, we have

∑

i

∆xv2
i ≤ C (Ω)

∑

i

∆x

(
vi − vi−1

∆x

)2

.

And we prove that

e(t) ≤ e(0) exp

(
−

M−1∆x

C (Ω)
t

)
.



Conclusion for 1D advection

If at the continuous level u(x , 0) = û0 + ũ0 with (û0, ũ0) ∈ E × E
⊥

E = {u, u ≡ c , c ∈ R} , E
⊥ =

{
u,

∫

Ω
u = 0

}
.

Then, it is possible to discretize accurately (û0, ũ0) by
(û0

h, ũ
0
h) ∈ Eh × E

⊥
h

Eh = {(ui ), ui ≡ c , ∀i , c ∈ R} , E
⊥
h =

{
(ui ),

∑

i

∆x ui = 0

}

and, like in the continous case, because Eh is the discrete kernel of
the discrete wave operator, we have

uh(t) = û0
h + ũh(t) with ||ũh(t)|| = O(M).
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Basic properties of 1D waves

∂t r + M−1∂xu = 0, ∂tu + M−1∂x r = 0

• Energy e(t) := ||u(t)||2 + ||r(t)||2. Conservation :
d

dt
e = 0.

• Invariant space : ∂xu = ∂x r = 0, i.e. q := (r , u) ∈ E with

E =
{
q = (r , u), r ≡ a , u ≡ b, (a, b) ∈ R2

}
,

E
⊥ =

{
q = (r , u),

∫

Ω
r =

∫

Ω
u = 0

}
.

So if q(x , t = 0) = q̂0 + q̃0 with (q̂0, q̃0) ∈ E × E
⊥, and

||q̃0|| = O(M), then q(x , t) = q̂0 + q̃(x , t) and ||q̃(t)|| = O(M).



The Godunov scheme for 1D waves

d

dt
ri (t) +

M−1

∆x

[
u(xi+1/2, t) − u(xi−1/2, t)

]
= 0,

d

dt
ui (t) +

M−1

∆x

[
r(xi+1/2, t) − r(xi−1/2, t)

]
= 0.

Approximation of (r(xi+1/2, t), u(xi+1/2, t)) by the Riemann
problem (Diagonalization into 2 independent transport equations) :

r(xi+1/2, t) ≈
1

2
(ri+1 + ri ) −

1

2
(ui+1 − ui)

u(xi+1/2, t) ≈
1

2
(ui+1 + ui) −

1

2
(ri+1 − ri )

The Godunov scheme for 1D waves reads

d

dt
ri (t) + M−1

(
ui+1 − ui−1

2∆x

)
−

∆x

2M

(
ri+1 − 2ri + ri−1

∆x2

)
= 0,

d

dt
ui(t) + M−1

(
ri+1 − ri−1

2∆x

)
−

∆x

2M

(
ui+1 − 2ui + ui−1

∆x2

)
= 0.



Discrete invariant space and stability

Discrete energy : e(t) =
∑

i

∆xr2
i +

∑

i

∆xu2
i . Energy variation :

d

dt
e(t) = −

∆x

M

[
∑

i

∆x

(
ri+1 − ri

∆x

)2

+
∑

i

∆x

(
ui+1 − ui

∆x

)2
]
.

Dissipation of energy (stability)
• Invariant space : ri+1 = ri and ui+1 = ui for all i , i.e.
q := (r , u) ∈ E with

Eh =
{
q = (r , u), ri ≡ a , ui ≡ b, (a, b) ∈ R2

}
,

E
⊥
h =

{
q = (r , u),

∑

i

∆xri =
∑

i

∆xui = 0

}
.



Conclusion for 1D waves
If at the continuous level q(x , 0) = q̂0 + q̃0 with (q̂0, q̃0) ∈ E × E

⊥

E =
{
q = (r , u), r ≡ a , u ≡ b, (a, b) ∈ R2

}
,

E
⊥ =

{
q = (r , u),

∫

Ω
r =

∫

Ω
u = 0

}
.

Then, it is possible to discretize accurately (q̂0, q̃0) by
(q̂0

h, q̃
0
h) ∈ Eh × E

⊥
h

Eh =
{
q = (r , u), ri ≡ a , ui ≡ b, (a, b) ∈ R2

}
,

E
⊥
h =

{
q = (r , u),

∑

i

∆xri =
∑

i

∆xui = 0

}
.

and, like in the continous case, because Eh is the discrete kernel of
the discrete wave operator, we have

qh(t) = q̂0
h + q̃h(t) with ||q̃h(t)|| = O(M).
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Basic properties of 2D waves

∂tr +
1

M
∇ · u = 0, ∂tu +

1

M
∇r = 0

• Energy e(t) := ||u(t)||2 + ||r(t)||2. Conservation :
d

dt
e = 0.

• Invariant space ∇r = 0 and ∇ · u = 0, i.e. q = (r ,u) ∈ E :

E =
{
q = (r ,u), r ≡ c , u = (a, b)T + ∇× ψ, (a, b, c) ∈ IR

3
}
,

E
⊥ =

{
(r ,u),

∫

Ω
r = 0, u = ∇φ

}
.

If q0 = (r0, u0) such that q0 = q̂0 + q̃0 ∈ E
⊥
⊕ E

⊥, ||q̃0|| = O(M).
Then

q(t) = q̂0 + q̃(t) and ||q̃(t)|| = O(M).



The Godunov and low-Mach Godunov schemes for 2D

waves

Consider a set of cells Ti with cell-centered unknowns
qi = (ri ,ui )

T . The interface between Ti and Tj is called Aij with
unit normal vector nij from Ti to Tj . The Godunov (κ = 1) and
low Mach Godunov (κ = 0) schemes read

d

dt
qi +

Li
κ,h

M
q = 0 (3)

with

Li
κ,hq :=

1

2|Ti |




∑
Aij⊂∂Ti

|Aij | [(ri − rj) + (ui + uj) · nij ]

∑
Aij⊂∂Ti

|Aij | [(ri + rj) + κ(ui − uj) · nij ] nij






Stability and discrete invariant space

With 〈·, ·〉 a discrete scalar product weighted by the areas of the
Ti s, it holds that

1

2

d

dt
e +

1

M
〈Lκ,hq, q〉 = 0

〈Lκ,hq, q〉 =
1

2

∑

Aij

|Aij |

{
(ri − rj)

2 + κ [(ui − uj) · nij ]
2

}

Thus, the semi-discrete scheme is stable and :
• the kernel of the Godunov scheme (κ = 1) is such that ri = rj
and ui · nij = uj · nij for all neighbors i and j : constant pressure
and no jump in the normal velocities.
• the kernel of the low Mach Godunov scheme (κ = 0) is such that
ri = rj for all neighbors i and j : constant pressure and moreover

∑

Aij⊂∂Ti

|Aij |(ui + uj) · nij =
∑

Aij⊂∂Ti

|Aij |uj · nij = 0



The rectangular case – Discrete Hodge decomposition

Let Nx × Ny be the number of cells and periodicity conditions be
enforced. We suppose that both Nx and Ny are odd (if not there
are checkerboard modes).

Let us define the following discrete incompressible subspace :

E
�
h :=

{(
ri ,j = c ,ui ,j = (a, b)T + (

ψi ,j+1 − ψi ,j−1

2∆y
,−

ψi+1,j − ψi−1,j

2∆x
)T

)T
}

with (a, b, c , (ψi ,j )) ∈ IR
3 × IR

NxNy .

The following lemma holds :

(
E

�
h

)⊥
=

{(
r ∈ L2

0,h,ui ,j = (
φi+1,j − φi−1,j

2∆x
,
φi ,j+1 − φi ,j−1

2∆y
)T

)T
}
.

with (φi ,j) ∈ IR
NxNy and r ∈ L2

0,h ⇔
∑

(i ,j)

∆x∆yri ,j = 0.



The rectangular case – kernel structure

We have for the Godunov scheme (κ = 1) :

KerLκ=1,h =

{(
ri ,j = c ,ui ,j = (uj , vi )

T
)}

(u constant along x and v constant along y). This implies that

KerLκ=1  E
�
h .

This subspace is too small to approach well incompressible fields.

On the other hand, for the low Mach Godunov scheme (κ = 0),

KerLκ=0,h = E
�
h .

Indeed, in this case
∑

Aij⊂∂Ti

|Aij |uj · nij = 0 reduces to

ui+1,j − ui−1,j

2∆x
+

vi ,j+1 − vi ,j−1

2∆y
= 0.



The rectangular case – time behaviour

Any initial condition

q0 = q̂0 + q̃0 with (q̂0, q̃0) ∈ E × E
⊥

with ||q̃0|| = O(M) may be accurately discretized by

q0
h = q̂0

h + q̃0
h with (q̂0

h, q̃
0
h) ∈ E

�
h × (E�

h )⊥

with ||q̃0
h|| = O(M). By stability of the scheme, in any case (κ = 0

or 1), there holds ||q̃h(t)|| = O(M).

Moreover, for the low Mach Godunov scheme (κ = 0), the discrete
incompressible field q̂h(t) remains forever equal to q̂0

h. The low
Mach scheme is thus accurate (no creation of spurious acoustic
waves).



The rectangular case – time behaviour

For the standard Godunov scheme κ = 1, the discrete
incompressible part q̂0

h is rapidly diffused (diffusion rate O(∆x
M

)) to
its projection on KerLκ=1,h. During this diffusion process, a
spurious acoustic mode is created. Its size is O(∆x). The scheme
is inaccurate.

∆

∆
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 0.014
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Norm of the spurious potential velocity

∆
∆
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  x=0.01
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 0.01
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 0.02

 0.025

 0  0.1  0.2  0.3  0.4  0.5

scaled time (t/M)
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The triangular case – Discrete Hodge decomposition

Let Vh be the standard P1 Lagrange Finite Element space

Vh :=
{
ψh ∈ C0(Ω), ψh periodic over Ω and (ψh)|Ti

∈ P1(Ti)
}
.

Let Wh be the P1 non conforming Crouzeix-Raviart FE space

Wh :=
{
φh ∈ L2(Ω), φh periodic over Ω and (φh)|Ti

∈ P1(Ti )

and φh is continuous at the edge midpoints
}
.

Since functions of Vh (resp. Wh) are P1 on each cell, their curls
(resp. their broken gradients ∇h) are cell-centered constant values
cell per cell.



The triangular case – Discrete Hodge decomposition

We may thus define the following subspace of IR
3N :

E
∆
h =

{(
ri = c ,ui = (a, b)T + (∇× ψh)|Ti

)T

}

with (a, b, c , ψh) ∈ IR
3 × Vh.

The discrete space E
∆
h discretizes accurately E

E =
{
q = (r ,u), r ≡ c , u = (a, b)T + ∇× ψ, (a, b, c) ∈ IR

3
}
.

We may prove that (Arnold Falk, 1989)
(
E

∆
h

)⊥
=

{(
r ∈ L2

h,0,ui = (∇hφh)|Ti

)T
}
.

with φh ∈ Wh and r ∈ L2
h,0 ⇔

∑

i

|Ti |ri = 0.

The discrete space
(
E

∆
h

)⊥
discretizes accurately E

⊥

E
⊥ =

{
(r ,u),

∫

Ω
r = 0, u = ∇φ

}
.



The triangular case – kernel structure and time behaviour

It holds that
KerLκ=1,h = E

∆
h ⊂ KerLκ=0,h

Any initial condition

q0 = q̂0 + q̃0 with (q̂0, q̃0) ∈ E × E
⊥

with ||q̃0|| = O(M) may be accurately discretized by

q0
h = q̂0

h + q̃0
h with (q̂0

h, q̃
0
h) ∈ E

∆
h × (E∆

h )⊥.

with ||q̃0
h|| = O(M). By stability of the schemes, there holds

||q̃h(t)|| = O(M).

Moreover, the discrete incompressible field q̂h(t) remains forever
equal to q̂0

h. The schemes are accurate (no creation of spurious
acoustic waves).
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Perspectives

Extend the analysis

◮ to other schemes / other equations (HLL / waves +
convection by P.-A. Raviart)

◮ to other boundary conditions

◮ to variable cross-section equations

The discrete Hodge decompositions may help to obtain

◮ dissipation rates (coupled with discrete Poincaré inequalities)

◮ error analysis

◮ reinterpretation and improvement

of the schemes

Prove the stability of the fully discrete low Mach schemes
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