Influence de la géométrie du maillage sur le schéma de Godunov appliqué à l'équation des ondes dans le régime Bas Mach (Attention aux noyaux)

Pascal Omnes Joint work with S. Dellacherie and F. Rieper

CEA, DEN, DM2S-SFME F-91191 Gif-sur-Yvette Cedex Laga Université Paris 13

pascal.omnes@cea.fr

S. Dellacherie, P. Omnes and F. Rieper, The influence of cell geometry on the Godunov scheme applied to the linear wave equation. *J. Comput. Phys.* **229**, pp. 5315–5338, 2010.

05 Juillet 2011

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Introduction : the low Mach regime

1D advection and the upwind scheme

1D waves and the Godunov scheme

2D waves and the Godunov scheme

Introduction : the low Mach regime

1D advection and the upwind scheme

1D waves and the Godunov scheme

2D waves and the Godunov scheme

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction : the low Mach regime

1D advection and the upwind scheme

1D waves and the Godunov scheme

2D waves and the Godunov scheme

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Introduction : the low Mach regime

1D advection and the upwind scheme

1D waves and the Godunov scheme

2D waves and the Godunov scheme

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Introduction : the low Mach regime

1D advection and the upwind scheme

1D waves and the Godunov scheme

2D waves and the Godunov scheme

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Introduction : the low Mach regime

1D advection and the upwind scheme

1D waves and the Godunov scheme

2D waves and the Godunov scheme

The isentropic Euler Equations

Gas described by its density ρ , velocity u and pressure p:

$$\begin{aligned} \partial_t \rho + \nabla \cdot \rho u &= 0, \\ \partial_t \rho u + \nabla \cdot \rho u \otimes u + \nabla p &= 0, \\ p &= p(\rho). \end{aligned}$$

Nondimensionalization : $t = \overline{t}t'$, $x = \overline{x}x'$, $\rho = \overline{\rho}\rho'$, $u = \overline{u}u'$, $\rho = \overline{\rho}p'$. If one chooses $\overline{u} = \overline{x}/\overline{t}$ and $\overline{p} = p'(\overline{\rho}) \overline{\rho}$, one gets

$$\begin{split} \partial_t \rho + \nabla \cdot \rho u &= 0, \\ \partial_t \rho u + \nabla \cdot \rho u \otimes u + \frac{1}{M^2} \nabla \rho &= 0, \end{split}$$

< D > < 同 > < E > < E > < E > < 0 < 0</p>

with $M = \bar{u}/c_s$ is the Mach number and $c_s = \sqrt{p'(\bar{\rho})}$ is a reference sound speed.

Low Mach asymptotics

$$\partial_t \rho + \nabla \cdot \rho u = 0, \tag{1}$$

$$\partial_t \rho u + \nabla \cdot \rho u \otimes u + \frac{1}{M^2} \nabla \rho = 0,$$
 (2)

From an asymptotic expansion of (2) when $M \ll 1$, we have $p(x, t) = p^{0}(t) + O(M^{2})$.

Then, from the state law : $\rho(x,t) = \rho^0(t) + O(M^2)$ and from the integration of (1) over Ω and periodic boundary conditions one gets that $\rho^0(t) \equiv \rho^0$, and then $p(x,t) = p^0 + O(M^2)$.

Then $u = u^0 + Mu^1$ and (1) implies that $\nabla \cdot u^0 = 0$.

It is simpler to work with a rescaling of the pressure such that $r(x,t) = (p(x,t) - p^0)/M$ (we thus have $\frac{1}{M^2}\nabla p = \frac{1}{M}\nabla r$.)

The solution is thus a constant pressure (r) field and an incompressible velocity plus a perturbation of size M.

Statement of our study

The Godunov scheme fails to reproduce this : spurious $O(\Delta x)$ waves appear. To be accurate you would have to pay for $\Delta x \leq M$. We shall study the simpler linearized case

$$\partial_t r + \frac{1}{M} \nabla \cdot u = 0, \ \partial_t u + \frac{1}{M} \nabla r = 0$$

with I.C. $q^0 = (r^0, u^0)$ such that $q^0 = \hat{q}^0 + \tilde{q}^0 \in \mathcal{E} \stackrel{\perp}{\oplus} \mathcal{E}^{\perp}$, $||\tilde{q}^0|| = O(M)$. The incompressible and acoustic subspaces are

$$\mathcal{E} = \{(r, u), r \equiv c, \nabla \cdot u = 0\}, \mathcal{E}^{\perp} = \{(r, u), \int_{\Omega} r = 0, u = \nabla \phi \}.$$

By linearity and energy conservation of the wave equation, we have $q(t) = \hat{q}^0 + \tilde{q}(t)$ and $||\tilde{q}(t)|| = O(M)$.

A scheme able to reproduce this behaviour at the discrete level will be said to be accurate at low Mach number.

Introduction : the low Mach regime

1D advection and the upwind scheme

1D waves and the Godunov scheme

2D waves and the Godunov scheme

Basic properties of 1D advection on $\Omega =]0, 1[$

$$\partial_t u + M^{-1} \partial_x u = 0$$

• Energy conservation :

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}u^{2}(x,t)dx+\frac{1}{2}M^{-1}\int_{\Omega}\partial_{x}u^{2}(x,t)dx=0$$

Periodicity yields $\int_{\Omega} \partial_x u^2(x, t) dx = u^2(1) - u^2(0) = 0$. And thus $\int_{\Omega} u^2(x, t) dx = cte$.

• Invariant space : $\partial_x u = 0$, i.e. $u \in \mathcal{E}$ with

$$\mathcal{E} = \{u, \ u \equiv c, \ c \in \mathbb{R}\}\ ,\ \mathcal{E}^{\perp} = \left\{u, \ \int_{\Omega} u = 0\right\}.$$

So if $u(x, t = 0) = \widehat{u}^0 + \widetilde{u}^0$ with $(\widehat{u}^0, \widetilde{u}^0) \in \mathcal{E} \times \mathcal{E}^{\perp}$, and $||\widetilde{u}^0|| = O(M)$, then $u(x, t) = \widehat{u}^0 + \widetilde{u}(x, t)$ and $||\widetilde{u}(t)|| = O(M)$.

The semi-discrete upwind scheme for 1D advection (1)

Mesh :]0,1[devided into cells $S_i := [x_{i-1/2}, x_{i+1/2}]$ of equal size Δx . Integrating over S_i :

$$\frac{1}{\Delta x}\int_{S_i}\partial_t u(x,t)dx + \frac{M^{-1}}{\Delta x}\int_{S_i}\partial_x u(x,t)dx = 0$$

Setting $u_i(t) := \frac{1}{\Delta x} \int_{S_i} u(x, t) dx$ one gets

$$\frac{d}{dt}u_i(t) + \frac{M^{-1}}{\Delta x} \left[u(x_{i+1/2}, t) - u(x_{i-1/2}, t) \right] = 0.$$

If one chooses $u_i(t)$ as unknowns, one has to approach $u(x_{i+1/2}, t)$ as a function of the set $(u_j(t))$.

The semi-discrete upwind scheme for 1D advection (2)

Solution of the Riemann problem

Discrete invariant space

$$\frac{d}{dt}u_i(t)+\frac{M^{-1}}{\Delta x}(u_i-u_{i-1})(t)=0.$$

Invariant space : $(u_i - u_{i-1}) = 0$ for all *i*, thus

$$\mathcal{E}_h = \{(u_i), u_i \equiv c, \forall i, c \in \mathbb{R}\}, \mathcal{E}_h^{\perp} = \left\{(u_i), \sum_i \Delta x u_i = 0\right\}.$$

What is the projection of the solution on this invariant space?

$$\frac{d}{dt}\sum_{i}\Delta x \, u_i(t) + M^{-1}\sum_{i}\left(u_i - u_{i-1}\right)(t) = 0.$$

So, by periodicity : $(\sum_i \Delta x \, u_i)(t) = (\sum_i \Delta x \, u_i^0)$.

$$u_i(t) = rac{1}{|\Omega|} \sum_i \Delta x \, u_i^0 + v_i(t) ext{ with } \sum_i \Delta x v_i(t) = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Numerical diffusion towards the invariant space (1)

$$\frac{d}{dt}u_i(t)+\frac{M^{-1}}{\Delta x}(u_i-u_{i-1})(t)=0.$$

Truncation error :

$$u(x_{i-1}) = u(x_i) - \Delta x \partial_x u(x_i) + \frac{1}{2} \Delta x^2 \partial_{xx} u(x_i) + O(\Delta x^3)$$

so that the scheme is consistant up to Δx^2 with

$$\partial_t u + M^{-1} \partial_x u - \frac{M^{-1} \Delta x}{2} \partial_{xx} u = 0$$

convection diffusion equation with diffusion rate $M^{-1}\Delta x/2$. Another way to see this

$$\frac{d}{dt}u_i + \frac{M^{-1}}{2\Delta x}(u_{i+1} - u_{i-1}) - \frac{M^{-1}\Delta x}{2}\left(\frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2}\right) = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Numerical diffusion towards the invariant space (2)

With
$$v_i(t) := u_i(t) - \frac{1}{|\Omega|} \sum_i \Delta x \, u_i^0$$
 we have $\sum_i \Delta x v_i = 0$ and
$$\frac{d}{dt} v_i(t) + \frac{M^{-1}}{\Delta x} \left(v_i - v_{i-1} \right)(t) = 0.$$

Multiplying by $\Delta x v_i$ and sum over *i*, we get the discrete energy $e(t) = \sum_i \Delta x v_i^2$ evolution equation

$$\frac{1}{2}\frac{d}{dt}e(t)+\frac{a\Delta x}{2}\sum_{i}\Delta x\left(\frac{v_{i}-v_{i-1}}{\Delta x}\right)^{2}=0.$$

With the discrete Poincaré inequality : $\exists C(\Omega)$ such that for any (v_i) such that $\sum_i \Delta x v_i = 0$, we have

$$\sum_{i} \Delta x v_{i}^{2} \leq C(\Omega) \sum_{i} \Delta x \left(\frac{v_{i} - v_{i-1}}{\Delta x}\right)^{2}$$

And we prove that

$$e(t) \leq e(0) \exp\left(-\frac{M^{-1}\Delta x}{C(\Omega)}t\right).$$

Conclusion for 1D advection

If at the continuous level $u(x,0) = \widehat{u}^0 + \widetilde{u}^0$ with $(\widehat{u}^0,\widetilde{u}^0) \in \mathcal{E} \times \mathcal{E}^{\perp}$

$$\mathcal{E} = \{u, u \equiv c, c \in \mathbb{R}\}, \mathcal{E}^{\perp} = \left\{u, \int_{\Omega} u = 0\right\}.$$

Then, it is possible to discretize accurately (\hat{u}^0, \tilde{u}^0) by $(\hat{u}^0_h, \tilde{u}^0_h) \in \mathcal{E}_h \times \mathcal{E}_h^{\perp}$

$$\mathcal{E}_h = \{(u_i), u_i \equiv c, \forall i, c \in \mathbb{R}\}, \mathcal{E}_h^\perp = \left\{(u_i), \sum_i \Delta x u_i = 0\right\}$$

and, like in the continous case, because \mathcal{E}_h is the discrete kernel of the discrete wave operator, we have

$$u_h(t) = \widehat{u}_h^0 + \widetilde{u}_h(t)$$
 with $||\widetilde{u}_h(t)|| = O(M)$.

Introduction : the low Mach regime

1D advection and the upwind scheme

1D waves and the Godunov scheme

2D waves and the Godunov scheme

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Basic properties of 1D waves

$$\partial_t r + M^{-1} \partial_x u = 0, \ \partial_t u + M^{-1} \partial_x r = 0$$

• Energy
$$e(t) := ||u(t)||^2 + ||r(t)||^2$$
. Conservation : $\frac{d}{dt}e = 0$.

• Invariant space : $\partial_x u = \partial_x r = 0$, i.e. $q := (r, u) \in \mathcal{E}$ with

$$\mathcal{E} = \left\{ q = (r, u), \ r \equiv a, u \equiv b, \ (a, b) \in \mathbb{R}^2 \right\},$$
$$\mathcal{E}^{\perp} = \left\{ q = (r, u), \ \int_{\Omega} r = \int_{\Omega} u = 0 \right\}.$$

So if $q(x, t = 0) = \widehat{q}^0 + \widetilde{q}^0$ with $(\widehat{q}^0, \widetilde{q}^0) \in \mathcal{E} \times \mathcal{E}^{\perp}$, and $||\widetilde{q}^0|| = O(M)$, then $q(x, t) = \widehat{q}^0 + \widetilde{q}(x, t)$ and $||\widetilde{q}(t)|| = O(M)$.

1

The Godunov scheme for 1D waves

$$\frac{d}{dt}r_i(t) + \frac{M^{-1}}{\Delta x} \left[u(x_{i+1/2}, t) - u(x_{i-1/2}, t) \right] = 0,$$

$$\frac{d}{dt}u_i(t) + \frac{M^{-1}}{\Delta x} \left[r(x_{i+1/2}, t) - r(x_{i-1/2}, t) \right] = 0.$$

Approximation of $(r(x_{i+1/2}, t), u(x_{i+1/2}, t))$ by the Riemann problem (Diagonalization into 2 independent transport equations) :

$$r(x_{i+1/2},t) \approx \frac{1}{2}(r_{i+1}+r_i) - \frac{1}{2}(u_{i+1}-u_i)$$
$$u(x_{i+1/2},t) \approx \frac{1}{2}(u_{i+1}+u_i) - \frac{1}{2}(r_{i+1}-r_i)$$

The Godunov scheme for 1D waves reads

$$\frac{d}{dt}r_{i}(t) + M^{-1}\left(\frac{u_{i+1} - u_{i-1}}{2\Delta x}\right) - \frac{\Delta x}{2M}\left(\frac{r_{i+1} - 2r_{i} + r_{i-1}}{\Delta x^{2}}\right) = 0,$$

$$\frac{d}{dt}u_{i}(t) + M^{-1}\left(\frac{r_{i+1} - r_{i-1}}{2\Delta x}\right) - \frac{\Delta x}{2M}\left(\frac{u_{i+1} - 2u_{i} + u_{i-1}}{\Delta x^{2}}\right) = 0.$$

Discrete invariant space and stability

Discrete energy :
$$e(t) = \sum_{i} \Delta x r_i^2 + \sum_{i} \Delta x u_i^2$$
. Energy variation :

$$\frac{d}{dt}e(t) = -\frac{\Delta x}{M} \left[\sum_{i} \Delta x \left(\frac{r_{i+1} - r_{i}}{\Delta x} \right)^{2} + \sum_{i} \Delta x \left(\frac{u_{i+1} - u_{i}}{\Delta x} \right)^{2} \right]$$

Dissipation of energy (stability)

• Invariant space : $r_{i+1} = r_i$ and $u_{i+1} = u_i$ for all i, i.e. $q := (r, u) \in \mathcal{E}$ with

$$\mathcal{E}_{h} = \left\{ q = (r, u), \ r_{i} \equiv a, u_{i} \equiv b, \ (a, b) \in \mathbb{R}^{2} \right\},$$

$$\mathcal{E}_h^{\perp} = \left\{ q = (r, u), \sum_i \Delta x r_i = \sum_i \Delta x u_i = 0 \right\}.$$

Conclusion for 1D waves

If at the continuous level $q(x,0) = \widehat{q}^0 + \widetilde{q}^0$ with $(\widehat{q}^0, \widetilde{q}^0) \in \mathcal{E} \times \mathcal{E}^{\perp}$

$$\mathcal{E} = \left\{ q = (r, u), \ r \equiv a, u \equiv b, \ (a, b) \in \mathbb{R}^2 \right\},$$

 $\mathcal{E}^{\perp} = \left\{ q = (r, u), \ \int_{\Omega} r = \int_{\Omega} u = 0 \right\}.$

Then, it is possible to discretize accurately (\hat{q}^0, \tilde{q}^0) by $(\hat{q}^0_h, \tilde{q}^0_h) \in \mathcal{E}_h \times \mathcal{E}_h^{\perp}$

$$\mathcal{E}_{h} = \left\{ q = (r, u), \ r_{i} \equiv a, u_{i} \equiv b, \ (a, b) \in \mathbb{R}^{2} \right\},$$
$$\mathcal{E}_{h}^{\perp} = \left\{ q = (r, u), \ \sum_{i} \Delta x r_{i} = \sum_{i} \Delta x u_{i} = 0 \right\}.$$

and, like in the continous case, because \mathcal{E}_h is the discrete kernel of the discrete wave operator, we have

$$q_h(t) = \widehat{q}_h^0 + \widetilde{q}_h(t)$$
 with $||\widetilde{q}_h(t)|| = O(M)$.

Introduction : the low Mach regime

1D advection and the upwind scheme

1D waves and the Godunov scheme

2D waves and the Godunov scheme

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Basic properties of 2D waves

$$\partial_t r + \frac{1}{M} \nabla \cdot \mathbf{u} = 0, \ \partial_t \mathbf{u} + \frac{1}{M} \nabla r = 0$$

• Energy $e(t) := ||\mathbf{u}(t)||^2 + ||r(t)||^2$. Conservation : $\frac{d}{dt}e = 0$.

• Invariant space abla r=0 and $abla \cdot \mathbf{u}=0$, i.e. $q=(r,\mathbf{u})\in \mathcal{E}$:

$$\mathcal{E} = \left\{ q = (r, \mathbf{u}), r \equiv c, \mathbf{u} = (a, b)^T + \nabla \times \psi, (a, b, c) \in \mathbb{R}^3 \right\},\$$

$$\mathcal{E}^{\perp} = \left\{ (r, \mathbf{u}), \int_{\Omega} r = 0, \, \mathbf{u} = \nabla \phi \right\}.$$

If $q^0 = (r^0, u^0)$ such that $q^0 = \widehat{q}^0 + \widetilde{q}^0 \in \mathcal{E} \stackrel{\perp}{\oplus} \mathcal{E}^{\perp}$, $||\widetilde{q}^0|| = O(M)$. Then

$$q(t) = \widehat{q}^0 + \widetilde{q}(t)$$
 and $||\widetilde{q}(t)|| = O(M)$.

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

The Godunov and low-Mach Godunov schemes for 2D waves

Consider a set of cells T_i with cell-centered unknowns $q_i = (r_i, \mathbf{u}_i)^T$. The interface between T_i and T_j is called A_{ij} with unit normal vector \mathbf{n}_{ij} from T_i to T_j . The Godunov ($\kappa = 1$) and low Mach Godunov ($\kappa = 0$) schemes read

$$\frac{d}{dt}q_i + \frac{\mathbb{L}^i_{\kappa,h}}{M}q = 0 \tag{3}$$

with

$$\mathbb{L}_{\kappa,h}^{i}q := \frac{1}{2|\mathcal{T}_{i}|} \left(\begin{array}{c} \sum\limits_{A_{ij} \subset \partial \mathcal{T}_{i}} |A_{ij}| \left[(r_{i} - r_{j}) + (\mathbf{u}_{i} + \mathbf{u}_{j}) \cdot \mathbf{n}_{ij} \right] \\ \\ \sum\limits_{A_{ij} \subset \partial \mathcal{T}_{i}} |A_{ij}| \left[(r_{i} + r_{j}) + \kappa(\mathbf{u}_{i} - \mathbf{u}_{j}) \cdot \mathbf{n}_{ij} \right] \mathbf{n}_{ij} \end{array} \right)$$

Stability and discrete invariant space

With $\langle \cdot, \cdot \rangle$ a discrete scalar product weighted by the areas of the T_i s, it holds that

$$\frac{1}{2}\frac{d}{dt}e + \frac{1}{M}\langle \mathbb{L}_{\kappa,h}q,q\rangle = 0$$
$$\langle \mathbb{L}_{\kappa,h}q,q\rangle = \frac{1}{2}\sum_{A_{ij}}|A_{ij}|\left\{(r_i - r_j)^2 + \kappa\left[(\mathbf{u}_i - \mathbf{u}_j)\cdot\mathbf{n}_{ij}\right]^2\right\}$$

Thus, the semi-discrete scheme is stable and :

• the kernel of the Godunov scheme ($\kappa = 1$) is such that $r_i = r_j$ and $\mathbf{u}_i \cdot \mathbf{n}_{ij} = \mathbf{u}_j \cdot \mathbf{n}_{ij}$ for all neighbors *i* and *j* : constant pressure and no jump in the normal velocities.

• the kernel of the low Mach Godunov scheme ($\kappa = 0$) is such that $r_i = r_j$ for all neighbors *i* and *j* : constant pressure and moreover

$$\sum_{A_{ij}\subset\partial T_i}|A_{ij}|(\mathbf{u}_i+\mathbf{u}_j)\cdot\mathbf{n}_{ij}=\sum_{A_{ij}\subset\partial T_i}|A_{ij}|\mathbf{u}_j\cdot\mathbf{n}_{ij}=0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The rectangular case – Discrete Hodge decomposition

Let $N_x \times N_y$ be the number of cells and periodicity conditions be enforced. We suppose that both N_x and N_y are odd (if not there are checkerboard modes).

Let us define the following discrete incompressible subspace :

$$\mathcal{E}_{h}^{\Box} := \left\{ \left(r_{i,j} = c, \mathbf{u}_{i,j} = (a, b)^{T} + \left(\frac{\psi_{i,j+1} - \psi_{i,j-1}}{2\Delta y}, -\frac{\psi_{i+1,j} - \psi_{i-1,j}}{2\Delta x} \right)^{T} \right\}^{T} \right\}$$

with $(a, b, c, (\psi_{i,j})) \in \mathbb{R}^3 \times \mathbb{R}^{N_x N_y}$.

The following lemma holds :

$$\left(\mathcal{E}_{h}^{\Box}\right)^{\perp} = \left\{ \left(r \in L_{0,h}^{2}, \mathbf{u}_{i,j} = \left(\frac{\phi_{i+1,j} - \phi_{i-1,j}}{2\Delta x}, \frac{\phi_{i,j+1} - \phi_{i,j-1}}{2\Delta y}\right)^{T} \right\}^{T} \right\}.$$

with $(\phi_{i,j}) \in \mathbb{R}^{N_{x}N_{y}}$ and $r \in L_{0,h}^{2} \Leftrightarrow \sum_{(i,j)} \Delta x \Delta y r_{i,j} = 0.$

The rectangular case – kernel structure

We have for the Godunov scheme $(\kappa = 1)$:

$$Ker\mathbb{L}_{\kappa=1,h} = \left\{ \left(r_{i,j} = c, \mathbf{u}_{i,j} = (u_j, v_i)^T \right) \right\}$$

(*u* constant along x and v constant along y). This implies that

$$Ker\mathbb{L}_{\kappa=1} \subsetneq \mathcal{E}_h^{\square}.$$

This subspace is too small to approach well incompressible fields. On the other hand, for the low Mach Godunov scheme ($\kappa = 0$),

$$Ker \mathbb{L}_{\kappa=0,h} = \mathcal{E}_h^{\sqcup}.$$

Indeed, in this case $\sum_{A_{ij} \subset \partial T_i} |A_{ij}| \mathbf{u}_j \cdot \mathbf{n}_{ij} = 0$ reduces to

$$\frac{u_{i+1,j} - u_{i-1,j}}{2\Delta x} + \frac{v_{i,j+1} - v_{i,j-1}}{2\Delta y} = 0.$$

The rectangular case - time behaviour

Any initial condition

$$q^0= \hat{q}^0+\widetilde{q}^0$$
 with $(\hat{q}^0,\widetilde{q}^0)\in \mathcal{E} imes \mathcal{E}^\perp$

with $||\widetilde{q}^0|| = \mathcal{O}(M)$ may be accurately discretized by

$$q_h^0 = \hat{q}_h^0 + \widetilde{q}_h^0$$
 with $(\hat{q}_h^0, \widetilde{q}_h^0) \in \mathcal{E}_h^{\Box} imes (\mathcal{E}_h^{\Box})^{\perp}$

with $||\tilde{q}_h^0|| = \mathcal{O}(M)$. By stability of the scheme, in any case ($\kappa = 0$ or 1), there holds $||\tilde{q}_h(t)|| = \mathcal{O}(M)$.

Moreover, for the low Mach Godunov scheme ($\kappa = 0$), the discrete incompressible field $\hat{q}_h(t)$ remains forever equal to \hat{q}_h^0 . The low Mach scheme is thus accurate (no creation of spurious acoustic waves).

くしゃ (雪をくます)(日) (の)

The rectangular case - time behaviour

For the standard Godunov scheme $\kappa = 1$, the discrete incompressible part \hat{q}_h^0 is rapidly diffused (diffusion rate $\mathcal{O}(\frac{\Delta x}{M})$) to its projection on $Ker \mathbb{L}_{\kappa=1,h}$. During this diffusion process, a spurious acoustic mode is created. Its size is $\mathcal{O}(\Delta x)$. The scheme is inaccurate.

Norm of the spurious potential velocity

Norm of the spurious pressure

The triangular case – Discrete Hodge decomposition

Let V_h be the standard P^1 Lagrange Finite Element space

$$V_h := \left\{ \psi_h \in C_0(\overline{\Omega}), \, \psi_h \text{ periodic over } \overline{\Omega} \; \text{ and } (\psi_h)_{|T_i} \in P^1(T_i)
ight\}.$$

Let W_h be the P^1 non conforming Crouzeix-Raviart FE space

$$W_h := \Big\{ \phi_h \in L^2(\Omega), \, \phi_h \text{ periodic over } \overline{\Omega} \text{ and } (\phi_h)_{|T_i} \in P^1(T_i) \ and \, \phi_h \text{ is continuous at the edge midpoints} \Big\}.$$

Since functions of V_h (resp. W_h) are P^1 on each cell, their curls (resp. their broken gradients ∇_h) are cell-centered constant values cell per cell.

The triangular case – Discrete Hodge decomposition

We may thus define the following subspace of \mathbb{R}^{3N} :

$$\mathcal{E}_{h}^{\Delta} = \left\{ \left(r_{i} = c, \mathbf{u}_{i} = (a, b)^{T} + (\nabla \times \psi_{h})_{|T_{i}} \right)^{T} \right\}$$

with $(a, b, c, \psi_h) \in \mathbb{R}^3 \times V_h$. The discrete space \mathcal{E}^{Δ}_{h} discretizes accurately \mathcal{E}

$$\mathcal{E} = \left\{ q = (r, \mathbf{u}), \, r \equiv c, \, \mathbf{u} = (a, b)^{T} + \nabla \times \psi, \, (a, b, c) \in \mathbb{R}^{3} \right\}.$$

We may prove that (Arnold Falk, 1989)

$$\left(\mathcal{E}_{h}^{\Delta}\right)^{\perp} = \left\{\left(r \in \mathcal{L}_{h,0}^{2}, \mathbf{u}_{i} = (\nabla_{h}\phi_{h})|_{\mathcal{T}_{i}}\right)^{\mathcal{T}}\right\}.$$

with $\phi_h \in W_h$ and $r \in L^2_{h,0} \Leftrightarrow \sum_i |T_i| r_i = 0.$ The discrete space $(\mathcal{E}_h^{\Delta})^{\perp}$ discretizes accurately \mathcal{E}^{\perp}

$$\mathcal{E}^{\perp} = \left\{ (r, \mathbf{u}), \int_{\Omega} r = 0, \, \mathbf{u} = \nabla \phi \right\}.$$

The triangular case – kernel structure and time behaviour

It holds that

$$\mathit{Ker}\mathbb{L}_{\kappa=1,h} = \mathcal{E}^{\Delta}_{h} \subset \mathit{Ker}\mathbb{L}_{\kappa=0,h}$$

Any initial condition

$$q^0= \hat{q}^0+\widetilde{q}^0$$
 with $(\hat{q}^0,\widetilde{q}^0)\in \mathcal{E} imes \mathcal{E}^\perp$

with $||\widetilde{q}^0|| = \mathcal{O}(M)$ may be accurately discretized by

$$q_h^0 = \hat{q}_h^0 + \widetilde{q}_h^0$$
 with $(\hat{q}_h^0, \widetilde{q}_h^0) \in \mathcal{E}_h^\Delta imes (\mathcal{E}_h^\Delta)^\perp$.

with $||\tilde{q}_h^0|| = \mathcal{O}(M)$. By stability of the schemes, there holds $||\tilde{q}_h(t)|| = \mathcal{O}(M)$.

Moreover, the discrete incompressible field $\hat{q}_h(t)$ remains forever equal to \hat{q}_h^0 . The schemes are accurate (no creation of spurious acoustic waves).

Introduction : the low Mach regime

1D advection and the upwind scheme

1D waves and the Godunov scheme

2D waves and the Godunov scheme

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Perspectives

Extend the analysis

- to other schemes / other equations (HLL / waves + convection by P.-A. Raviart)
- to other boundary conditions
- to variable cross-section equations

The discrete Hodge decompositions may help to obtain

dissipation rates (coupled with discrete Poincaré inequalities)

< D > < 同 > < E > < E > < E > < 0 < 0</p>

- error analysis
- reinterpretation and improvement

of the schemes

Prove the stability of the fully discrete low Mach schemes