
Solveurs linéaires parallèles par
décomposition de domaine algébrique

Luc Giraud

HiePACS project - INRIA Bordeaux Sud-Ouest
joint INRIA-CERFACS lab. on High Performance Computing

Journée GNR MOMAS / GDR Calcul

Paris, 5 Mai 2010

Outline

1 Background
2 A parallel algebraic domain decompostion solver
3 Parallel and numerical scalability on 3D academic

problems
4 Two-level parallel implementation features and

performances
5 Prospectives

2/27 Algebraic parallel domain decomposition solver

Motivations
Ax = b

The “spectrum” of linear algebra solvers
Direct

Robust/accurate for general
problems

BLAS-3 based implementations

Memory/CPU prohibitive for large 3D
problems

Limited parallel scalability

Iterative

Problem dependent efficiency/controlled
accuracy

Only mat-vect required, fine grain computation

Less memory computation, possible trade-off
with CPU

Attractive “build-in” parallel features

An effort for combining advantages of those solvers is needed

Goal: design Hybrid Linear Solvers

Develop robust scalable parallel hybrid direct/iterative linear solvers

Exploit the efficiency and robustness of the sparse direct solvers

Develop robust parallel preconditioners for iterative solvers

Take advantage of the natural scalable parallel implementation of
iterative solvers

Domain Decomposition (DD)

Natural approach for PDE’s

Extend to general sparse matrices

Partition the problem into subdomains,
subgraphs

Use a direct solver on the subdomains

Robust preconditioned iterative solver

Overlapping Domain Decomposition

Classical Additive Schwarz preconditioners

Ω1

Ω2
δ

Goal: solve linear system Ax = b

Use iterative method

Apply the preconditioner at each step

The convergence rate deteriorates as the
number of subdomains increases

A =

0@ A1,1 A1,δ
Aδ,1 Aδ,δ Aδ,2

Aδ,2 A2,2

1A =⇒Mδ
AS =

0@ A1,1 A1,δ
−1

Aδ,1 Aδ,δ Aδ,2 −1

Aδ,2 A2,2

1A

Classical Additive Schwarz preconditioners N subdomains case

Mδ
AS =

NX
i=1

“
Rδi
”T “
Aδi
”−1
Rδi

5/27 Algebraic parallel domain decomposition solver

Non-overlapping Domain Decomposition

Schur complement reduced system

Ω1

Ω2
Γ

Goal: solve linear system Ax = b

Apply partially Gaussian elimination

Solve the reduced system SxΓ = f

Then solve Ai xi = bi −Ai,ΓxΓ

0BBB@
A1,1 0 A1,Γ

0 A2,2 A2,Γ

0 0 S

1CCCA
0BBB@

x1

x2

xΓ

1CCCA =

0BBBBB@
b1

b2

bΓ −
2X

i=1

AΓ,iA−1
i,i bi

1CCCCCA
Solve Ax = b =⇒ solve the reduced system SxΓ = f =⇒ then solve Ai xi = bi −Ai,ΓxΓ

where S = AΓ,Γ −
2X

i=1

AΓ,iA−1
i,i Ai,Γ ,

and f = bΓ −
2X

i=1

AΓ,iA−1
i,i bi .

6/27 Algebraic parallel domain decomposition solver

Nonoverlapping Domain Decomposition

Schur complement reduced system
k l m n

Ωι

Ωι+1

Ωι+2
Γ = k ∪ ` ∪m ∪ n

Distributed Schur complement
Ωιz }| {

S(ι)
kk Sk`

S`k S(ι)
``

! Ωι+1z }| {
S(ι+1)
`` S`m

Sm` S(ι+1)
mm

! Ωι+2z }| {
S(ι+2)

mm Smn

Snm S(ι+2)
nn

!

In an assembled form: S`` = S(ι)
`` + S(ι+1)

`` =⇒ S`` =
X
ι∈adj

S(ι)
``

7/27 Algebraic parallel domain decomposition solver

Non-overlapping Domain Decomposition

Algebraic Additive Schwarz preconditioner [L.Carvalho, L.G., G.Meurant - 01]

S =
NX

i=1

RT
Γi
S(i)RΓi

S =

0BBBBB@
. . .

Skk Sk`
S`k S`` S`m

Sm` Smm Smn
Snm Snn

1CCCCCA =⇒M =

0BBBBB@
. . .

Skk Sk`
−1

S`k S`` S`m
−1

Sm` Smm Smn
Snm Snn

1CCCCCA

Similarity with Neumann-Neumann
preconditioner [J.F Bourgat, R.
Glowinski, P. Le Tallec and M.
Vidrascu - 89] [Y.H. de
Roek, P. Le Tallec and M. Vidrascu -
91]

M =
NX

i=1

RT
Γi

(S̄(i))−1RΓi

where S̄(i) is obtained from S(i)

S(i) =

S(ι)

kk Sk`

S`k S(ι)
``

!
| {z } =⇒ S̄(i) =

„
Skk Sk`
S`k S``

«
| {z }

local Schur local assembled Schur
↘ ↗X

ι∈adj

S(ι)
``

8/27 Algebraic parallel domain decomposition solver

Parallel preconditioning features

S(i) = A(i)
Γi Γi
− AΓi Ii A

−1
Ii Ii

AIi Γi

MAS =

#domains∑
i=1

RT
i (S̄(i))−1Ri

Ωi

Ωj

Ek

EgEm

E`

S̄(i) =

0BB@
Smm Smg Smk Sm`

Sgm Sgg Sgk Sg`

Skm Skg Skk Sk`

S`m S`g S`k S``

1CCA
Assembled local Schur complement

S(i) =

0BBB@
S(i)

mm Smg Smk Sm`

Sgm S(i)
gg Sgk Sg`

Skm Skg S(i)
kk Sk`

S`m S`g S`k S(i)
``

1CCCA
local Schur complement

Smm =
∑

j∈adj(m)

S(j)
mm

9/27 Algebraic parallel domain decomposition solver

Parallel implementation

Each subdomain A(i) is handled by one processor

A(i) ≡
„
AIiIi AIi Γi

AIi Γi A(i)
ΓΓ

«

Concurrent partial factorizations are performed on each processor to
form the so called “local Schur complement”

S(i) = A(i)
ΓΓ −AΓiIiA

−1
IiIi
AIi Γi

The reduced system SxΓ = f is solved using a distributed Krylov solver
- One matrix vector product per iteration each processor computes S(i)(x (i)

Γ)k = (y (i))k

- One local preconditioner apply (M(i))(z(i))k = (r (i))k

- Local neighbor-neighbor communication per iteration
- Global reduction (dot products)

Compute simultaneously the solution for the interior unknowns

AIiIi xIi = bIi −AIi Γi xΓi

10/27 Algebraic parallel domain decomposition solver

Algebraic Additive Schwarz preconditioner

Main characteristics in 2D
The ratio interface/interior is small

Does not require large amount of memory to store the preconditioner

Computation/application of the preconditioner are fast

They consist in a call to LAPACK/BLAS-2 kernels

Main characteristics in 3D
The ratio interface/interior is large

The storage of the preconditioner might not be affordable

The construction of the preconditioner can be computationally expensive

Need cheaper Algebraic Additive Schwarz form of the preconditioner

11/27 Algebraic parallel domain decomposition solver

What tricks exist to construct cheaper preconditioners

Sparsification strategy through dropping

ŝk` =
{

s̄k` if s̄k` ≥ ξ(|s̄kk | + |s̄``|)
0 else

Approximation through ILU - [INRIA PhyLeas - A. Haidar, L.G., Y.Saad - 10]

pILU (A(i)) ≡ pILU

Aii AiΓi
AΓi i A(i)

Γi Γi

!
≡
„

L̃i 0
AΓi Ũ

−1
i I

«„
Ũi L̃−1

i AiΓ

0 S̃(i)

«

Mixed arithmetic strategy
Compute and store the preconditioner in 32-bit precision arithmetic Is accurate enough?

Limitation when the conditioning exceeds the accuracy of the 32-bit computations Fix it!

Idea: Exploit 32-bit operation whenever possible and ressort to 64-bit at critical stages

Remarks: the backward stability result of GMRES indicates that it is hopeless to expect
convergence at a backward error level smaller than the 32-bit accuracy [C.Paige,
M.Rozložnı́k, Z.Strakoš - 06]

Idea: To overcome this limitation we use FGMRES [Y.Saad - 93]

12/27 Algebraic parallel domain decomposition solver

Academic model problems

Problem patterns

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Circular flow velocity Problem −1−

Diffusion equation (ε = 1 and v = 0) and convection-diffusion equation
−εdiv(K .∇u) + v .∇u = f in Ω,

u = 0 on ∂Ω.

Heterogeneous problems

Anisotropic-heterogeneous problems

Convection dominated term

13/27 Algebraic parallel domain decomposition solver

Numerical behaviour of sparse preconditioners

Convergence history of PCG

0 20 40 60 80 100 120 140 160 180 200 220 240
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iter

||r
k||/

||b
||

3D heterogeneous diffusion problem

Dense calculation
Sparse with ξ=10−5

Sparse with ξ=10−4

Sparse with ξ=10−3

Sparse with ξ=10−2

Time history of PCG

0 20 40 60 80 100 120 140 160 180
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time(sec)

||r
k||/

||b
||

3D heterogeneous diffusion problem

Dense calculation
Sparse with ξ=10−5

Sparse with ξ=10−4

Sparse with ξ=10−3

Sparse with ξ=10−2

3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

For (ξ ≪)the convergence is marginally affected while the memory saving is significant 15%

For (ξ ≫) a lot of resources are saved but the convergence becomes very poor 1%

Even though they require more iterations, the sparsified variants converge faster as the time

per iteration is smaller and the setup of the preconditioner is cheaper.

14/27 Algebraic parallel domain decomposition solver

Numerical behaviour of mixed preconditioners

Convergence history of PCG

0 20 40 60 80 100 120 140 160 180 200 220 240
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iter

||r
k||/

||b
||

3D heterogeneous diffusion problem

64−bit calculation
mixed arithmetic calculation
32−bit calculation

Time history of PCG

0 20 40 60 80 100 120 140 160 180
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time(sec)

||r
k||/

||b
||

3D heterogeneous diffusion problem

64−bit calculation
mixed arithmetic calculation
32−bit calculation

3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

64-bit and mixed computation both attained an accuracy at the level of 64-bit machine

precision

The number of iterations slightly increases

The mixed approach is the fastest, down to an accuracy that is problem dependent

15/27 Algebraic parallel domain decomposition solver

Scaled scalability on massively parallel platforms

Numerical scalability

64 216 343 512 729 1000 1331 1728

20

40

60

80

100

120

140

160

proc

it

er
at

io
n

s

3D heterogeneous diffusion problem

Dense 64−bit calculation
Dense mixed calculation
Sparse with ξ=10−4

5.3.106 15.106 22.106 31.106 43.106 55.106 74.106

Parallel performance

64 216 343 512 729 1000 1331 1728
0

20

40

60

80

100

120

140

160

180

proc

T
im

e(
se

c)

3D heterogeneous diffusion problem

Dense 64−bit calculation
Dense mixed calculation
Sparse with ξ=10−4

 5.3.106 15.106 22.106 31.106 43.106 55.106 74.106

The solved problem size varies from 2.7 up to 74 Mdof

Control the grow in the # of iterations by introducing a coarse space correction

The computing time increases slightly when increasing # sub-domains

Although the preconditioners do not scale perfectly, the parallel time scalability is acceptable

The trend is similar for all variants of the preconditioners using CG Krylov solver

16/27 Algebraic parallel domain decomposition solver

Summary on the model problems
[L.Giraud, A.Haidar, L.T.Watson - 08] [L.Giraud, A.Haidar, Y.Saad - 10]

Sparse preconditioner
For reasonable choice of the dropping parameter ξ the convergence is marginally affected

The sparse preconditioner outperforms the dense one in time and memory

Mixed preconditioner
Mixed arithmetic and 64-bit both attained an accuracy at the level of 64-bit machine precision

Mixed preconditioner does not delay too much the convergence

Approximate preconditioner
The convergence is marginally affected while the memory saving is significant

The approximate variant converge faster as the time per iteration is smaller and the setup of
the preconditioner is cheaper.

This preconditioner require some tuning for very hard problem (structural mechanics...)

On the weak scalability
Although these preconditioners are local, possibly not numerically scalable, they exhibit a
fairly good parallel time scalability (possible fix for elliptic problems)

The trends that have been observed on this choice of model problem have been observed on
many other problems

Experiments on large 3D real life applications

Application areas

Structural mechanics : real SPD and symmetric indefinite linear
systems.
Electromagnetism : complex symmetric non-Hermitian.
Seismic : complex symmetric non-Hermitian.

18/27 Algebraic parallel domain decomposition solver

Indefinite systems in structural mechanics S.Pralet, SAMTECH

Fuselage of 6.5 Mdof
Linear elastricity

Composed of its skin, stringers and
frames

Midlinn shell elements are used

Each node has 6 unknowns

One extremity is fixed

On the other extremity a rigid body
element is added

A force perpendicular to the axis is
applied

19/27 Algebraic parallel domain decomposition solver

Numerical behaviour of sparse preconditioners

Convergence history

0 40 80 120 160 200
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iter

||r
k||/

||b
||

Fuselage 6.5Mdof

Direct calculation
Dense calculation
Sparse with ξ=5.10−7

Sparse with ξ=10−6

Sparse with ξ=5.10−6

Time history

0 40 80 120 160 200 240 280 320 360 400 440 480
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time(sec)

||r
k||/

||b
||

Fuselage 6.5Mdof

Direct calculation

Dense calculation

Sparse with ξ=5.10−7

Sparse with ξ=10−6

Sparse with ξ=5.10−6Init

Fuselage problem of 6.5 Mdof dof mapped on 16 processors

The sparse preconditioner setup is 4 times faster than the dense one (19.5 v.s. 89 seconds)

In term of global computing time, the sparse algorithm is about twice faster

The attainable accuracy of the hybrid solver is comparable to the one computed with the

direct solver

20/27 Algebraic parallel domain decomposition solver

Exploiting 2-levels of parallelism - motivations

“The numerical improvement”
Classical parallel implementations (1-level) of DD assign one subdomain per processor

Parallelizing means increasing the number of subdomains

Increasing the number of subdomains often leads to increasing the number of iterations

To avoid this, one can instead of increasing the number of subdomains, keeping it small while
handling each subdomain by more than one processor introducing 2-levels of parallelism

“The parallel performance improvement”
Large 3D systems often require a huge amount of data storage

On SMP node: classical 1-level parallel can only use a subset of the available processors

Thus some processors are “wasted”, as they are “idle” during the computation

The “idle” processors might contribute to the computation and the simulation runs closer to
the peak of per-node performance by using 2-levels of parallelism

21/27 Algebraic parallel domain decomposition solver

Numerical improvement benefits

Fuselage of 6.5Mdof
total Algo # # processors/ # iterative

processors subdomains subdomain iter loop time
1-level parallel 16 1 147 77.916 processors
2-level parallel 8 2 98 51.4
1-level parallel 32 1 176 58.1

32 processors 2-level parallel 16 2 147 44.8
2-level parallel 8 4 98 32.5
1-level parallel 64 1 226 54.2
2-level parallel 32 2 176 40.164 processors
2-level parallel 16 4 147 31.3
2-level parallel 8 8 98 27.4

Reduce the number of subdomains =⇒ reduce the number of iterations

Though the subdomain size increases, the time of the iterative loop decreases as:
- The number of iterations decreases
- Each subdomain is handled in parallel
- All the iterative kernels are efficiently computed in parallel

The speedup factors of the iterative loop vary from 1.3 to 1.8

Very attractive especially when the convergence rate depends on the # of subdomains

Might be of great interest when embeded into nonlinear solver

22/27 Algebraic parallel domain decomposition solver

Parallel performance benefits

Fuselage of 6.5Mdof
subdomains Algo proc/subdom Precond # iterative Total
or SMP node or “working” setup time iter loop time time

1-level 1 208.0 94.1 525.1
8 2 124.6 98 51.5 399.12-level

4 70.8 32.5 326.4
1-level 1 89.0 77.9 217.2

16 2 52.7 147 44.8 147.82-level
4 30.4 31.3 112.0

1-level 1 30.0 58.1 124.1
32 2 20.4 176 40.8 97.22-level

4 13.0 22.7 71.7

When running large simulations that need all the memory available on the nodes

The 1-level parallel algo “wastes” ressource performance (it lose 48 “idle” processors on 16
SMP)

The 2-level parallel algo exploits the computing facilities of the remaining “idle” processors

The 2-level parallel algo runs closer to the peak of per-node performance

The preconditioner setup time benefits vary from 1.5 to 3

The speedup factors of the iterative loop vary from 1.8 to 2.7

23/27 Algebraic parallel domain decomposition solver

Toward a “‘black-box” parallel solver

MAPHYS package- ongoing work

Apply ideas to adjacency graph of sparse matrices no longer to
meshes (ANR-CIS Solstice).
Replace full-MPI two-level parallelism by mixed multi-threaded
MPI parallel implementation to better comply with NUMA cluster
features (PasTiX, Super LU).
Improve the solver capability for symmetric indefinite et fully
unsymmetric (France-Berkeley Fund pending proposal).
Perform a complexity analysis to study the computational
scalabality

http://www.inria.fr/recherche/equipes/hiepacs.fr.html

24/27 Algebraic parallel domain decomposition solver

Acknowledgments

Credit to co-workers
Numerical methodologies:
E. Agullo (INRIA), A. Guermouche (INRIA), A. Haidar (ICL, Univ.
Tennessee), Y. Lee (INRIA), J. Roman (INRIA), Y. Saad (Univ.
Minnesota). MUMPS & PaStiX developers.
Applications:
H. Benhadjali (SEISCOPE), D. Goudin (CEA-CESTA), S. Operto
(Géosciences Azur), S. Pralet (SAMTECH), J. Virieux (LGIT).

25/27 Algebraic parallel domain decomposition solver

Merci pour votre attention

Questions ?

