Introduction

Spectral UQ

Solution Methods

Conclusion

Méthodes Spectrales Non-Intrusives et de Galerkin pour la Quantification d'Incertitudes

Olivier Le Maître¹ *

¹LIMSI, CNRS UPR-3251, Orsay, France

MOMAS-CALCUL - 05/05/10

*In collaboration with A. Ern (CEMICS, ENPC), M. Ndjinga and J.-M. Martinez (CEA, Saclay), A. Nouy (GeM, Centrale Nantes), L. Mathelin (LIMSI, CNRS) and O. Knio (Johns Hopkins University)

Outline

Introduction

- Simulation and errors
- Data uncertainty
- Alternative UQ methods

2 Spectral UQ

- Generalized PC expansion
- Application to spectral UQ

3 Solution Methods

- Non-Intrusive Methods
- Stochastic Galerkin Projection

4 Conclusion

Solution Methods

Simulation and errors

Simulation framework.

Basic ingredients

- Understanding of the physics involved (optional ?) : selection of the mathematical model.
- Numerical method(s) to solve the model.
- Specify a set of data :

select a system among the class spanned by the model.

Solution Methods

Simulation and errors

Simulation framework.

Basic ingredients

- Understanding of the physics involved (optional ?) : selection of the mathematical model.
- Numerical method(s) to solve the model.
- Specify a set of data :

select a system among the class spanned by the model.

Simulation errors

- Model errors : physical approximations and simplifications.
- Numerical errors : discretization, approximate solvers, finite arithmetics.
- Data error : boundary/initial conditions, model constants and parameters, external forcings, ...

Introduction
00000

Solution Methods

Data uncertainty

Sources of data uncertainty

- Inherent variability (e.g. industrial processes).
- Epistemologic uncertainty (e.g. model constants).
- May not be fully reductible, even theoretically.

Solution Methods

Data uncertainty

Sources of data uncertainty

- Inherent variability (e.g. industrial processes).
- Epistemologic uncertainty (e.g. model constants).
- May not be fully reductible, even theoretically.

Probabilistic framework

- Define an abstract probability space $(\Omega, \mathcal{A}, d\mu)$.
- Consider data *D* as random quantity : $D(\omega), \ \omega \in \Omega$.
- Simulation output *S* is random and on $(\Omega, \mathcal{A}, d\mu)$.

Solution Methods

Data uncertainty

Sources of data uncertainty

- Inherent variability (e.g. industrial processes).
- Epistemologic uncertainty (e.g. model constants).
- May not be fully reductible, even theoretically.

Probabilistic framework

- Define an abstract probability space $(\Omega, \mathcal{A}, d\mu)$.
- Consider data *D* as random quantity : $D(\omega), \ \omega \in \Omega$.
- Simulation output *S* is random and on $(\Omega, \mathcal{A}, d\mu)$.
- Data *D* and simulation output *S* are dependent random quantities (through the mathematical model *M*):

$$\mathcal{M}(\mathcal{S}(\omega), \mathcal{D}(\omega)) = \mathbf{0}, \quad \forall \omega \in \Omega.$$

Solution Methods

Conclusion

Data uncertainty

Propagation and Quantification of data uncertainty

Data density

Solution Methods

Conclusion

Data uncertainty

Propagation and Quantification of data uncertainty

Data density

$$\mathcal{M}(S,D)=0$$

Solution Methods

Data uncertainty

Propagation and Quantification of data uncertainty

Data density

Solution density

Solution Methods

Data uncertainty

Propagation and Quantification of data uncertainty

Data density

Solution density

 $\mathcal{M}(S,D)=0$

- Variability in model output : numerical error bars.
- Assessment of predictability.
- Support decision making process.
- What type of information (abstract quantities, confidence intervals, density estimations, structure of dependencies, ...) one needs?

Introduction	
00000	

Alternative UQ methods

Spectral UQ

Solution Methods

Deterministic methods

- Sensitivity analysis (adjoint based, AD, ...) : local.
- Perturbation techniques : limited to low order and simple data uncertainty.
- Neuman expansions : limited to low expansion order.
- Moments method : closure problem (non-Gaussian / non-linear problems).

Simulation techniques

Monte-Carlo

Spectral Methods

Solution Methods

Alternative UQ methods

Deterministic methods

Simulation techniques

Monte-Carlo

- Generate a sample set of data realizations and compute the corresponding sample set of model ouput.
- Use sample set based random estimates of abstract characterizations (moments, correlations, . . .).
- Plus : Very robust and re-use deterministic codes : (parallelization, complex data uncertainty).
- Minus : **slow convergence of the random estimates** with the sample set dimension.

Spectral Methods

Solution Methods

Alternative LIQ methods

Deterministic methods

Simulation techniques

Monte-Carlo

Spectral Methods

- Parametrization of the data with random variables (RVs).
- \perp projection of solution on the (*L*₂) space spanned by the RVs.
- Plus : arbitrary level of uncertainty, deterministic approach, convergence rate, information contained.
- Minus : parametrizations (limited # of RVs), adaptation of simulation tools (legacy codes), robustness (non-linear problems, non-smooth output, ...).
- Not suited for model uncertainty

Alternative UQ methods

Outline

Introduction

- Simulation and errors
- Data uncertainty
- Alternative UQ methods

2 Spectral UQ

- Generalized PC expansion
- Application to spectral UQ

3 Solution Methods

- Non-Intrusive Methods
- Stochastic Galerkin Projection

4 Conclusion

ntroduction	Spectral UQ	Solution Methods	Conclu
	000		
Generalized PC expansion			

Polynomial Chaos expansion[Wiener-1938]Any well behaved RV $U(\omega)$ (e.g. 2nd-order one) defined on
 $(\Omega, \mathcal{A}, d\mu)$ has a convergent expansion of the form :

$$U(\omega) = u_0 \Gamma_0 + \sum_{i_1=1}^{\infty} u_{i_1} \Gamma_1(\xi_{i_1}(\omega)) + \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{i_1} u_{i_1,i_2} \Gamma_2(\xi_{i_1}(\omega),\xi_{i_2}(\omega)) + \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{i_1} \sum_{i_3=1}^{i_2} u_{i_1,i_2,i_3} \Gamma_3(\xi_{i_1}(\omega),\xi_{i_2}(\omega),\xi_{i_3}(\omega)) + \dots$$

- $\{\xi_1, \xi_2, \ldots\}$: independent normalized Gaussian RVs.
- Γ_p polynomials with degree p, orthogonal to Γ_q , $\forall q < p$.
- Convergence in the **mean square sense** (Cameron and Martin, 1947).

Polynomial Chaos expansion [Wiener-1938] Truncated PC expansion at order No and N RVs :

$$U(\omega) \approx \sum_{k=0}^{P} u_k \Psi_k(\boldsymbol{\xi}(\omega)), \quad \boldsymbol{\xi} = \{\xi_1, \dots, \xi_N\}, \quad P = \frac{(N + No)!}{N!No!}.$$

- $\{u_k\}_{k=0,...,P}$: **deterministic** expansion coefficients,
- {Ψ_k}_{k=0,...,P} : ⊥ random polynomials wrt the inner product involving the density of *ξ* :

$$\begin{split} E\left[\Psi_{k}\Psi_{l}\right] &= \langle \Psi_{k},\Psi_{l}\rangle \quad \equiv \quad \int_{\Omega} \Psi_{k}(\boldsymbol{\xi}(\omega))\Psi_{l}(\boldsymbol{\xi}(\omega))d\mu(\omega) \\ &= \quad \int \Psi_{k}(\boldsymbol{\xi})\Psi_{l}(\boldsymbol{\xi})\boldsymbol{p}(\boldsymbol{\xi})d\boldsymbol{\xi} = \delta_{kl}\left\langle \Psi_{k}^{2}\right\rangle. \end{split}$$

Polynomial Chaos expansion [Wiener-1938] Truncated PC expansion at order No and N RVs :

$$U(\omega) \approx \sum_{k=0}^{P} u_k \Psi_k(\boldsymbol{\xi}(\omega)), \quad \boldsymbol{\xi} = \{\xi_1, \dots, \xi_N\}, \quad P = \frac{(N + No)!}{N!No!}.$$

- $\{u_k\}_{k=0,...,P}$: **deterministic** expansion coefficients,
- {Ψ_k}_{k=0,...,P} : ⊥ random polynomials wrt the inner product involving the density of *ξ* :

$$\begin{split} E\left[\Psi_{k}\Psi_{l}\right] &= \langle \Psi_{k},\Psi_{l}\rangle \quad \equiv \quad \int_{\Omega} \Psi_{k}(\boldsymbol{\xi}(\omega))\Psi_{l}(\boldsymbol{\xi}(\omega))d\mu(\omega) \\ &= \quad \int \Psi_{k}(\boldsymbol{\xi})\Psi_{l}(\boldsymbol{\xi})p(\boldsymbol{\xi})d\boldsymbol{\xi} = \delta_{kl}\left\langle \Psi_{k}^{2}\right\rangle. \end{split}$$

p(ξ) = Πⁿ_{i=1} (exp(-ξ_i²/2))/(√2π) ⇒ Ψ_k(ξ) : Hermite polynomials
 {Ψ₀,...,Ψ_P} is an orthogonal basis of S^P ⊂ L₂(Ξ, *p*(ξ)).

Solution Methods

Generalized PC expansion

Polynomial Chaos expansion Truncated PC expansion :

[Wiener-1938]
$$U(\omega) \approx \sum_{k=0}^{P} u_k \Psi_k(\boldsymbol{\xi}(\omega)).$$

- Convention $\Psi_0 \equiv 1$: mean mode.
- Expectation of U :

$$E[U] \equiv \int_{\Omega} U(\omega) d\mu(\omega) \approx \sum_{k=0}^{P} u_k \int_{\Xi} \Psi_k(\xi) p(\xi) d\xi = u_0.$$

• Variance of U :

$$V[U] = E[U^2] - E[U]^2 \approx \sum_{k=1}^{P} u_k^2 \langle \Psi_k, \Psi_k \rangle.$$

Extension to random vectors & stochastic processes :

$$\begin{pmatrix} U_1\\ \vdots\\ U_m \end{pmatrix} (\omega, \boldsymbol{x}, t) \approx \sum_{k=0}^{P} \begin{pmatrix} u_1\\ \vdots\\ u_m \end{pmatrix}_k (\boldsymbol{x}, t) \, \Psi_k(\boldsymbol{\xi}(\omega)).$$

Introduction 00000	Spectral UQ o●oo	Solution Methods	Conclusion
Generalized PC expansion			
Generalized	PC expansion	[Xiu and Karnia	dakis, 2002]
Askey sche	me		
	Distribution of ξ_i	Polynomial familly	
	Gaussian	Hermite	
	Uniform	Legendre	
	Exponential	Laguerre	
	β -distribution	Jacobi	

Also : discrete RVs (Poisson process).

$$U(\omega) \approx \sum_{k=0}^{P} u_k \Psi_k(\boldsymbol{\xi}(\omega))$$

where Ψ_k : classical (or mixture of) polynomials.

Introductio	

Solution Methods

Application to spectral UQ

Data parametrization

Parametrization of *D* using $N < \infty$ independent RVs with prescribed distribution $p(\xi)$:

$$D(\omega) \approx D(\boldsymbol{\xi}(\omega)), \quad \boldsymbol{\xi} = (\xi_1, \ldots, \xi_N) \in \Xi.$$

- Iso-probabilistic Transformation of random variables.
- Karhunen-Loève expansion : D(x, ω) stochastic field/process.
- Independent components analysis.

Model

Solution expansion

Introduction

Solution Methods

Application to spectral UQ

Data parametrization

Model

We assume that for a.e. $\xi \in \Xi$, the problem $\mathcal{M}(S, D(\xi)) = 0$

- is well-posed,
- a has a unique solution

and that

the random solution $S(\xi) \in L_2(\Xi, p_{\xi})$:

$$m{E}\left[m{S}^2
ight] = \int_\Omega m{S}^2(m{\xi}(\omega)) m{d} \mu(\omega) = \int_{\Xi} m{S}^2(m{\xi}) m{p}(m{\xi}) m{d}m{\xi} < +\infty.$$

Solution expansion

Solution Methods

Application to spectral UQ

Data parametrization

Model

Solution expansion

Let $\{\Psi_0, \Psi_1, \ldots\}$ be a basis of $L_2(\Xi, p_{\xi})$ then

$$S({f \xi}) = \sum_k s_k \Psi_k({f \xi}).$$

- Knowledge of the spectral coefficients sk fully determine the random solution.
- Makes explicit the dependence between $D(\xi)$ and $S(\xi)$.

Solution Methods

Application to spectral UQ

Data parametrization

Model

Solution expansion

Let $\{\Psi_0, \Psi_1, \ldots\}$ be a basis of $L_2(\Xi, p_{\xi})$ then

$$S({f \xi}) = \sum_k s_k \Psi_k({f \xi}).$$

- Knowledge of the spectral coefficients *s*_k fully determine the random solution.
- Makes explicit the dependence between $D(\xi)$ and $S(\xi)$.
- Need efficient procedure(s) to compute the *s_k*.

Outline

Introduction

- Simulation and errors
- Data uncertainty
- Alternative UQ methods

2 Spectral UQ

- Generalized PC expansion
- Application to spectral UQ

3 Solution Methods

- Non-Intrusive Methods
- Stochastic Galerkin Projection

4 Conclusion

Solution Methods

Basics

Non-Intrusive Methods

Non-intrusive methods

Use code as a black-box

- Compute/estimate spectral coefficients via a set of deterministic model solutions
- Requires a deterministic solver only

$$\mathfrak{S}_{\Xi} \equiv \{ \boldsymbol{\xi}^{(1)}, \dots, \boldsymbol{\xi}^{(m)} \} \text{ sample set of } \boldsymbol{\xi}$$

- 2 Let $s^{(i)}$ be the solution of the **deterministic** problem $\mathcal{M}\left(s^{(i)}, D(\xi^{(i)})\right) = 0$
- $S_S \equiv \{s^{(1)}, \dots, s^{(m)}\}$ sample set of model solutions
- Setimate expansion coefficients s_k from this sample set.
 - Complex models, reuse of determinsitic codes, planification, ...
 - Error control and computational complexity (curse of dimensionality), ...

Introduction 00000	Spectral UQ 0000	Solution Methods	Conclusion
Non-Intrusive Methods			

Least square fit

"Regression"

 Best approximation is defined by minimizing a (weighted) sum of squares of residuals :

$$R^{2}(s_{0},\ldots,s_{\mathrm{P}})\equiv\sum_{i=1}^{m}w_{i}\left(s^{(i)}-\sum_{k=0}^{\mathrm{P}}s_{k}\Psi_{k}\left(\boldsymbol{\xi}^{(i)}\right)\right)^{2}$$

Advantages/issues

- Convergence with number of regression points m
- Selection of the regression points and "regressors" Ψ_k
- Error estimate

ntroduction 00000	Spectral UQ 0000	Solution Methods	Conclusion
Non-Intrusive Methods			

Non intrusive spectral projection : Exploit the orthogonality of the basis :

$$m{E}\left[\Psi_k^2
ight]m{s}_k=\langlem{S},\Psi_k
angle=\int_{\Xi}m{S}(m{\xi})\Psi_k(m{\xi})m{
ho}(m{\xi})dm{\xi}.$$

NISP

Computation of (P + 1) N-dimensional integrals

Introduction	Spectral UQ	Solution Methods	Conclusion
Non-Intrusive Methods			

Non intrusive spectral projection : Exploit the orthogonality of the basis :

$$m{E}\left[\Psi_k^2
ight]m{s}_k=\langlem{S},\Psi_k
angle=\int_{\Xi}m{S}(m{\xi})\Psi_k(m{\xi})m{
ho}(m{\xi})dm{\xi}.$$

NISP

Computation of (P + 1) N-dimensional integrals

$$\langle \boldsymbol{S}, \boldsymbol{\Psi}_{\boldsymbol{k}} \rangle \approx \sum_{i=1}^{N_Q} \boldsymbol{w}^{(i)} \boldsymbol{S}\left(\boldsymbol{\xi}^{(i)}\right) \boldsymbol{\Psi}_{\boldsymbol{k}}\left(\boldsymbol{\xi}^{(i)}\right)$$

Solution Methods

Non-Intrusive Methods

Non intrusive projection

Random Quadratures

Approximate integrals from a (pseudo) random sample set $\mathcal{S}_{\mathcal{S}}$:

$$\langle S, \Psi_k \rangle \approx \frac{1}{m} \sum_{i=1}^m w^{(i)} s^{(i)} \Psi_k \left(\xi^{(i)} \right).$$

Solution Methods

Non-Intrusive Methods

Non intrusive projection

Random Quadratures

Approximate integrals from a (pseudo) random sample set $\mathcal{S}_{\mathcal{S}}$:

$$\langle S, \Psi_k \rangle \approx \frac{1}{m} \sum_{i=1}^m w^{(i)} s^{(i)} \Psi_k \left(\boldsymbol{\xi}^{(i)} \right).$$

- Convergence rate
- Error estimate
- Optimal sampling strategy

Introduction 00000	Spectral UQ 0000	Solution Methods	Conclusion
Non-Intrusive Methods			

Non intrusive projection

Deterministic Quadratures

Approximate integrals by N-dimensional quadratures :

$$\langle S, \Psi_k \rangle \approx \sum_{i=1}^{N_Q} w^{(i)} s^{(i)} \Psi_k \left(\xi^{(i)} \right).$$

Quadrature points $\xi^{(i)}$ and weights $w^{(i)}$ obtained by

• full tensorization of *n* points 1-D quadrature (*i.e.* Gauss) :

$$N_Q = n^N$$

partial tensorization

of nested 1-D quadrature formula (Féjer, Clenshaw-Curtis) :

$$N_Q \ll n^N$$

Solution Methods

Non-Intrusive Methods

Non intrusive projection

- Important development of sparse-grid methods
- Anisotropic and adaptivity
- Extension to collocation approach (N-dimensional interpolation)

Stochastic Galerkin Projection

Galerkin projection

- Weak solution of the stochastic problem $\mathcal{M}(S, D) = 0$.
- Needs adaptation of deterministic codes.
- Usually more efficient than NI techniques.
- Better suited to improvement (error estimate, optimal and basis reduction, ...), thanks to spectral theory and functional analysis.

Galerkin projection

Method of weighted residual

- Introduce truncated expansions in model equations (1)
- Require residual to be \perp to the stochastic subspace S^{P} 2

$$\left\langle \mathcal{M}\left(\sum_{k=0}^{\mathbf{P}} s_k \Psi_k(\boldsymbol{\xi}), D(\boldsymbol{\xi})\right) \Psi_m(\boldsymbol{\xi}) \right\rangle = 0 \quad \text{for } m = 0, \dots, \mathbf{P}.$$

Set of P + 1 **coupled** problems.

Plus

- Implicitly account for modes' coupling.
- Often inherit properties of the deterministic model.

Minus

- Requires adaptation of deterministic solvers.
- Treatment of non-linearities.

Solution Methods

Stochastic Galerkin Projection

Example of Galerkin projection

Convection dispersion equationA. Cartalade (CEA)• 1-D Convection dispersion :
 $\phi \frac{\partial C}{\partial t} = -\frac{\partial}{\partial x} \left[qC - (\phi d_m + \Lambda |q|) \frac{\partial C}{\partial x} \right].$ concentration C(x, t)• IC and BC :C(x, t = 0) = 0, C(x = 0, t) = 1 a.s.

Model coefficients :

- q > 0 : Darcy velocity (1 m/day),
- ϕ : fluid fraction 0 < $\phi \le$ 1,
- *d_m* : molecular diffusivity (<< 1),
- Λ : uncertain hydrodynamic dispersion coefficient.

Uncertainty model

Solution Methods

Conclusion

Stochastic Galerkin Projection

Example of Galerkin projection

Model equation

Uncertainty model

Λ follows an uncertain power-law :

$$\Lambda = \mathbf{A}\phi^{\mathbf{B}}$$

• A and B independent random variables with p.d.f. $\log_{10} A \sim U[-4, -2]$ and $B \sim U[-3.5, -1]$

• Parametrization with two RV $\xi_1, \xi_2 \sim U[-1, 1]$:

$$A(\xi_1) = \exp(\mu_1 + \sigma_1 \xi_1)$$
 $B = \mu_2 + \sigma_2 \xi_2$

Expansion of Λ : (2-D Legendre basis)

$$\Lambda(\xi_1,\xi_2)\approx\sum_k\lambda_k\Psi_k(\xi_1,\xi_2)$$

Introduction 00000	Spectral UQ 0000	Solution Methods	Conclusion
Stochastic Galerkin Projection			

Stochastic convection dispersion equation becomes :

$$\partial_t C + q \partial_x C - D(\xi) \partial_{xx} C = 0$$

Expansion of the solution : $C(\xi, t, x) \approx \sum_{k=0}^{P} c_k(x, t) \Psi_k(\xi)$ Insert and project : for m = 0, ..., P

$$\sum_{k=0}^{P} \partial_{t} c_{k} \langle \Psi_{k}, \Psi_{m} \rangle + q \partial_{x} c_{k} \langle \Psi_{k}, \Psi_{m} \rangle - \langle \Psi_{k} D(\boldsymbol{\xi}), \Psi_{m} \rangle \partial_{xx} c_{k} = 0$$

Introduction 00000	Spectral UQ 0000	Solution Methods	Conclusion
Stochastic Galerkin Projection			

Stochastic convection dispersion equation becomes :

$$\partial_t C + q \partial_x C - D(\xi) \partial_{xx} C = 0$$

Expansion of the solution : $C(\xi, t, x) \approx \sum_{k=0}^{P} c_k(x, t) \Psi_k(\xi)$ Insert and project : for m = 0, ..., P

$$\partial_t c_m + q \partial_x c_m - \sum_{k=0}^{\mathrm{P}} \frac{\langle \Psi_k D(\xi), \Psi_m \rangle}{\langle \Psi_m, \Psi_m \rangle} \partial_{xx} c_k = 0$$

Coupling of the stochastic modes $c_k(x, t)$ through the stochastic dispersion operator.

Solution Methods

Stochastic Galerkin Projection

Proceed with the deterministic discretization :

- Time derivative $\partial_t c_k = (c_k^{n+1} c_k^n)/\Delta t + \mathcal{O}(\Delta t)$
- Implicit scheme with FV scheme with n_c spatial cells

$$\sum_{k=0}^{P} \frac{\langle \Psi_k \mathbb{A}(\boldsymbol{\xi}), \Psi_m \rangle}{\langle \Psi_m, \Psi_m \rangle} \boldsymbol{c}_k^{n+1} = \boldsymbol{b}(\boldsymbol{c}_m^n), \quad m = 0, \dots, P$$

where $\boldsymbol{c}_{k}^{n} \in \mathbb{R}^{n_{c}}$ and $\mathbb{A}(\boldsymbol{\xi})$ is a random matrix in $\mathbb{R}^{n_{c} \times n_{c}}$

• Random matrix expansion $\mathbb{A}(\boldsymbol{\xi}) = \sum_{k=0}^{P} [A]_k \Psi_k(\boldsymbol{\xi})$

$$\sum_{k,l=0}^{\mathrm{P}} \mathcal{M}_{klm}[\mathcal{A}]_k \boldsymbol{c}_l^{n+1} = \boldsymbol{b}(\boldsymbol{c}_m^n), \quad \mathcal{M}_{klm} := \frac{\langle \Psi_k \Psi_l, \Psi_m \rangle}{\langle \Psi_m, \Psi_m \rangle}$$

• Linear system of $(P + 1) \times n_c$ equations.

Solution Methods

Stochastic Galerkin Projection

Structure of the Galerkin system :

- Usually the matrices [A]_k inherit the structure of the deterministic problem
- The Galerkin product tensor ${\mathcal M}$ is sparse

(examples for No = 3 -left- and N = 5 -right-)

Stochastic Galerkin Projection

Resolution of the Galerkin system

$$\sum_{k=0}^{P}\sum_{l=0}^{P}\mathcal{M}_{klm}[A]_{k}\boldsymbol{c}_{l}^{n+1}=\boldsymbol{b}(\boldsymbol{c}_{m}^{n}), \text{ for } m=0,\ldots, P$$

Solution Methods

Stochastic Galerkin Projection

Resolution of the Galerkin system

$$\sum_{l=0}^{P} \mathcal{M}_{0lm}[A]_0 \boldsymbol{c}_l^{n+1} + \sum_{k=1}^{P} \sum_{l=0}^{P} \mathcal{M}_{klm}[A]_k \boldsymbol{c}_l^{n+1} = \boldsymbol{b}(\boldsymbol{c}_m^n), \quad \text{for } m = 0, \dots, P$$

Stochastic Galerkin Projection

Spectral UQ

Solution Methods

Resolution of the Galerkin system

$$[A]_0 \boldsymbol{c}_m^{n+1} = \boldsymbol{b}(\boldsymbol{c}_m^n) - \sum_{k=1}^{P} \sum_{l=0}^{P} \mathcal{M}_{klm}[A]_k \boldsymbol{c}_l^{n+1}, \text{ for } m = 0, \dots, P$$

- Suggest Jacobi type iterations
- Factorization of $[A]_0 = E[A]$ only
- Other iterative (Krylov-type) methods with preconditioner

 P = diag(E [A])
- Efficiency depends on the variability of A.

Introduction 00000	Spectral UQ oooo	Solution Methods
Stochastic Galerkin Projection		

Convection dispersion equation

Expectation & standard deviation at x = 0.5

Introduction

Solution Methods

Conclusion

- Propagation des incertitudes = calculs intensifs
- HPC nécessaire (tant en intrusif que non intrusif)
- Non-intrusif : plateformes / lanceurs, planification, répartition de charge, ...
- Galerkin : strategies de parallélisation appropriées (distribution de la résolution des modes / décomposition de domaine spatial), équilibrage et optimisation des volumes de communication entre processeurs
- Multi-résolution : procédures de type AMR au niveau stochastique, nombreux problèmes de Galerkin découplés,
- Incertitudes de modélisation par MC

Solution Methods

Fundings : GNR MoMaS and ANR

Spectral Methods for Uncertainty Quantification with applications in computational fluid dynamics with Omar Knio

http://www.limsi.fr/Individu/olm