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Simulation and errors

Simulation framework.

Basic ingredients
Understanding of the physics involved (optional ?) :

selection of the mathematical model.
Numerical method(s) to solve the model.
Specify a set of data :

select a system among the class spanned by the model.

Simulation errors
Model errors : physical approximations and simplifications.
Numerical errors : discretization, approximate solvers,
finite arithmetics.
Data error : boundary/initial conditions, model constants
and parameters, external forcings, . . .
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Data uncertainty

Sources of data uncertainty
Inherent variability (e.g. industrial processes).
Epistemologic uncertainty (e.g. model constants).
May not be fully reductible, even theoretically.

Probabilistic framework
Define an abstract probability space (Ω,A, dµ).
Consider data D as random quantity : D(ω), ω ∈ Ω.
Simulation output S is random and on (Ω,A, dµ).

Data D and simulation output S are dependent random
quantities (through the mathematical model M) :

M(S(ω), D(ω)) = 0, ∀ω ∈ Ω.
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Data uncertainty

Propagation and Quantification of data uncertainty

Data density

M(S, D) = 0

Solution density

Variability in model output : numerical error bars.
Assessment of predictability.
Support decision making process.
What type of information (abstract quantities, confidence
intervals, density estimations, structure of dependencies,
. . .) one needs ?
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Alternative UQ methods

Deterministic methods
Sensitivity analysis (adjoint based, AD, . . .) : local.
Perturbation techniques : limited to low order and simple
data uncertainty.
Neuman expansions : limited to low expansion order.
Moments method : closure problem (non-Gaussian /
non-linear problems).

Simulation techniques Monte-Carlo

Spectral Methods
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Alternative UQ methods

Deterministic methods

Simulation techniques Monte-Carlo
Generate a sample set of data realizations and compute
the corresponding sample set of model ouput.
Use sample set based random estimates of abstract
characterizations (moments, correlations, . . .).
Plus : Very robust and re-use deterministic codes :
(parallelization, complex data uncertainty).
Minus : slow convergence of the random estimates with
the sample set dimension.

Spectral Methods
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Alternative UQ methods

Deterministic methods

Simulation techniques Monte-Carlo

Spectral Methods
Parametrization of the data with random variables (RVs).
⊥ projection of solution on the (L2) space spanned by the
RVs.
Plus : arbitrary level of uncertainty, deterministic
approach, convergence rate, information contained.
Minus : parametrizations (limited # of RVs), adaptation
of simulation tools (legacy codes), robustness
(non-linear problems, non-smooth output, . . .).
Not suited for model uncertainty
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Generalized PC expansion

Polynomial Chaos expansion [Wiener-1938]
Any well behaved RV U(ω) (e.g. 2nd-order one) defined on
(Ω,A, dµ) has a convergent expansion of the form :

U(ω) = u0Γ0 +
∞∑

i1=1

ui1Γ1(ξi1(ω)) +
∞∑

i1=1

i1∑
i2=1

ui1,i2Γ2(ξi1(ω), ξi2(ω))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ui1,i2,i3Γ3(ξi1(ω), ξi2(ω), ξi3(ω)) + . . .

{ξ1, ξ2, . . .} : independent normalized Gaussian RVs.
Γp polynomials with degree p, orthogonal to Γq,∀q < p.
Convergence in the mean square sense (Cameron and
Martin, 1947).
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Generalized PC expansion

Polynomial Chaos expansion [Wiener-1938]
Truncated PC expansion at order No and N RVs :

U(ω) ≈
P∑

k=0

ukΨk (ξ(ω)), ξ = {ξ1, . . . , ξN}, P =
(N + No)!

N!No!
.

{uk}k=0,...,P : deterministic expansion coefficients,
{Ψk}k=0,...,P : ⊥ random polynomials wrt the inner
product involving the density of ξ :

E [ΨkΨl ] = 〈Ψk ,Ψl〉 ≡
∫

Ω

Ψk (ξ(ω))Ψl(ξ(ω))dµ(ω)

=

∫
Ψk (ξ)Ψl(ξ)p(ξ)dξ = δkl

〈
Ψ2

k
〉
.

p(ξ) =
∏n

i=1
exp(−ξ2

i /2)√
2π

=⇒ Ψk (ξ) : Hermite polynomials

{Ψ0, . . . ,ΨP} is an orthogonal basis of SP ⊂ L2(Ξ, p(ξ)).
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Generalized PC expansion

Polynomial Chaos expansion [Wiener-1938]
Truncated PC expansion : U(ω) ≈

∑P
k=0 ukΨk (ξ(ω)).

Convention Ψ0 ≡ 1 : mean mode.
Expectation of U :

E [U] ≡
∫

Ω

U(ω)dµ(ω) ≈
P∑

k=0

uk

∫
Ξ

Ψk (ξ)p(ξ)dξ = u0.

Variance of U :

V [U] = E [U2]− E [U]2 ≈
P∑

k=1

u2
k 〈Ψk ,Ψk 〉 .

Extension to random vectors & stochastic processes : U1
...

Um

 (ω, x , t) ≈
P∑

k=0

 u1
...

um


k

(x , t) Ψk (ξ(ω)).
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Generalized PC expansion

Generalized PC expansion [Xiu and Karniadakis, 2002]

Askey scheme

Distribution of ξi Polynomial familly
Gaussian Hermite
Uniform Legendre
Exponential Laguerre
β-distribution Jacobi

Also : discrete RVs (Poisson process).

U(ω) ≈
∑P

k=0 ukΨk (ξ(ω))

where Ψk : classical (or mixture of) polynomials.
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Application to spectral UQ

Data parametrization
Parametrization of D using N < ∞ independent RVs with
prescribed distribution p(ξ) :

D(ω) ≈ D(ξ(ω)), ξ = (ξ1, . . . , ξN) ∈ Ξ.

Iso-probabilistic Transformation of random variables.
Karhunen-Loève expansion : D(x , ω) stochastic
field/process.
Independent components analysis.

Model

Solution expansion
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Application to spectral UQ

Data parametrization

Model
We assume that for a.e. ξ ∈ Ξ, the problem M(S, D(ξ)) = 0

1 is well-posed,
2 has a unique solution

and that
the random solution S(ξ) ∈ L2(Ξ, pξ) :

E
[
S2
]

=

∫
Ω

S2(ξ(ω))dµ(ω) =

∫
Ξ

S2(ξ)p(ξ)dξ < +∞.

Solution expansion



Introduction Spectral UQ Solution Methods Conclusion

Application to spectral UQ

Data parametrization

Model

Solution expansion
Let {Ψ0,Ψ1, . . .} be a basis of L2(Ξ, pξ) then

S(ξ) =
∑

k

skΨk (ξ).

Knowledge of the spectral coefficients sk fully determine
the random solution.
Makes explicit the dependence between D(ξ) and S(ξ).

Need efficient procedure(s) to compute the sk .
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Non-Intrusive Methods

Non-intrusive methods Basics

Use code as a black-box
Compute/estimate spectral coefficients via a set of
deterministic model solutions
Requires a deterministic solver only

1 SΞ ≡ {ξ(1), . . . , ξ(m)} sample set of ξ
2 Let s(i) be the solution of the deterministic problem

M
(

s(i), D(ξ(i))
)

= 0

3 SS ≡ {s(1), . . . , s(m)} sample set of model solutions
4 Estimate expansion coefficients sk from this sample set.

Complex models, reuse of determinsitic codes,
planification, . . .
Error control and computational complexity (curse of
dimensionality), . . .
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Non-Intrusive Methods

Least square fit “Regression”
Best approximation is defined by minimizing a (weighted)
sum of squares of residuals :

R2(s0, . . . , sP) ≡
m∑

i=1

wi

(
s(i) −

P∑
k=0

skΨk

(
ξ(i)
))2

.

Advantages/issues
Convergence with number of regression points m
Selection of the regression points and “regressors” Ψk

Error estimate
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Non-Intrusive Methods

Non intrusive spectral projection : NISP
Exploit the orthogonality of the basis :

E
[
Ψ2

k

]
sk = 〈S,Ψk 〉 =

∫
Ξ

S(ξ)Ψk (ξ)p(ξ)dξ.

Computation of (P + 1) N-dimensional integrals

〈S,Ψk 〉 ≈
NQ∑
i=1

w (i)S
(
ξ(i)
)

Ψk

(
ξ(i)
)

.
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Non-Intrusive Methods

Non intrusive projection Random Quadratures
Approximate integrals from a (pseudo) random sample set SS :

〈S,Ψk 〉 ≈
1
m

m∑
i=1

w (i)s(i)Ψk

(
ξ(i)
)

.

MC LHS QMC

Convergence rate
Error estimate
Optimal sampling
strategy
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Non-Intrusive Methods

Non intrusive projection Deterministic Quadratures
Approximate integrals by N-dimensional quadratures :

〈S,Ψk 〉 ≈
NQ∑
i=1

w (i)s(i)Ψk

(
ξ(i)
)

.

Quadrature points ξ(i) and weights w (i) obtained by
full tensorization of n points 1-D quadrature (i.e. Gauss) :

NQ = nN

partial tensorization
of nested 1-D quadrature formula (Féjer, Clenshaw-Curtis) :

NQ << nN
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Non-Intrusive Methods

Non intrusive projection Deterministic Quadratures
l = 4 l = 5 l = 6

Important development of sparse-grid methods

Anisotropic and adaptivity

Extension to collocation approach (N-dimensional interpolation)
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Stochastic Galerkin Projection

Galerkin projection
Weak solution of the stochastic problem M(S, D) = 0.
Needs adaptation of deterministic codes.
Usually more efficient than NI techniques.
Better suited to improvement (error estimate, optimal and
basis reduction, . . .), thanks to spectral theory and
functional analysis.
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Stochastic Galerkin Projection

Galerkin projection Method of weighted residual
¬ Introduce truncated expansions in model equations
 Require residual to be ⊥ to the stochastic subspace SP〈

M

(
P∑

k=0

skΨk (ξ), D(ξ)

)
Ψm(ξ)

〉
= 0 for m = 0, . . . , P.

Set of P + 1 coupled problems.

Plus
Implicitly account for
modes’ coupling.
Often inherit properties of
the deterministic model.

Minus
Requires adaptation of
deterministic solvers.
Treatment of
non-linearities.
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Stochastic Galerkin Projection

Example of Galerkin projection

Convection dispersion equation A. Cartalade (CEA)
1-D Convection dispersion : concentration C(x , t)

φ
∂C
∂t

= − ∂

∂x

[
qC − (φdm + Λ|q|) ∂C

∂x

]
.

IC and BC : C(x , t = 0) = 0, C(x = 0, t) = 1 a.s.
Model coefficients :

q > 0 : Darcy velocity (1 m/day),
φ : fluid fraction 0 < φ ≤ 1,
dm : molecular diffusivity (<< 1),
Λ : uncertain hydrodynamic dispersion coefficient.

Uncertainty model
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Stochastic Galerkin Projection

Example of Galerkin projection

Model equation

Uncertainty model

Λ follows an uncertain power-law : Λ = AφB

A and B independent random variables with p.d.f.
log10 A ∼ U[−4,−2] and B ∼ U[−3.5,−1]

Parametrization with two RV ξ1, ξ2 ∼ U[−1, 1] :

A(ξ1) = exp(µ1 + σ1ξ1) B = µ2 + σ2ξ2

Expansion of Λ : (2-D Legendre basis)

Λ(ξ1, ξ2) ≈
∑

k

λkΨk (ξ1, ξ2)
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Stochastic Galerkin Projection

Stochastic convection dispersion equation becomes :

∂tC + q∂xC − D(ξ)∂xxC = 0

Expansion of the solution : C(ξ, t , x) ≈
∑P

k=0 ck (x , t)Ψk (ξ)
Insert and project : for m = 0, . . . , P

P∑
k=0

∂tck 〈Ψk ,Ψm〉+ q∂xck 〈Ψk ,Ψm〉 − 〈ΨkD(ξ),Ψm〉∂xxck = 0
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Stochastic Galerkin Projection

Stochastic convection dispersion equation becomes :

∂tC + q∂xC − D(ξ)∂xxC = 0

Expansion of the solution : C(ξ, t , x) ≈
∑P

k=0 ck (x , t)Ψk (ξ)
Insert and project : for m = 0, . . . , P

∂tcm + q∂xcm −
P∑

k=0

〈ΨkD(ξ),Ψm〉
〈Ψm,Ψm〉

∂xxck = 0

Coupling of the stochastic modes ck (x , t) through the
stochastic dispersion operator.



Introduction Spectral UQ Solution Methods Conclusion

Stochastic Galerkin Projection

Proceed with the deterministic discretization :
Time derivative ∂tck = (cn+1

k − cn
k )/∆t +O(∆t)

Implicit scheme with FV scheme with nc spatial cells

P∑
k=0

〈ΨkA(ξ),Ψm〉
〈Ψm,Ψm〉

cn+1
k = b(cn

m), m = 0, . . . , P

where cn
k ∈ Rnc and A(ξ) is a random matrix in Rnc×nc

Random matrix expansion A(ξ) =
∑P

k=0[A]kΨk (ξ)

P∑
k ,l=0

Mklm[A]kcn+1
l = b(cn

m), Mklm :=
〈ΨkΨl ,Ψm〉
〈Ψm,Ψm〉

Linear system of (P + 1)× nc equations.
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Stochastic Galerkin Projection

Structure of the Galerkin system :
Usually the matrices [A]k inherit the structure of the
determinstic problem
The Galerkin product tensor M is sparse

(examples for No = 3 -left- and N = 5 -right-)

N = 4-P = 35 N = 6-P = 84

N = 8-P = 164 N = 10-P = 285

No = 2-P = 20 No = 3-P = 55

No = 4-P = 126 No = 5-P = 251
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Stochastic Galerkin Projection

Resolution of the Galerkin system

P∑
k=0

P∑
l=0

Mklm[A]kcn+1
l = b(cn

m), for m = 0, . . . , P
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Stochastic Galerkin Projection

Resolution of the Galerkin system

P∑
l=0

M0lm[A]0cn+1
l +

P∑
k=1

P∑
l=0

Mklm[A]kcn+1
l = b(cn

m), for m = 0, . . . , P
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Stochastic Galerkin Projection

Resolution of the Galerkin system

[A]0cn+1
m = b(cn

m)−
P∑

k=1

P∑
l=0

Mklm[A]kcn+1
l , for m = 0, . . . , P

Suggest Jacobi type iterations
Factorization of [A]0 = E [A] only
Other iterative (Krylov-type) methods with preconditioner
P = diag(E [A])

Efficiency depends on the variability of A.
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Stochastic Galerkin Projection

Convection dispersion equation results

Expectation & standard deviation at x = 0.5

No = 1 → P + 1 = 3, No = 6 → P + 1 = 145.
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Stochastic Galerkin Projection

Convection dispersion equation results

Convergence of pdfs at x = 0.5

t = 10h. t = 15h.
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Stochastic Galerkin Projection

Convection dispersion equation results

Further uncertainty analysis : quartiles & ANOVA (Sobol)
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Conclusion
Propagation des incertitudes = calculs intensifs
HPC nécessaire (tant en intrusif que non intrusif)
Non-intrusif : plateformes / lanceurs, planification,
répartition de charge, . . .
Galerkin : strategies de parallélisation appropriées
(distribution de la résolution des modes / décomposition de
domaine spatial), équilibrage et optimisation des volumes
de communication entre processeurs
Multi-résolution : procédures de type AMR au niveau
stochastique, nombreux problèmes de Galerkin découplés,
. . .
Incertitudes de modélisation par MC
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Fundings : GNR MoMaS and ANR

Spectral Methods for Uncertainty Quantification with
applications in computational fluid dynamics with Omar Knio

http://www.limsi.fr/Individu/olm

http://www.limsi.fr/Individu/olm
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