Simulation numérique des matériaux ferromagnétiques

Stéphane Labbé

Université Joseph Fourier, Laboratoire Jean Kuntzmann.

Journées du GdR Calcul, 9 et 10 novembre 2009.

Ferromagnétisme Micromagnétisme

Plan

Le modèle du micromagnétisme

Problématique du ferromagnétisme

Modélisation : la théorie du micromagnétisme

Résultats théoriques

- Existence de solutions
- Etudes asymptotiques

La simulation numérique pour le micromagnétisme

- Simulation des états d'équilibre
- Simulation de l'évolution de l'aimantation
- Simulation de la susceptibilité hyperfréquence

Quelques simulations

- Simulation de l'évolution
- Calculs de susceptibilité

< 🗇 🕨 < 🖻 🕨

Résultats théoriques Calculs Résultats Ferromagnétisme Micromagnétisme

Matériaux ferromagnétiques

Caractéristiques

- Aimantation rémanente sous champ extérieur.
- Température critique séparant les comportements linéaires et non linéaires.
- Formation de microstructures : parois et domaines.

Résultats théoriques Calculs Résultats Ferromagnétisme Micromagnétisme

Matériaux ferromagnétiques

< A >

Résultats théoriques Calculs Résultats Ferromagnétisme Micromagnétisme

Matériaux ferromagnétiques

Caractéristiques

- Aimantation rémanente sous champ extérieur.
- Température critique séparant les comportements linéaires et non linéaires.
- Formation de microstructures : parois et domaines.

Résultats théoriques Calculs Résultats Ferromagnétisme Micromagnétisme

Matériaux ferromagnétiques

Caractéristiques

- Aimantation rémanente sous champ extérieur.
- Température critique séparant les comportements linéaires et non linéaires.
- Formation de microstructures : parois et domaines.

< D > < A > < B >

Ferromagnétisme Micromagnétisme

Enjeux des matériaux ferromagnétiques

- Comprendre l'évolution de l'aimantation afin de comprendre l'origine de phénomènes tels que l'hystérésis,
- optimiser la forme et le composition des particules magnétiques pour des applications technologique :
 - circulateurs d'ondes (portables, accélérateurs de particules ...),
 - micro particules magnétiques entrant dans la composition des disques durs ou des peintures "anti-radars".
 - comportement des composants magnétiques pour la nano électronique.

< A >

Ferromagnétisme Micromagnétisme

Plan

Le modèle du micromagnétisme

- Problématique du ferromagnétisme
- Modélisation : la théorie du micromagnétisme

2 Résultats théoriques

- Existence de solutions
- Etudes asymptotiques

La simulation numérique pour le micromagnétisme

- Simulation des états d'équilibre
- Simulation de l'évolution de l'aimantation
- Simulation de la susceptibilité hyperfréquence

Quelques simulations

- Simulation de l'évolution
- Calculs de susceptibilité

< 同 > < ∃ >

Résultats théoriques Calculs Résultats Ferromagnétisme Micromagnétisme

Bases du micromagnétisme

Description thermodynamique des matériaux ferromagnétiques : micromagnétisme, W.F. Brown, année 60.

Quelques notations

- Domaine magnétique : Ω, ouvert de R³.
- Sphère unité : S².
- Aimantation : en général m, champs de vecteurs de Ω à valeurs sur S^2 .
- Fonctionnelle d'énergie : fonctionnelle E définie sur $H^1(\Omega, \mathbb{R}^3)$ à valeurs dans \mathbb{R} .
- Etat d'équilibre : minimiseur de la fonctionnelle d'énergie sur les éléments de H¹(Ω, S²).

Bases du micromagnétisme

Fonctionnelle d'énergie

$$E(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 dx + \dots$$

Energie d'échange : due aux interactions courtes distances entre spins des atomes du réseau cristallin.

Seule : les états d'équilibre sont constants sur le domaine.

Fonctionnelle d'énergie

$$E(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 dx + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(m)|^2 dx + ...$$

Champ démagnétisant : asymptotique de Maxwell quand le domaine est petit devant la longueur d'onde.

Seule : crée des micro- structures qui tendent à annuler la divergence de l'aimantation sur tout le domaine (équation eïkonale : $|\nabla^{\perp}\psi| = 1$ p.p. dans Ω).

Magnétostatique

au sens de $\mathcal{D}'(\mathbb{R}^3,\mathbb{R}^3)$:

$$\begin{cases} \operatorname{rot}(H_d) = 0, \\ \operatorname{div}(H_d) = -\operatorname{div}(\tilde{m}). \end{cases}$$

OIRE

C.P.S.

 \tilde{m} prolonge m par 0 dans \mathbb{R}^3 .

Résultats théoriques Calculs Résultats Ferromagnétisme Micromagnétisme

Bases du micromagnétisme

Fonctionnelle d'énergie

$$E(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 \, dx + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(m)|^2 \, dx + \int_{\Omega} \phi(m) \, dx + \dots$$

Anisotropie : Rend compte de la forme du réseau cristallin. Φ est convexe à valeurs dans \mathbb{R}^+ . Agit localement (non différentielle). Seule : aligne l'aimantation sur les directions privilégiées de la fonctionnelle ϕ .

Fonctionnelle d'énergie

$$E(m) = \frac{A}{2} \int_{\Omega} |\nabla m|^2 dx + \frac{1}{2} \int_{\mathbb{R}^3} |H_d(m)|^2 dx + \int_{\Omega} \phi(m) dx - \int_{\Omega} m H_{ext} dx$$

Zeeman : modélise l'action d'un champ extérieur (ne dépendant de *m*). H_{ext} est un élement de $L^{\infty}(\mathbb{R}^3, \mathbb{R}^3)$.

Seule : aligne l'aimantation dans la direction de H_{ext} en chaque point de Ω . Il serait bien entendu possible d'ajouter d'autres termes : magnétostriction, échange anisotrope, effets de bords etc.

Résultats théoriques Calculs Résultats Ferromagnétisme Micromagnétisme

Bases du micromagnétisme

Il est également possible de construire une équation d'évolution : le système de Landau et Lifchitz. Cette équation dérive de l'équation microscopique de la précession de Larmor des moments magnétiques.

Landau et Lifchitz

$$\frac{\partial m}{\partial t} = -m \wedge H(m) - \alpha m \wedge (m \wedge H(m)),$$

On se place ici dans le cas où :
$$\begin{split} \phi(m) &= \frac{K}{2}(|m|^2 - (m \cdot u)^2) \text{ où } u \text{ est un} \\ \text{élément de } L^{\infty}(\mathbb{R}^3, S^2). \end{split}$$

où H(m) est le champ effectif.

$$H(m)=-\frac{dE}{dm}$$

Champ effectif

$$H(m) = A \triangle m + H_d(m) + K(m.u)u + H_{ext},$$

< D > < A > < B >

Quelques remarques :

- Les solutions d'équilibre vérifient : $||H(m) \wedge m||_{0,\Omega} = 0$.
- Si le champ extérieur est indépendant du temps, l'énergie des solutions du système de Landau et Lifchitz décroît.
- La norme locale des solutions du système est conservée.

Existence de solutions Etudes asymptotiques

Plan

Le modèle du micromagnétisme

- Problématique du ferromagnétisme
- Modélisation : la théorie du micromagnétisme

2 Résultats théoriques

- Existence de solutions
- Etudes asymptotiques

3 La simulation numérique pour le micromagnétisme

- Simulation des états d'équilibre
- Simulation de l'évolution de l'aimantation
- Simulation de la susceptibilité hyperfréquence

Quelques simulations

- Simulation de l'évolution
- Calculs de susceptibilité

< 同 ▶ < 三 ▶

Modèle <u>Résu</u>ltats théoriques

> Calculs Résultats

Existence de solutions Etudes asymptotiques

Existence de solutions

Statique

Démontrer l'existence des minimiseurs de l'énergie E(m) dans l'espace $H^1(\Omega, \mathbb{R}^3)$ sous la contrainte |m| = 1 presque partout dans Ω ne présente pas de difficultés majeures.

Par contre, exhiber la régularité des minimiseurs est particulièrement délicat :

Régularité des minimiseurs de E(m)

Les miniseurs de E(m) sous la contrainte |m| = 1 presque partout dans Ω sont, pour Ω tri dimensionnel, de régularité H^3 dans Ω sauf en un nombre fini de singularités H^1 .

Résultats dus à R. Hardt et D. Kinderlehrer (00), G. Carbou (97), C. Bonjour (96) Dynamique

- Couplage avec Maxwell, solution faibles, A. Visintin (85),
- échange uniquement, solutions faibles globales et non unicité, F. Alouges et A. Soyeur (92) (étendu au problème complet, S.L. (98)),
- existence locale et unicité de solutions fortes, P. Fabrie et G. Carbou (01).

On peut également noter les résultats suivants en l'absence d'échange

- Propagation d'ondes en dimension 1, P. Joly et O. Vacus (97),
- Existence et unicité de solutions fortes dans tout l'espace, J.L. Joly, G. Métivier et unicité J. Rauch (97).

Existence de solutions Etudes asymptotiques

Plan

Le modèle du micromagnétisme

- Problématique du ferromagnétisme
- Modélisation : la théorie du micromagnétisme

Résultats théoriques

- Existence de solutions
- Etudes asymptotiques

La simulation numérique pour le micromagnétisme

- Simulation des états d'équilibre
- Simulation de l'évolution de l'aimantation
- Simulation de la susceptibilité hyperfréquence

Quelques simulations

- Simulation de l'évolution
- Calculs de susceptibilité

< 同 ▶ < 三 ▶

Existence de solutions Etudes asymptotiques

Etude asymptotique, état de l'art

Limite Maxwell-magnétostatique.

- Analyse de la limite à l'ordre zéro en ε (constante diélectrique), G. Carbou et P. Fabrie (98),
- (Coll. avec L. Halpern) Construction d'une hiérarchie de modèles en le petit paramètre ^X/_{cl}.

Nano-fils.

- Analyse de la limite du modèle, D. Sanchez (04),
- (Coll. avec G. Carbou) Stabilité des structures parois.
- (Coll. avec G. Carbou et E. Trélat) Contrôlabilité des parois.

Fractures.

• Analyse théorique et numérique d'un modèle de fractures, K. Santugini (04-06).

Plaques minces.

- échange constant, G. Carbou (99), G. Gioia et R.D. James (97) : convergence forte, mais ne rend pas compte des phénomènes attendus.
- tube infini et échange évanescent, F. Alouges, T. Rivière et S. Serfaty (02) : solutions fortes mais modèle non physique,
- modèle complet (échange et épaisseur tendant vers zéro), A. Desimone, R. Kohn,
 F. Otto et S. Müller (02) : modèle physique mais solutions faibles.
- (Coll. avec F. Alouges) modèle complet (échange tendant vers zéro) : modèle

Equilibre Evolution Susceptibilité

Plan

Le modèle du micromagnétisme

- Problématique du ferromagnétisme
- Modélisation : la théorie du micromagnétisme

Résultats théoriques

- Existence de solutions
- Etudes asymptotiques

La simulation numérique pour le micromagnétisme

Simulation des états d'équilibre

- Simulation de l'évolution de l'aimantation
- Simulation de la susceptibilité hyperfréquence

Quelques simulations

- Simulation de l'évolution
- Calculs de susceptibilité

< 🗇 🕨 < 🖻 🕨

Equilibre Evolution Susceptibilité

Minimisation

La principale difficulté réside dans la détermination du champ magnétostatique, plusieurs solutions ont été explorées

Différences finies

 Utilisation de l'approximation dipolaire pour la détermination du champ démagnétisant, M.E. Shabes et H.N. Bertram (88).

Eléments finis et couches absorbantes

• Utilisation de couches absorbantes pour la détermination du champ démagnétisant, P. Joly et O. Vacus (97).

Eléments finis infinis

 Mise en place d'éléments finis infinis pour le champ démagnétisant, F. Alouges (97).

Equilibre Evolution Susceptibilité

Plan

Le modèle du micromagnétisme

- Problématique du ferromagnétisme
- Modélisation : la théorie du micromagnétisme

Résultats théoriques

- Existence de solutions
- Etudes asymptotiques

La simulation numérique pour le micromagnétisme

- Simulation des états d'équilibre
- Simulation de l'évolution de l'aimantation
- Simulation de la susceptibilité hyperfréquence

Quelques simulations

- Simulation de l'évolution
- Calculs de susceptibilité

< 同 > < ∃ >

Equilibre Evolution Susceptibilité

Différences finies

- Utilisation de l'approximation dipolaire pour la détermination du champ démagnétisant, Y. Nakatami, Y. Uezaka, N. Hayashi (93).
- Code de calcul OOMMF, code de calcul du NIST.

Eléments finis

- Eléments finis d'ordre élevés, P. Monk et O. Vacus (99).
- Eléments finis couplés avec une transformation de Fourier sur une grille non uniforme, E. Kritsikis, J.-C. Toussaint et O. Fruchart (08).

< D > < A > < B >

Equilibre Evolution Susceptibilite

EMicroM – Champ démagnétisant

Problématique : conserver les propriétés de l'opérateur continu (positivité et norme inférieure à un) mais aussi avoir une méthode de calcul performante. Discrétisation de type volumes finis : utilisation de la formule de représentation du champ démagnétisant

Formule de représentation

$$H_d(m) = -A(m) = \operatorname{grad}\operatorname{div}\left(m\star rac{1}{4\pi |x|}
ight)$$

Discrétisation spatiale

$$\Omega = \bigcup_{i=1}^{N} \Omega_i, \quad \Omega_i = \prod_{i=1}^{3}]x_i, x_i + h[$$

~

 V_h : fonctions constantes par morceaux sur les mailles.

. .

Stéphane Labbé

• • • • • • • • •

Equilibre Evolution Susceptibilité

EMicroM – Champ démagnétisant

Formule de représentation discrète

$$H_{d}^{h}((m_{j})_{j=1}^{N})_{i} = \tilde{\mathsf{P}}_{h} \circ H_{d} \circ \mathsf{R}_{h}((m_{j})_{j=1}^{N})_{i}$$
$$= \frac{1}{|\Omega_{i}|} \int_{\Omega_{i}} \left\{ \sum_{j=1}^{N} m_{j} \int_{\Omega_{j}} \operatorname{grad} \operatorname{div} \left(\frac{1}{4\pi |x-y|} \right) dy \right\} dx$$

 R_h : relèvement de V_h vers $L^2(\mathbb{R}^3, \mathbb{R}^3)$. Calculé analytiquement.

 \tilde{P}_h : projection de $L^2(\mathbb{R}^3, \mathbb{R}^3)$ sur V_h . Calculée numériquement par intégration de Gauss.

L'approximation ainsi construite :

- est positive, de norme inférieure ou égale à 1,
- calculée avec une complexité en O(N log(N)) où N est le nombre de mailles.
- Peut-être appliquée à toutes les formes de domaines.

Equilibre Evolution Susceptibilité

EMicroM – Champ démagnétisant en domaine périodique

(Coll. avec S. Faure)

But : avoir une méthode compatible avec la méthode de calcul rapide dans le cas non périodique.

Approche : utilisation de la décroissance du champ à travers un maillage diadique multi-niveaux.

Equilibre Evolution Susceptibilite

EMicroM – Champ démagnétisant en domaine périodique

< 同 > < ∃ >

Equilibre Evolution Susceptibilite

EMicroM – Champ démagnétisant en domaine périodique

<ロト <回 > < 回 > <

Equilibre Evolution Susceptibilit

EMicroM – Schéma en temps

Ce que l'on veut respecter dans le schéma en temps

- décroissance de l'énergie,
- conservation de la norme de l'aimantation.

Les contraintes

 problème "plein" (champ démagnétisant) rendant peu viable les schémas implicites.

On choisi donc un schéma explicite

Schéma en temps

$$\begin{cases} m_{i+1} = m_i + \Delta t_i \ F_h(m_i, \Delta t_i, H_{ext}), \\ m_0 = m(0), \end{cases}$$

ou

$$F_{h}(m_{i}, \Delta t_{i}, H_{ext}) = f_{h}(m_{i}, H_{ext}) + \frac{\Delta t_{i}^{2}}{2} \mathsf{D}_{m} f_{h}(m_{i}, H_{ext}).f_{h}$$

< 同 > < ∃ >

ADRATOIRI

Equilibre Evolution Susceptibilite

EMicroM – Schéma en temps

Le pas de temps Δt_i est alors optimisé pour assurer :

• la décroissance optimale de l'énergie :

$$E(m^{n+1}) - E(m^n) = -\alpha \Delta t_n \|m^n \wedge H(m^n)\|^2 + O(\Delta t_i^2).$$

- La conservation de la norme de l'aimantation : $|m| = 1 + O(\Delta t_i^2)$ en tout point du maillage.
- Garantir la convergence en temps et en espace du schéma via un théorème de type Kolmogorov-Fréchet.

< 口 > < 同 >

- ∢ ⊒ →

Equilibre Evolution Susceptibilite

EMicroM – Calcul parallèle : Mémoire partagée

(Coll. avec V. Louvet) Utilisation d'OPEN-MP

- Gain : quasi optimal pour la fft et optimal pour l'échange.
- Avantages : facile à implanter.
- Inconvénients : ne convient pas pour les très grands mailages.

Modèle Equilibre Résultats théoriques Evolution Calculs Susceptibilité

EMicroM – Calcul parallèle : Mémoire distribuée

Coll. L. Halpern, M. Gander et K. Santugini Etude de la décomposition de domaines pour l'échange seul en dynamique. Utilisation des conditions de Robin standart : on considère deux sous-domaines Ω_1 et Ω_2 :

$$\Gamma_1 = \partial \Omega_1 \cap \overline{\Omega}_2, \qquad \Gamma_2 = \partial \Omega_2 \cap \overline{\Omega}_1, \qquad \Gamma_e = (\partial \Omega_1 \setminus \overline{\Omega_2}) \cup (\partial \Omega_2 \setminus \overline{\Omega_1})$$

Et l'on défini **m**_{1,n} et **m**_{2,n} par

où \mathcal{B}_i est un opérateur de bord qui dans le cas de Robin est donné par $\mathcal{B}_i = \frac{\partial}{\partial u}$

Image: A matrix

EMicroM – Calcul parallèle : Mémoire distribuée

On cherche alors à trouver une valeur optimale de β . Cette valeur dépend bien entendu de *h*, le pas d'espace, mais aussi de α , le paramètre de dissipation. A priori, la relation est la suivante :

$$\beta_{opt} = \frac{g(\alpha)}{h}$$

Voici un exemple de convergence à α fixé

Equilibre Evolution Susceptibilité

Plan

Le modèle du micromagnétisme

- Problématique du ferromagnétisme
- Modélisation : la théorie du micromagnétisme

Résultats théoriques

- Existence de solutions
- Etudes asymptotiques

La simulation numérique pour le micromagnétisme

- Simulation des états d'équilibre
- Simulation de l'évolution de l'aimantation
- Simulation de la susceptibilité hyperfréquence

Quelques simulations

- Simulation de l'évolution
- Calculs de susceptibilité

< 🗇 🕨 < 🖻 🕨

Equilibre Evolution Susceptibilité

Position du problème

La susceptibilité

 Réponse δm e^{iωt} du système à de petites perturbations harmoniques δh e^{iωt} autour de la position d'équilibre m_{eq}.

Comment la simule-t-on?

- Linéarisation des équations autour de l'équilibre,
- Résolution de systèmes linéaires pour un échantillonnage de fréquences.

Difficultés

- Beaucoup de degrés de liberté
- Système très mal conditionné

Equilibre Evolution Susceptibilité

Equations

Perturbation du champ extérieur suivant trois directions :

 $\delta h_1 e^{i\omega t}, \delta h_2 e^{i\omega t}, \delta h_3 e^{i\omega t}$

 $(\delta h_1, \delta h_2, \delta h_3)$: base orthogonale.

Réponses supposées harmoniques obtenues par linéarisation autour de meq :

 $\delta m_1 e^{i\omega t}, \delta m_2 e^{i\omega t}, \delta m_3 e^{i\omega t}$

On définit alors la susceptibilité

$$\forall (i,j) \in \{1,..,3\}^2, \ \chi(\omega)_{i,j} = (\delta m_i, \delta h_j)_{(L^2(\Omega))^3}$$

< ロ > < 団 > < 豆 > < 豆 >

Equilibre Evolution Susceptibilité

Equations

Linéarisation

Système linéarisé autour d'un état d'équilibre pour une perturbation $\delta h e^{i\omega t}$ et une réponse $\delta m e^{i\omega t}$

$$i\omega\delta m - (D_1 \circ h + D_2)\delta m = D_1\delta h$$

Avec

$$\begin{array}{l} D_1 \,\, u = -m_{eq} \wedge u - \alpha m_{eq} \wedge (m_{eq} \wedge u) \\ D_2 \,\, u = H(m_{eq}) \wedge u - \alpha m_{eq} (u \wedge H(m_{eq})) \end{array}$$

Discrétisation

Problème discret pour N mailles :

$$(i\omega Id_{3N} - D_1^h H_h - D_2^h)\delta m^h = D_1^h \delta h^h$$

Où D_1^h , D_2^h et H_h sont des matrices d'ordre 3 N (même discrétisation que pour le problème d'équilibre).

• □ ▶ • □ ▶ • □ ▶

ъ

Equilibre Evolution Susceptibilité

SMicroM

Préconditionnement

Grâce à la forme particulière de D_1^h et D_2^h on montre que :

Un bon préconditionnement revient à utiliser l'inverse de $i\omega \ Id_{3N} - \triangle^h$ Mais Calcul de $(i\omega \ Id_{3N} - \triangle^h)^{-1}$ trop coûteux. Solution

- Utilisation de la projection de *i*ω *Id*_{3N} − Δ^h sur les matrices circulantes au sens de la norme de Froebenius.
- Exploitation des propriétés des matrices circulantes pour calculer le produit de l'inverse approché par un vecteur avec une complexité de $O(N \log(N))$.

Dynamique Susceptibilité

Plan

Le modèle du micromagnétisme

- Problématique du ferromagnétisme
- Modélisation : la théorie du micromagnétisme

Résultats théoriques

- Existence de solutions
- Etudes asymptotiques

La simulation numérique pour le micromagnétisme

- Simulation des états d'équilibre
- Simulation de l'évolution de l'aimantation
- Simulation de la susceptibilité hyperfréquence

Quelques simulations

- Simulation de l'évolution
- Calculs de susceptibilité

< 同 ▶ < 三 ▶

Dynamique Susceptibilité

Une particule

Collaboration Dassault (N. Vukadinovic) et ONERA (F. Boust)

Particule de Permalloy, 98304 degrès de liberté.

Dynamique Susceptibilité

Deux particules

Deux particules dont l'une est fortement anisotrope. Particules séparées

98304 degrès de liberté.

< D > < A > < B >

Dynamique Susceptibilité

Deux particules

Deux particules dont l'une est fortement anisotrope. Particules collées

< D > < A > < B >

Dynamique Susceptibilité

Plan

Le modèle du micromagnétisme

- Problématique du ferromagnétisme
- Modélisation : la théorie du micromagnétisme

Pésultats théoriques

- Existence de solutions
- Etudes asymptotiques

La simulation numérique pour le micromagnétisme

- Simulation des états d'équilibre
- Simulation de l'évolution de l'aimantation
- Simulation de la susceptibilité hyperfréquence

Quelques simulations

- Simulation de l'évolution
- Calculs de susceptibilité

< 同 ▶ < 三 ▶

Dynamique Susceptibilité

Plot multi-couches

Plot comportant un espaceur non magnétique.

configurationn à l'équilibre pour champ exterieur appliqué selon z de 1.09 Tesla

786432 degrès de liberté.

Dynamique Susceptibilité

Plot multi-couches

Cartographie de la partie imaginaire de Khixx à 9 GHz quand Hz=1.00 T, 1.09 T puis 0.96 T

786432 degrès de liberté.

Résonnances suivant x.

æ

(日)

Résonnances suivant z.

<ロ> <四> <四> <豆> <三</p>