
Placement de processus (MPI)
sur architecture multi-cœur NUMA

 Emmanuel Jeannot, Guillaume Mercier
LaBRI/INRIA Bordeaux Sud-Ouest/ENSEIRB

Runtime Team
Lyon, journées groupe de calcul, november

2010
Emmanuel.Jeannot@inria.fr

Euro-Par 2011

Top 500

Slide from Jack Dongarra

Managing the memory in
nowadays and future systems

Parallel systems toward exaflop…

More and more memory

More and more cores
Difference

O(100)

O(100)-O(1000)

The memory bus is already a
bottleneck

Feeding cache from memory

Already critical for sustaining performance in modern processor

Ex: gotoBLAS vs Atlas

Worst with 1000’s of cores.

Solution: 3D stack memory?

Scalability

Strong scalability: gain performance by only adding new
computing resources. Go faster on same problem size.

Weak scalability: when adding computing resources increase
problem size. Increase the amount of processed data per core.

Most parallel programs only show weak scalability.

But, the memory per core is not
going to increase any more

Forget strong scalability at the core level

(But still enjoy it at the machine level)

Consequences:

•  Two levels of parallelism (core and machines)

•  You can still use coarse-grain parallelism at machine level

•  Need to find fine-grain parallelism in application to keep core
busy (algorithmic challenge)

•  Need to take care of access patterns to avoid cache misses
and increase/improve pipelining of data (systolic algorithm)

Possible solutions

•  Hybrid programming
●  Mixing message passing and thread programming
●  Example: MPI+OpenMP

•  Virtual memory
●  Memory abstraction that hides hierarchy and NUMA effects

●  Management of migration, access, thread placement/scheduling

But that’s not over!

SCC: single chip cloud (Intel prototype)

“Cluster-on-die” architecture – 48 Pentium Processor cores
(P54C - x87FP only)

Single Chip Cloud

Advanced power management:
●  software control DVFS for core
●  frequency control

Memory:
●  Up to 64GB DDR3 via 4 memory controllers @ 21.3GB/s
●  16KB SRAM in each tile as Message Passing Buffer (MPB)

Caching:
●  32KB L1 per core (16KB I,D), 12MB L2 cache (256KB/core)
●  No HW cache-coherent shared memory

Addressing:
●  Core physical to system physical addresses in 16MB sections
●  Memory mapped configuration & control registers

Cache Coherency

The cache is a copy of the main memory

The coherency between caches and memory is usually done by
hardware

The application does not need to be aware of the cache
hierarchy.

But not always:
●  Cell Processors

●  Future multicore processors?

Cache coherent HW mechanism do not scale:
●  To be managed by the application?

●  Need to take care on how data are accessed and when

●  Split memory into independent chuck (like in distributed memory)?

Some research must done in
the memory management

Future multicore processors will not make things simpler

Less memory per core (weak scalability)

End of HW cache coherent mechanism?

One issue: need to carefully manage the way applications access
and process data.

(MPI) Process Placement

Computer-science research [Euro Par 2010]

INRIA Runtime team and Urbana Champaign (L. Kale/Charm++),
BlueWaters project

Preliminary results (will probably not be implemented as such)

Introduction

•  MPI is the main standard for programming
parallel applications

•  It provides portable code across platforms

•  What about performance portability?

Performance of MPI
programs

Depend on many factors:
•  Implementation of the standard (e.g. collective

com.)
•  Parallel algorithm(s)
•  Implementation of the algorithm
•  Underlying libraries (e.g. BLAS)
•  Hardware (processors, cache, network)
•  etc.
•  and …

Process placement

The MPI model makes little (no?) assumption on
the way MPI processes are mapped to resources

It is often assume that the network topology is flat
and hence the process mapping has little impact
on the performance

The network topology is not
flat

Due to multicore processors current and future
parallel machines are hierarchical

Communication speed depend on:
•  receptor and emitter
•  Cache hierarchy
•  Memory bus
•  Interconnection network
•  etc.

Example of typical parallel
machine

Switch

Cabinet Cabinet Cabinet

Node Node Node

Processor Processor Processor

Core Core Core Core

…

…

…

Thanks to cache,
memory, network, etc.
It is possible to
communicate inside
one level

Core

Rationale

Not all the processes exchange the same amount
of data

The speed of the communications, and hence
performance of the application depend on the
way processes are mapped to resources.

Process placement problem

Given:
•  The parallel machine topology
•  The processes communication pattern

Map processes to resources (cores) to reduce the
communication cost.

Obtaining the toplogy

HWLOC (portable hardware locality)
•  Runtime and OpenMPI team
•  portable abstraction (across OS,

versions, architectures, ...)
•  Hierarchical topology
•  Modern architecture (NUMA,

cores, caches, etc.)
•  ID of the cores
•  C library to play with
•  etc.

Obtaining the communication
pattern

No automatic way so far

For now done through application monitoring

Left to future work (static code analysis?), memory/
object monitoring.

State of the art

Process placement fairly well studied problem:
•  Graph Partitioning (Scotch/Metis): do not take

hierarchy into account.
•  [Träff 2002]: placement through graph embedding

and graph partitioning
•  MPIPP [Chen et al. 2006]: placement through

local exchange of processes until no gain is
achievable

•  [Clet-Ortega & Mercier 09] : placement through
graph renumbering

Example

0 100 100 10 1000 100 100 10

100 0 10 100 100 1000 10 100

100 10 0 100 100 10 1000 100

10 100 100 0 10 100 100 1000

1000 100 100 10 0 100 100 10

100 1000 10 100 100 0 10 100

100 10 1000 100 100 10 0 100

10 100 100 1000 10 100 100 0

Communication speed between
processor 2 and processor 3

T: topology matrix
0 1000 10 1 100 1 1 1

1000 0 1000 1 1 100 1 1

10 1000 0 1000 1 1 100 1

1 1 1000 0 1 1 1 100

100 1 1 1 0 1000 10 1

1 100 1 1 1000 0 1000 1

1 1 100 1 10 1000 0 1000

1 1 1 100 1 1 1000 0

C: communication matrix

Amount of data exchanged between
process 1 and process 3

Formal problem
Input: T and C two n by n matrices
Output: σ a permutation of size n
Constraint: minimize

Example of solutions:
Round-robin: 0 1 2 3 4 5 6 7 241.3
Graph embedding: 3 7 4 0 6 2 5 1 210.52
Optimal (B&B): 0 4 1 5 2 6 3 7 29.08

Complexity of the problem

Finding the optimal permutation is NP-Hard

However, posed this way the problem does not
take into account the hierarchy of the topology

Question: does taking the hierarchy into
consideration help?

Taking into account the
hierarchy

0 100 100 10 1000 100 100 10

100 0 10 100 100 1000 10 100

100 10 0 100 100 10 1000 100

10 100 100 0 10 100 100 1000

1000 100 100 10 0 100 100 10

100 1000 10 100 100 0 10 100

100 10 1000 100 100 10 0 100

10 100 100 1000 10 100 100 0

0 4 1 5 2 6 3 7

HWLOC output

Topology matrix

Mapping the communication matrix
to the topology tree: the TreeMatch

algorithm

Idea: for each level of the tree, group nodes to
minimize remaining communication.

Group size should be equal to the arity of the
considered level

Example

0 4 1 5 2 6 3 7

0 1000 10 1 100 1 1 1

1000 0 1000 1 1 100 1 1

10 1000 0 1000 1 1 100 1

1 1 1000 0 1 1 1 100

100 1 1 1 0 1000 10 1

1 100 1 1 1000 0 1000 1

1 1 100 1 10 1000 0 1000

1 1 1 100 1 1 1000 0

C: communication matrix

0 1 2 3 4 5 6 7

0 1012 202 4

1012 0 4 202

202 4 0 1012

4 202 1012 0

+
Grouped matrix 0 1 2 3 4 5 6 7

A more complex example
0 1000 10 1 100 1 1 1

1000 0 1000 1 1 100 1 1

10 1000 0 1000 1 1 100 1

1 1 1000 0 1 1 1 100

100 1 1 1 0 1000 10 1

1 100 1 1 1000 0 1000 1

1 1 100 1 10 1000 0 1000

1 1 1 100 1 1 1000 0

0 1 2 3 4 5 6 7

0 1012 202 4

1012 0 4 202

202 4 0 1012

4 202 1012 0

+
Grouped matrix

A more complex example

0 1 2 3 4 5 6 7

0 1012 202 4

1012 0 4 202

202 4 0 1012

4 202 1012 0

Grouped matrix

0 1012 202 4 0 0

1012 0 4 202 0 0

202 4 0 1012 0 0

4 202 1012 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Extended grouped matrix

0 1 4 2 3 5

0 412

412 0

Grouped matrix

0 1 4 2 3 5

0 1 2 3 4 5 6 7

A more complex example
0 1000 10 1 100 1 1 1

1000 0 1000 1 1 100 1 1

10 1000 0 1000 1 1 100 1

1 1 1000 0 1 1 1 100

100 1 1 1 0 1000 10 1

1 100 1 1 1000 0 1000 1

1 1 100 1 10 1000 0 1000

1 1 1 100 1 1 1000 0

0 1 2 3 4 5 6 7 TreeMatch:
Packed: 0 1 2 3 4 5 6 7

Packed solution worst than the TreeMatch one because there is a large communication
between processes 5 and 6

0 1000 10 1 100 1 1 1

1000 0 1000 1 1 100 1 1

10 1000 0 1000 1 1 100 1

1 1 1000 0 1 1 1 100

100 1 1 1 0 1000 10 1

1 100 1 1 1000 0 1000 1

1 1 100 1 10 1000 0 1000

1 1 1 100 1 1 1000 0

Experiments

We use the NAS benchmarks:

•  All the kernels

•  Class: A,B,C,D

•  Size: 16, 32/36, 64

•  On highly NUMA machine (4 nodes of 4 Xeon quad-core
Dunnington)

•  Comparison with : MPIPP [Chen et al. 2006] (two versions),
Packed (by sub-tree), Round-Robin (process i to core i).

Simulation Results

We simulate the
execution time using
our model

NAS on the real machine

Best strategy:
TreeMatch

Some very bad
results against
round-robin

32-64 processes

Several nodes are used

Best: TreeMatch (up to 27%
improvement).

Comparable to MPIPIP.5
(but faster runtime)

Communication Only
Application

We extract the
communication
pattern of the NAS

Up to 37% improvement

Conclusion

Mapping processes can help to reduce the communication cost

TreeMatch: an algorithm to perform such mapping
–  Bottom-up

–  Fast

–  Does not require that the number process equals the number of cores/
processors

–  Optimal in some cases

Early results:

–  TreeMatch: best method on average

–  Works well when more than one node is used

–  Difference between model and reality

Future work

On going work

Future work:
–  Top Down?

–  Improve model (NUMA effect)

–  Hybrid case

–  Dymamic adaptation

–  Automation

–  Process topology interface of MPI 2.2 (With J. L. Träff).

