Machine Learning and Numerical Analysis

Francis Bach
Willow project, INRIA - Ecole Normale Supérieure

November 2010

Machine Learning and Numerical Analysis Outline

- Machine learning
- Supervised vs. unsupervised
- Convex optimization for supervised learning
- Sequence of linear systems
- Spectral methods for unsupervised learning
- Sequence of singular value decompositions
- Combinatorial optimization
- Polynomial-time algorithms and convex relaxations

Statistical machine learning Computer science and applied mathematics

- Modelisation, prediction and control from training examples
- Theory
- Analysis of statistical performance
- Algorithms
- Numerical efficiency and stability
- Applications
- Computer vision, bioinformatics, neuro-imaging, text, audio

Statistical machine learning - Supervised learning

- Data $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}, i=1, \ldots, n$
- Goal: predict $y \in \mathcal{Y}$ from $x \in \mathcal{X}$, i.e., find $f: \mathcal{X} \rightarrow \mathcal{Y}$
- Empirical risk minimization

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right) & +\frac{\lambda}{2}\|f\|^{2} \\
\text { Data-fitting } & + \text { Regularization }
\end{aligned}
$$

- Scientific objectives:
- Studying generalization error
- Improving calibration
- Choosing appropriate representations - selection of appropriate loss
- Two main types of norms: ℓ_{2} vs. ℓ_{1}

Usual losses

- Regression: $y \in \mathbb{R}$, prediction $\hat{y}=f(x)$,
- quadratic cost $\ell(y, f(x))=\frac{1}{2}(y-f(x))^{2}$
- Classification : $y \in\{-1,1\}$ prediction $\hat{y}=\operatorname{sign}(f(x))$
- loss of the form $\ell(y, f(x))=\ell(y f(x))$
- "True" cost: $\ell(y f(x))=1_{y f(x)<0}$
- Usual convex costs:

Supervised learning - Parsimony and ℓ_{1}-norm

- Data $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{p} \times \mathcal{Y}, i=1, \ldots, n$

$$
\begin{aligned}
\min _{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{\top} x_{i}\right) & +\quad \lambda \sum_{j=1}^{p}\left|w_{j}\right| \\
\text { Data-fitting } & +\quad \text { Regularization }
\end{aligned}
$$

- At the optimum, w is in general sparse

Sparsity in machine learning

- Assumption: $\mathbf{y}=\mathbf{w}^{\top} \mathbf{x}+\varepsilon$, with $w \in \mathbb{R}^{p}$ sparse
- Proxy for interpretability
- Allow high-dimensional inference: $\log p=O(n)$
- Sparsity and convexity (ℓ_{1}-norm regularization): $\min _{\mathbf{w} \in \mathbb{R}^{p}} L(\mathbf{w})+\|\mathbf{w}\|_{1}$

Statistical machine learning - Unsupervised learning

- Data $x_{i} \in \mathcal{X}, i=1, \ldots, n$. Goal: "Find" structure within data
- Discrete : clustering
- Low-dimension : principal component analysis

Statistical machine learning - Unsupervised learning

- Data $x_{i} \in \mathcal{X}, i=1, \ldots, n$. Goal: "Find" structure within data
- Discrete : clustering
- Low-dimension : principal component analysis
- Matrix factorization:

$$
X=D A
$$

- Structure on D and/or A
- Algorithmic and theoretical issues
- Applications

Learning on matrices - Collaborative filtering

- Given $n_{\mathcal{X}}$ "movies" $\mathbf{x} \in \mathcal{X}$ and $n_{\mathcal{Y}}$ "customers" $\mathbf{y} \in \mathcal{Y}$,
- predict the "rating" $z(\mathbf{x}, \mathbf{y}) \in \mathcal{Z}$ of customer \mathbf{y} for movie \mathbf{x}
- Training data: large $n_{\mathcal{X}} \times n_{\mathcal{Y}}$ incomplete matrix \mathbf{Z} that describes the known ratings of some customers for some movies
- Goal: complete the matrix.

Learning on matrices - Image denoising

- Simultaneously denoise all patches of a given image
- Example from Mairal et al. (2009)

Learning on matrices - Source separation

- Single microphone (Févotte et al., 2009)

Signal x

Log-power spectrogram

Machine Learning and Numerical Analysis Outline

- Machine learning
- Supervised vs. unsupervised
- Convex optimization for supervised learning
- Sequence of linear systems
- Spectral methods for unsupervised learning
- Sequence of singular value decompositions
- Combinatorial optimization
- Polynomial-time algorithms and convex relaxations

Supervised learning - Convex optimization

- Data $\left(x_{i}, y_{i}\right) \in \mathcal{X} \times \mathcal{Y}, i=1, \ldots, n$
- Goal: predict $y \in \mathcal{Y}$ from $x \in \mathcal{X}$, i.e., find $f: \mathcal{X} \rightarrow \mathcal{Y}$
- Empirical risk minimization

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right) & +\quad \frac{\lambda}{2}\|f\|^{2} \\
\text { Data-fitting } & +\quad \text { Regularization }
\end{aligned}
$$

- Typical problems
- f in vector space (e.g., \mathbb{R}^{p})
- ℓ convex with respect to second variable, potentially non smooth
- Norm may be non differentiable
- p and/or n large

Convex optimization - Kernel methods

- Simplest case: least-squares

$$
\min _{w \in \mathbb{R}^{p}} \frac{1}{2 n}\|y-X w\|_{2}^{2}+\lambda\|w\|_{2}^{2}
$$

- Solution: $w=\left(X^{\top} X+n \lambda I\right)^{-1} X^{\top} y$ in $O\left(p^{3}\right)$
- Kernel methods
- Maybe re-written as $w=X^{\top}\left(X X^{\top}+n \lambda I\right)^{-1} y$ in $O\left(n^{3}\right)$
- Replace $x_{i}^{\top} x_{j}$ by any positive definite kernel function $k\left(x_{i}, x_{j}\right)$, e.g., $k\left(x, x^{\prime}\right)=\exp \left(-\alpha\left\|x-x^{\prime}\right\|_{2}^{2}\right)$
- General losses : Interior point vs. first order methods
- Manipulation of large structured matrices

Convex optimization - Low precision

- Empirical risk minimization

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right) & +\quad \frac{\lambda}{2}\|f\|^{2} \\
\text { Data-fitting } & +\quad \text { Regularization }
\end{aligned}
$$

- No need to optimize below precision $n^{-1 / 2}$
- Goal is to minimize test error
- Second-order methods adapted to high precision
- First-order methods adapted to low precision

Convex optimization - Low precision (Bottou and Bousquet, 2008)

Convex optimization - Sequence of problems

- Empirical risk minimization

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right) & +\quad \frac{\lambda}{2}\|f\|^{2} \\
\text { Data-fitting } & +\quad \text { Regularization }
\end{aligned}
$$

- In practice: Needs to be solved for many values of λ
- Piecewise-linear paths
- In favorable situations
- Warm restarts

Convex optimization - First order methods

- Empirical risk minimization

$$
\begin{array}{ccc}
\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right) & +\quad \lambda \Omega(f) \\
\text { Data-fitting } & +\quad \text { Regularization }
\end{array}
$$

- Proximal methods adapted to non-smooth norms and smooth losses
- Need to solve efficiently problems of the form

$$
\min _{f}\left\|f-f_{0}\right\|^{2}+\lambda \Omega(f)
$$

- Stochastic gradient: $\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f\left(x_{i}\right)\right)$ proxy for $\mathbb{E} \ell(y, f(x))$

Machine Learning and Numerical Analysis Outline

- Machine learning
- Supervised vs. unsupervised
- Convex optimization for supervised learning
- Sequence of linear systems
- Spectral methods for unsupervised learning
- Sequence of singular value decompositions
- Combinatorial optimization
- Polynomial-time algorithms and convex relaxations

Unsupervised learning - Spectral methods

- Spectral clustering: given similarity matrix $W \in \mathbb{R}_{+}^{n \times n}$
- Compute Laplacian matrix $L=\operatorname{Diag}(W 1)-W=D-W$
- Compute generalized eigenvector of (L, D)
- May be seen as relaxation of normalized cuts
- Applications
- Computer vision
- Speech separation

Application to computer vision Co-segmentation (Joulin et al., 2010)

Blind one-microphone speech separation (Bach and Jordan, 2005)

- Two or more speakers s_{1}, \ldots, s_{m} - one microphone x
- Ideal acoustics $x=s_{1}+s_{2}+\cdots+s_{m}$
- Goal: recover s_{1}, \ldots, s_{m} from x
- Blind: without knowing the speakers in advance
- Formulation as spectogram segmentation

Spectrogram

- Spectrogram (a.k.a Gabor analysis, Windowed Fourier transforms)
- cut the signals in overlapping frames
- apply a window and compute the FFT

Windowing

Hamming window

Fourier transform

Sparsity and superposition

Building training set

Spectrogram of the mix

"Optimal" segmentation

- Empirical property: there exists a segmentation that leads to audibly acceptable signals (e.g., take $\left.\arg \max \left(\left|S_{1}\right|,\left|S_{2}\right|\right)\right)$
- Work as possibly large training datasets
- Requires new way of segmenting images ...
- ... which can be learned from data

Very large similarity matrices Linear complexity

- Three different time scales $\Rightarrow W=\alpha_{1} W_{1}+\alpha_{2} W_{2}+\alpha_{3} W_{3}$
- Small
- Fine scale structure (continuity, harmonicity)
- very sparse approximation
- Medium
- Medium scale structure (common fate cues)
- band-diagonal approximation, potentially reduced rank
- Large
- Global structure (e.g., speaker identification)
- low-rank approximation (rank is independent of duration)

Experiments

- Two datasets of speakers: one for testing, one for training
- Left: optimal segmentation - right: blind segmentation

- Testing time (Matlab/C): T duration of signal
- Building features $\approx 4 \times T$
- Separation $\approx 30 \times T$

Unsupervised learning - Convex relaxations

- Cuts: given any matrix $W \in \mathbb{R}^{n \times n}$, find $y \in\{-1,1\}^{n}$ that minimizes

$$
\sum_{i, j=1}^{n} W_{i j} 1_{y_{i} \neq y_{j}}=\frac{1}{2} \sum_{i, j=1}^{n} W_{i j}\left(1-y_{i} y_{j}\right)=\frac{1}{2} 1^{\top} W 1-\frac{1}{2} y^{\top} W y
$$

- Let $Y=y y^{\top}$. We have $Y \succcurlyeq 0, \operatorname{diag}(Y)=1, \operatorname{rank}(Y)=1$
- Convex relaxation (Goemans and Williamson, 1997):

$$
\max _{Y \succcurlyeq 0, \operatorname{diag}(Y)=1} \operatorname{tr} W Y
$$

- May be solved as sequence of eigenvalue problems

$$
\max _{Y \succcurlyeq 0, \operatorname{diag}(Y)=1} \operatorname{tr} W Y=\min _{\mu \in \mathbb{R}^{n}} n \lambda_{\max }(W+\operatorname{Diag}(\mu))-1^{\top} \mu
$$

Submodular functions

- $F: 2^{V} \rightarrow \mathbb{R}$ is submodular if and only if

$$
\begin{aligned}
& \forall A, B \subset V, \quad F(A)+F(B) \geqslant F(A \cap B)+F(A \cup B) \\
\Leftrightarrow & \forall k \in V, \quad A \mapsto F(A \cup\{k\})-F(A) \text { is non-increasing }
\end{aligned}
$$

Submodular functions

- $F: 2^{V} \rightarrow \mathbb{R}$ is submodular if and only if

$$
\begin{aligned}
& \forall A, B \subset V, \quad F(A)+F(B) \geqslant F(A \cap B)+F(A \cup B) \\
\Leftrightarrow & \forall k \in V, \quad A \mapsto F(A \cup\{k\})-F(A) \text { is non-increasing }
\end{aligned}
$$

- Intuition 1: defined like concave functions ("diminishing returns")
- Example: $F: A \mapsto g(\operatorname{Card}(A))$ is submodular if g is concave

Submodular functions

- $F: 2^{V} \rightarrow \mathbb{R}$ is submodular if and only if

$$
\begin{aligned}
& \forall A, B \subset V, \quad F(A)+F(B) \geqslant F(A \cap B)+F(A \cup B) \\
\Leftrightarrow & \forall k \in V, \quad A \mapsto F(A \cup\{k\})-F(A) \text { is non-increasing }
\end{aligned}
$$

- Intuition 1: defined like concave functions ("diminishing returns")
- Example: $F: A \mapsto g(\operatorname{Card}(A))$ is submodular if g is concave
- Intuition 2: behave like convex functions
- Polynomial-time minimization, conjugacy theory

Submodular functions

- $F: 2^{V} \rightarrow \mathbb{R}$ is submodular if and only if

$$
\begin{aligned}
& \forall A, B \subset V, \quad F(A)+F(B) \geqslant F(A \cap B)+F(A \cup B) \\
\Leftrightarrow & \forall k \in V, \quad A \mapsto F(A \cup\{k\})-F(A) \text { is non-increasing }
\end{aligned}
$$

- Intuition 1: defined like concave functions ("diminishing returns")
- Example: $F: A \mapsto g(\operatorname{Card}(A))$ is submodular if g is concave
- Intuition 2: behave like convex functions
- Polynomial-time minimization, conjugacy theory
- Used in several areas of signal processing and machine learning
- Total variation/graph cuts
- Optimal design - Structured sparsity

Document modelisation (Jenatton et al., 2010)

Machine Learning and Numerical Analysis Outline

- Machine learning
- Supervised vs. unsupervised
- Convex optimization for supervised learning
- Sequence of linear systems
- Spectral methods for unsupervised learning
- Sequence of singular value decompositions
- Combinatorial optimization
- Polynomial-time algorithms and convex relaxations

Machine learning - Specificities

- Low-precision
- Objective functions are averages
- Large scale
- Practical impact only when complexity close to linear
- Online learning
- Take advantage of special structure of optimization problems
- Sequence of problems
- Selecting hyperparameters

