Machine Learning and Numerical Analysis

Francis Bach

Willow project, INRIA - Ecole Normale Supérieure

November 2010

Machine Learning and Numerical Analysis Outline

- Machine learning
 - Supervised vs. unsupervised
- Convex optimization for supervised learning
 - Sequence of linear systems
- Spectral methods for unsupervised learning
 - Sequence of singular value decompositions
- Combinatorial optimization
 - Polynomial-time algorithms and convex relaxations

Statistical machine learning Computer science and applied mathematics

- Modelisation, prediction and control from training examples
- Theory
 - Analysis of statistical performance
- Algorithms
 - Numerical efficiency and stability
- Applications
 - Computer vision, bioinformatics, neuro-imaging, text, audio

Statistical machine learning - Supervised learning

- Data $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$
- **Goal**: predict $y \in \mathcal{Y}$ from $x \in \mathcal{X}$, i.e., find $f : \mathcal{X} \to \mathcal{Y}$
- Empirical risk minimization

$$\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \frac{\lambda}{2} \|f\|^2$$

Data-fitting + Regularization

- Scientific objectives:
 - Studying generalization error
 - Improving calibration
 - Choosing appropriate representations selection of appropriate loss
 - Two main types of norms: ℓ_2 vs. ℓ_1

Usual losses

- **Regression**: $y \in \mathbb{R}$, prediction $\hat{y} = f(x)$,
 - quadratic cost $\ell(y, f(x)) = \frac{1}{2}(y f(x))^2$
- Classification : $y \in \{-1, 1\}$ prediction $\hat{y} = \operatorname{sign}(f(x))$
 - loss of the form $\ell(y,f(x))=\ell(yf(x))$
 - "True" cost: $\ell(yf(x)) = 1_{yf(x) < 0}$
 - Usual convex costs:

0

Ο

0

00

Ο

 \cap

Supervised learning - Parsimony and \ell_1-norm

• Data $(x_i,y_i)\in \mathbb{R}^p imes \mathcal{Y}$, $i=1,\ldots,n$

• At the optimum, w is in general **sparse**

Sparsity in machine learning

- Assumption: $\mathbf{y} = \mathbf{w}^\top \mathbf{x} + \boldsymbol{\varepsilon}$, with $w \in \mathbb{R}^p$ sparse
 - Proxy for interpretability
 - Allow high-dimensional inference: | log

$$\log p = O(n)$$

• Sparsity and convexity (ℓ_1 -norm regularization):

Statistical machine learning - Unsupervised learning

- Data $x_i \in \mathcal{X}$, $i = 1, \ldots, n$. Goal: "Find" structure within data
 - Discrete : clustering
 - Low-dimension : principal component analysis

Statistical machine learning - Unsupervised learning

- Data $x_i \in \mathcal{X}$, $i = 1, \ldots, n$. Goal: "Find" structure within data
 - Discrete : clustering
 - Low-dimension : principal component analysis
- Matrix factorization:

$$X = DA$$

- Structure on $D \ \mathrm{and}/\mathrm{or} \ A$
- Algorithmic and theoretical issues
- Applications

Learning on matrices - Collaborative filtering

- Given $n_{\mathcal{X}}$ "movies" $\mathbf{x} \in \mathcal{X}$ and $n_{\mathcal{Y}}$ "customers" $\mathbf{y} \in \mathcal{Y}$,
- \bullet predict the "rating" $z(\mathbf{x},\mathbf{y})\in\mathcal{Z}$ of customer \mathbf{y} for movie \mathbf{x}
- Training data: large $n_X \times n_Y$ incomplete matrix \mathbf{Z} that describes the known ratings of some customers for some movies
- Goal: complete the matrix.

Learning on matrices - Image denoising

- Simultaneously denoise all patches of a given image
- Example from Mairal et al. (2009)

Learning on matrices - Source separation

• Single microphone (Févotte et al., 2009)

Machine Learning and Numerical Analysis Outline

- Machine learning
 - Supervised vs. unsupervised
- Convex optimization for supervised learning
 - Sequence of linear systems
- Spectral methods for unsupervised learning
 - Sequence of singular value decompositions
- Combinatorial optimization
 - Polynomial-time algorithms and convex relaxations

Supervised learning - Convex optimization

- Data $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \dots, n$
- **Goal**: predict $y \in \mathcal{Y}$ from $x \in \mathcal{X}$, i.e., find $f : \mathcal{X} \to \mathcal{Y}$
- Empirical risk minimization

$$\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \frac{\lambda}{2} \|f\|^2$$

Data-fitting + Regularization

- Typical problems
 - f in vector space (e.g., \mathbb{R}^p)
 - ℓ convex with respect to second variable, potentially non smooth
 - Norm may be non differentiable
 - $p \ \mathrm{and} / \mathrm{or} \ n \ \mathrm{large}$

Convex optimization - Kernel methods

• Simplest case: least-squares

$$\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|y - Xw\|_2^2 + \lambda \|w\|_2^2$$

– Solution: $w = (X^{\top}X + n\lambda I)^{-1}X^{\top}y$ in $O(p^3)$

• Kernel methods

- Maybe re-written as $w = X^\top (XX^\top + n\lambda I)^{-1}y$ in $O(n^3)$
- Replace $x_i^{\top} x_j$ by any positive definite *kernel function* $k(x_i, x_j)$, e.g., $k(x, x') = \exp(-\alpha ||x x'||_2^2)$
- General losses : Interior point vs. first order methods
- Manipulation of large structured matrices

Convex optimization - Low precision

• Empirical risk minimization

$$\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \frac{\lambda}{2} \|f\|^2$$

Data-fitting + Regularization

- No need to optimize below precision $n^{-1/2}$
 - Goal is to minimize test error
 - Second-order methods adapted to high precision
 - First-order methods adapted to low precision

Convex optimization - Low precision (Bottou and Bousquet, 2008)

Convex optimization - Sequence of problems

• Empirical risk minimization

$$\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \frac{\lambda}{2} \|f\|^2$$

Data-fitting + Regularization

- \bullet In practice: Needs to be solved for many values of λ
- Piecewise-linear paths
 - In favorable situations
- Warm restarts

Convex optimization - First order methods

• Empirical risk minimization

$$\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \Omega(f)$$

Data-fitting + Regularization

- Proximal methods adapted to non-smooth norms and smooth losses
 - Need to solve efficiently problems of the form

$$\min_{f} \|f - f_0\|^2 + \lambda \Omega(f)$$

• Stochastic gradient: $\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i))$ proxy for $\mathbb{E}\ell(y, f(x))$

Machine Learning and Numerical Analysis Outline

- Machine learning
 - Supervised vs. unsupervised
- Convex optimization for supervised learning
 - Sequence of linear systems
- Spectral methods for unsupervised learning
 - Sequence of singular value decompositions
- Combinatorial optimization
 - Polynomial-time algorithms and convex relaxations

Unsupervised learning - Spectral methods

- Spectral clustering: given similarity matrix $W \in \mathbb{R}^{n \times n}_+$
 - Compute Laplacian matrix L = Diag(W1) W = D W
 - Compute generalized eigenvector of (L, D)
 - May be seen as relaxation of normalized cuts
- Applications
 - Computer vision
 - Speech separation

Application to computer vision Co-segmentation (Joulin et al., 2010)

Blind one-microphone speech separation (Bach and Jordan, 2005)

- Two or more speakers s_1, \ldots, s_m one microphone x
- Ideal acoustics $x = s_1 + s_2 + \cdots + s_m$
- Goal: recover s_1, \ldots, s_m from x
- **Blind**: without knowing the speakers in advance
- Formulation as spectogram segmentation

Spectrogram

- Spectrogram (a.k.a Gabor analysis, Windowed Fourier transforms)
 - cut the signals in overlapping frames
 - apply a window and compute the FFT

Sparsity and superposition

Building training set

- Empirical property: there exists a segmentation that leads to audibly acceptable signals (e.g., take $\arg \max(|S_1|, |S_2|)$)
- Work as possibly large training datasets
- Requires new way of segmenting images ...
- ... which can be learned from data

Very large similarity matrices Linear complexity

• Three different time scales $\Rightarrow W = \alpha_1 W_1 + \alpha_2 W_2 + \alpha_3 W_3$

• Small

- Fine scale structure (continuity, harmonicity)
- very sparse approximation

Medium

- Medium scale structure (common fate cues)
- band-diagonal approximation, potentially reduced rank

• Large

- Global structure (e.g., speaker identification)
- low-rank approximation (rank is independent of duration)

Experiments

- Two datasets of speakers: one for testing, one for training
- Left: optimal segmentation right: blind segmentation

- Testing time (Matlab/C): T duration of signal
 - Building features $\approx 4 \times T$
 - Separation $\approx 30 \times T$

Unsupervised learning - Convex relaxations

• **Cuts**: given any matrix $W \in \mathbb{R}^{n \times n}$, find $y \in \{-1, 1\}^n$ that minimizes

$$\sum_{i,j=1}^{n} W_{ij} 1_{y_i \neq y_j} = \frac{1}{2} \sum_{i,j=1}^{n} W_{ij} (1 - y_i y_j) = \frac{1}{2} 1^{\top} W 1 - \frac{1}{2} y^{\top} W y$$

- Let $Y = yy^{\top}$. We have $Y \succeq 0$, $\operatorname{diag}(Y) = 1$, $\operatorname{rank}(Y) = 1$ - Convex relaxation (Goemans and Williamson, 1997):

$$\max_{Y \succcurlyeq 0, \operatorname{diag}(Y)=1} \operatorname{tr} WY$$

- May be solved as sequence of eigenvalue problems

$$\max_{Y \succeq 0, \operatorname{diag}(Y)=1} \operatorname{tr} WY = \min_{\mu \in \mathbb{R}^n} n\lambda_{\max}(W + \operatorname{Diag}(\mu)) - 1^+ \mu$$

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$ $\Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

• $F: 2^V \to \mathbb{R}$ is submodular if and only if

 $\begin{aligned} \forall A,B \subset V, \quad F(A) + F(B) \geqslant F(A \cap B) + F(A \cup B) \\ \Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing} \end{aligned}$

Intuition 1: defined like concave functions ("diminishing returns")
– Example: F : A → g(Card(A)) is submodular if g is concave

• $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$ $\Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

- Intuition 1: defined like concave functions ("diminishing returns")
 Example: F : A → g(Card(A)) is submodular if g is concave
- Intuition 2: behave like convex functions
 - Polynomial-time minimization, conjugacy theory

• $F: 2^V \to \mathbb{R}$ is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$ $\Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$

- Intuition 1: defined like concave functions ("diminishing returns")
 Example: F : A → g(Card(A)) is submodular if g is concave
- Intuition 2: behave like convex functions
 - Polynomial-time minimization, conjugacy theory
- Used in several areas of signal processing and machine learning
 - Total variation/graph cuts
 - Optimal design Structured sparsity

Document modelisation (Jenatton et al., 2010)

Machine Learning and Numerical Analysis Outline

- Machine learning
 - Supervised vs. unsupervised
- Convex optimization for supervised learning
 - Sequence of linear systems
- Spectral methods for unsupervised learning
 - Sequence of singular value decompositions
- Combinatorial optimization
 - Polynomial-time algorithms and convex relaxations

Machine learning - Specificities

• Low-precision

- Objective functions are averages
- Large scale
 - Practical impact only when complexity close to linear

• Online learning

- Take advantage of special structure of optimization problems
- Sequence of problems
 - Selecting hyperparameters