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Function evaluation on a machine

Problem: evaluation of a function ϕ over R or a subset of R.

We wish to only use additions, subtractions, multiplications (we should avoid
divisions)⇒ use of polynomials.

Most of the algorithms for evaluating elementary functions (exp, ln, cos, sin,
arctan,

√
, . . .) use polynomial approximants.
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Floating Point (FP) Arithmetic

Given 
a radix β ≥ 2,
a precision n ≥ 1,
a set of exponents Emin · · ·Emax.

A finite FP number x is represented by 2 integers:

• integer mantissa : M , βn−1 ≤ |M | ≤ βn − 1;

• exponent E, Emin ≤ e ≤ Emax

such that
x =

M

βn−1
× βe.

We call real mantissa, or mantissa of x the number m =M × β1−n, such
that x = m× βe.

We assume binary FP arithmetic (that is to say β = 2.)
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IEEE precisions

http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.
html

precision minimal exponent maximal exponent
single 24 −126 127
double 53 −1022 1023
extended double 64 −16382 16383
quadruple 113 −16382 16383
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Evaluation of elementary functions

exp, ln, cos, sin, arctan,
√

, . . .

First step. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function ϕ over R or a subset of R is reduced to the evaluation
of a function f over [a, b].

Second step. Polynomial approximation of f :

• least square approximation;

• minimax approximation.
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Minimax Approximation

Reminder. Let g : [a, b]→ R, ||g||[a,b] = supa≤x≤b |g(x)|.

We denote Rn[X] = {p ∈ R[X]; deg p ≤ n}.

Minimax approximation: let f : [a, b]→ R, n ∈ N, we search for p ∈ Rn[X]
s.t.

||p− f ||[a,b] = inf
q∈Rn[X]

||q − f ||[a,b].

An algorithm by Remez gives p (minimax function in Maple, also available
in Sollya http://sollya.gforge.inria.fr/).

Problem: we can’t directly use minimax approx. in a computer since the
coefficients of p can’t be represented on a finite number of bits.
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Truncated Polynomials

Our context: the coefficients of the polynomials must be written on a finite
(imposed) number of bits.

Let m = (mi)0≤i≤n a finite sequence of rational integers. Let

Pmn = {q = q0 + q1x+ · · · + qnx
n ∈ Rn[X]; qi integer multiple of 2−mi,∀i}.

First idea. Remez → p(x) = p0 + p1x+ · · · + pnx
n. Every pi rounded to

âi/2
mi, the nearest integer multiple of 2−mi→ p̂(x) =

â0
2m0

+
â1
2m1

x+ · · · + ân
2mn

xn.

Problem: p̂ not necessarily a minimax approx. of f among the polynomials
of Pmn .
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Approximation of the function cos over [0, π/4] by a degree-3
polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is∼ the best approximant to cos. We have ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx− ( a0
212

+
a1
210

x+
a2
26
x2 +

a3
24
x3
)∣∣∣

is minimal.
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Approximation of the function cos over [0, π/4] by a degree-3
polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is∼ the best approximant to cos. We have ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx− ( a0
212

+
a1
210

x+
a2
26
x2 +

a3
24
x3
)∣∣∣

is minimal.

The naive approach gives the polynomial p̂ =
212

212
+

5

210
x− 34

26
x2 +

1

24
x3.We

have ε̂ = || cos−p̂||[0,π/4] = 0.00069397....
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Applications

Two targets:

• specific hardware implementations in low precision (∼ 15 bits). Reduce the
cost (time and silicon area) keeping a correct accuracy;

• single or double IEEE precision software implementations. Get very high
accuracy keeping an acceptable cost (time and memory).
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Statement of the problem

Let f : [a, b]→ R, n ∈ N, m = (mi)0≤i≤n a finite sequence of rational
integers, p(x) = p0 + p1x+ · · · + pnx

n the minimax approx. of f over [a, b]
(Remez). Let

Pmn =
{
q(x) =

a0
2m0

+
a1
2m1

x+ · · · + an
2mn

xn; ai ∈ Z,∀i
}
.

Every pi rounded to âi/2
mi, the nearest integer multiple of 2−mi →

p̂(x) =
â0
2m0

+
â1
2m1

x+ · · · + ân
2mn

xn.
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Statement of the problem

Let f : [a, b]→ R, n ∈ N, m = (mi)0≤i≤n a finite sequence of rational
integers, p(x) = p0 + p1x+ · · · + pnx

n the minimax approx. of f over [a, b]
(Remez). Let

Pmn =
{
q(x) =

a0
2m0

+
a1
2m1

x+ · · · + an
2mn

xn; ai ∈ Z,∀i
}
.

Every pi rounded to âi/2
mi, the nearest integer multiple of 2−mi →

p̂(x) =
â0
2m0

+
â1
2m1

x+ · · · + ân
2mn

xn.

Let
ε = ||f − p||[a,b] and ε̂ = ||f − p̂||[a,b].

We compare ε to ε̂.
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Let
ε = ||f − p||[a,b] and ε̂ = ||f − p̂||[a,b].

We compare ε to ε̂.

Given K ∈ [ε, ε̂]. We search for a truncated polynomial
p? ∈ Pmn s.t.

||f − p?||[a,b] = min
q∈Pmn

||f − q||[a,b]

and
||f − p?||[a,b] ≤ K.
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A first approach using linear programming

We put p?(x) =
a?0
2m0

+
a?1
2m1

x+ · · · + a?n
2mn

xn (a?0, . . . , a?n ∈ Z are the unknowns).

1. We find relations satisfied by the a?i ⇒ finite number of candidate
polynomials.

2. If this number is small enough, we perform an exhaustive search:
computation of the norms ||f − q||[a,b], q running among the candidate
polynomials.

More details in: N. Brisebarre, J.-M. Muller, A. Tisserand, Computing
Machine-Efficient Polynomial Approximations, ACM Transactions on Math.
Software, 2006.
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Approximation of the function cos over [0, π/4] by a degree-3
polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is∼ the best approximant to cos. We have ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx− ( a0
212

+
a1
210

x+
a2
26
x2 +

a3
24
x3
)∣∣∣

is minimal.

The naive approach gives the polynomial p̂ =
212

212
+

5

210
x− 34

26
x2 +

1

24
x3.We

have ε̂ = || cos−p̂||[0,π/4] = 0.00069397....
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Best approximant:

p? =
4095

212
+

6

210
x− 34

26
x2 +

1

24
x3

which gives a distance to cos, || cos−p?||[0,π/4], equal to 0.0002441406250.

In this example, we gain − log2(0.35) ≈ 1.5 bits of accuracy.
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This method gives a best polynomial for a given sequence of mi.

It should make it possible to tackle with degree-8 or 10 polynomials: this
is nice for hardware-oriented applications but not satisfying for all software-
oriented applications.

Another drawback: we need to have a good insight of the error K.

• if K is underestimated, there won’t be any solution found,

• if K is overestimated, there might be far too many candidates: it becomes
untractable.

We designed a tool for getting a relevant estimate of K.

This tool proved to give more than expected.
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A second approach through lattice basis reduction
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A reminder on lattice basis reduction

Definition . Let L be a nonempty subset of Rd, L is a lattice iff there exists a
set of vectors b1, . . . , bk R-linearly independent such that

L = Z.b1 ⊕ · · · ⊕ Z.bk.

(b1, . . . , bk) is a basis of the lattice L.

Examples. Zd, every subgroup of Zd.

Remark . We say that a lattice L is integer (resp. rational) when L ∈ Zd (resp.
Qd).
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(0, 0) (2, 0)

(1, 2)

The lattice Z(2, 0)⊕ Z(1, 2).
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Proposition . If (e1, . . . , ek) and (f1, . . . , fj) are two free families that generate
the same lattice, then k = j (rank of the lattice) and there exists a k × k-
dimensional matrix M , with integer coefficients, and determinant equal to ±1
such that (ei) = (fi)M .
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(0, 0) (2, 0)

(1, 2)

u

v−3u+ v

2u− v

The lattice Z(2, 0)⊕ Z(1, 2).
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Proposition . If (e1, . . . , ek) and (f1, . . . , fj) are two free families that generate
the same lattice, then k = j (rank of the lattice) and there exists a k × k-
dimensional matrix M , with integer coefficients, and determinant equal to ±1
such that (ei) = (fi)M .

There exists an infinity of bases (if k ≥ 2) but some are more interesting than
others.
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Let x = (x1, . . . , xd) and y = (y1, . . . , yd) ∈ Rd, then

(x|y) = x1y1 + · · ·+ xdyd.

We set ||x|| = (x|x)1/2 = (x21 + · · ·+ x2d)
1/2 and ||x||∞ = max1≤i≤d |xi|.

There are several notions of what a “good” basis is but most of the time, it is
required that it is made of short vectors.
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Shortest vector problem

Problem . (SVP) Given a basis of a rational lattice L, find a shortest nonzero
vector of L.

Associated approximation problem: find v ∈ L \ {0} s.t. ||v|| ≤ γλ1(L)
where γ ∈ R is fixed and λ1(L) denotes the norm of a shortest nonzero vector
of L.

Theorem . [Ajtai (1997), Miccianco (1998)] The problem of finding a vector
v s.t. ‖v‖ = λ1(L) is NP-hard under randomized polynomial reductions, and
remains NP-hard if we tolerate an approximation factor <

√
2.
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Closest vector problem

Problem . (CVP) Given a basis of a rational lattice L and x ∈ Rd, find y ∈ L
s.t. ||x− y|| = dist(x, L).

Associated approximation problem: find y ∈ L \ {0} s.t. ||x− y|| ≤ γ dist(x, L)
where γ ∈ R is fixed.

Emde Boas (1981) : CVP is NP-hard
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Lenstra-Lenstra-Lovász algorithm

Factoring Polynomials with Rational Coefficients, A. K. LENSTRA, H. W.
LENSTRA AND L. LOVÁSZ, Math. Annalen 261, 515-534, 1982.

Theorem . Let L a lattice of rank k.

LLL provides a basis (b1, . . . , bk) made of “pretty” short vectors. We have
||b1|| ≤ 2(k−1)/2λ1(L) where λ1(L) denotes the norm of a shortest nonzero
vector of L.

LLL terminates in at most O(k6 ln3B) operations with B ≥ ||bi||2 for all i.

Remark . In practice, the returned basis is of better quality and given faster
than expected.
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Absolute error problem

We search for (one of the) best(s) polynomial of the form

p? =
a?0
2m0

+
a?1
2m1

X + · · ·+ a?n
2mn

Xn

(where a?i ∈ Z and mi ∈ Z ) that minimizes ‖f − p‖[a, b].

Discretize the continuous problem: we choose x1, · · · , xd points in [a, b]

such that a?0
2m0 +

a?1
2m1xi + · · ·+

a?n
2mnx

n
i as close as possible to f(xi) for all

i = 1, . . . , d.
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That is to say we want the vectors
a?0
2m0 +

a?1
2m1x1 + · · ·+

a?n
2mnx

n
1

a?0
2m0 +

a?1
2m1x2 + · · ·+

a?n
2mnx

n
2...

a?0
2m0 +

a?1
2m1xd + · · ·+

a?n
2mnx

n
d

 and


f(x1)
f(x2)

...
f(xd)


to be as close as possible, which can be rewritten as: we want the vectors

a?0


1

2m0
1

2m0...
1

2m0


︸ ︷︷ ︸

−→v0

+a?1


x1
2m1
x2
2m1...
xd
2m1


︸ ︷︷ ︸

−→v1

+ · · ·+ a?n


xn1
2mn
xn2
2mn...
xnd
2mn


︸ ︷︷ ︸

−→vn

and


f(x1)
f(x2)

...
f(xd)


︸ ︷︷ ︸

−→y

to be as close as possible.

We have to minimize ‖a?0−→v0 + · · ·+ a?n
−→vn −−→y ‖.
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We have to minimize ‖a?0−→v0 + · · ·+ a?n
−→vn −−→y ‖.

This is a closest vector problem in a lattice !

It is NP-hard : LLL algorithm gives an approximate solution.
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Focus on the method

We search for (one of the) best(s) polynomial of the form

p? =
a?0
2m0

+
a?1
2m1

X + · · ·+ a?n
2mn

Xn

(where a?i ∈ Z and mi ∈ Z ) that minimizes ‖f − p‖[a, b].

Choose d points in [a, b] : x1, · · · , xd.

Our problem is to have a?0
2m0 +

a?1
2m1xi + · · ·+

a?n
2mnx

n
i as close as possible to

f(xi) for all i = 1, . . . , d.

Here again, the choice of the points is critical (it relies on some preliminary
computations: linear programming and best polynomial approximation
computation).
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Applying our method to Intel’s erf code

erf is defined by erf(x) =
2√
π

∫ x

0

e−t
2
dt for all x ∈ R.

• We looked at Intel’s erf code on the interval [1; 2] : it uses an argument
reduction and the final problem is to approximate erf(x+ 1) on [0; 1] with a
polynomial to obtain an accuracy of 64 bits.

• Intel uses a polynomial of degree 19 with 20 extended-double coefficients.
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How we can improve it

• We can’t use a smaller degree because even the minimax polynomial of
degree 18 doesn’t provide a sufficient accuracy. But we can reduce the size
of the coefficients.

• We search for polynomials using the most possible number of double
coefficients.
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Result

We get, almost instantaneously, a polynomial approximant

• with only two extended-double coefficients,

• that provides the same accuracy as the one with 20 extended-double
coefficients, currently used in Intel’s code.

• This leads to smaller tables, faster cache loading time.
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Summary

• We’ve just seen that our method is able to give us a smaller (in term
of degree and/or size of the coefficients) polynomial providing the same
accuracy.

• But we can also use it to find a much better polynomial (in term of accuracy)
with same precision for the coefficients than the rounded minimax.

• Let’s look at an example from CRLibm.
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An example from CRlibm

• CRlibm is a library designed to compute correctly rounded functions in an
efficient way (target : IEEE double precision).

http://lipforge.ens-lyon.fr/www/crlibm/

• It uses specific formats such as double-double or triple-double.

• Here is an example we worked on with C. Lauter, and which is used to
compute arcsin(x) on [0.79; 1].

Machine-Efficient Polynomials 36

http://lipforge.ens-lyon.fr/www/crlibm/


Arcsine function

• After argument reduction we have the problem to approximate

g(z) =
arcsin(1− (z +m))− π

2√
2 · (z +m)

where 0xBFBC28F800009107 ≤ z ≤ 0x3FBC28F7FFFF6EF1 (i.e. approximately
−0.110 ≤ z ≤ 0.110) and m = 0x3FBC28F80000910F ' 0.110.

Machine-Efficient Polynomials 37



Data

Target accuracy to achieve correct rounding : 2−119.

The minimax of degree 21 is sufficient (error = 2−119.83).

Each approximant is of the form

p0︸︷︷︸
t.d.

+ p1︸︷︷︸
t.d.

x+ p2︸︷︷︸
d.d.

x2 + · · ·︸︷︷︸
···

+ p9︸︷︷︸
d.d.

x9 + p10︸︷︷︸
d.

x10 + · · ·︸︷︷︸
···

+ p21︸︷︷︸
d.

x21

where the pi are either double precision numbers (d.), a sum of two double
precision numbers (d.d.), a sum of two double precision numbers (t.d.).

Figure 1: binary logarithm of the absolute error of several approximants
Target -119
Minimax -119.83
Rounded minimax -103.31
Our polynomial -119.77
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Exact minimax, rounded minimax, our polynomial

We save 16 bits with our method.
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Conclusion

• Two methods which improve the results provided by existing Remez’ based
method.

The first method, based on linear programming, gives a best polynomial
possible (for a given sequence of mi).

The second method, based on lattice basis reduction, much faster and more
efficient than the first one, gives a very good approximant. We use linear
programming to show that the error provided by this approach is tight.

All these tools are or shall be part of the free software Sollya http:
//sollya.gforge.inria.fr/. Sollya is a tool environment for safe
floating-point code development.

• Can be adapted to several kind of coefficients (fixed-point format, multi-
double, classical floating point arithmetic with several precision formats).
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