Computing Machine-Efficient Polynomial Approximations

N. Brisebarre, S. Chevillard, G. Hanrot, J.-M. Muller, D. Stehlé, A.

Tisserand and S. Torres
Arénaire, LIP, É.N.S. Lyon

Journées du GDR et du réseau Calcul
Lyon, 9 et 10 novembre 2010

Function evaluation on a machine

Problem: evaluation of a function φ over \mathbb{R} or a subset of \mathbb{R}.
We wish to only use additions, subtractions, multiplications (we should avoid divisions) \Rightarrow use of polynomials.

Most of the algorithms for evaluating elementary functions (exp, ln, cos, sin, $\arctan , \sqrt{ }, \ldots$) use polynomial approximants.

Floating Point (FP) Arithmetic

Given

$$
\begin{cases}\text { a radix } & \beta \geq 2, \\ \text { a precision } & n \geq 1, \\ \text { a set of exponents } & E_{\text {min }} \cdots E_{\max } .\end{cases}
$$

A finite FP number x is represented by 2 integers:

- integer mantissa : $M, \beta^{n-1} \leq|M| \leq \beta^{n}-1$;
- exponent $E, E_{\min } \leq e \leq E_{\max }$
such that

$$
x=\frac{M}{\beta^{n-1}} \times \beta^{e} .
$$

We call real mantissa, or mantissa of x the number $m=M \times \beta^{1-n}$, such that $x=m \times \beta^{e}$.

We assume binary FP arithmetic (that is to say $\beta=2$.)

IEEE precisions

http://babbage.cs.qc.edu/courses/cs341/IEEE-754references. html

	precision	minimal exponent	maximal exponent
single	24	-126	127
double	53	-1022	1023
extended double	64	-16382	16383
quadruple	113	-16382	16383

Evaluation of elementary functions

$\exp , \ln , \cos , \sin , \arctan , \sqrt{ }, \ldots$
First step. Argument reduction (Payne \& Hanek, Ng, Daumas et al): evaluation of a function φ over \mathbb{R} or a subset of \mathbb{R} is reduced to the evaluation of a function f over $[a, b]$.

Second step. Polynomial approximation of f :

- least square approximation;
- minimax approximation.

Minimax Approximation

Reminder. Let $g:[a, b] \rightarrow \mathbb{R},\|g\|_{[a, b]}=\sup _{a \leq x \leq b}|g(x)|$.
We denote $\mathbb{R}_{n}[X]=\{p \in \mathbb{R}[X] ; \operatorname{deg} p \leq n\}$.
Minimax approximation: let $f:[a, b] \rightarrow \mathbb{R}, n \in \mathbb{N}$, we search for $p \in \mathbb{R}_{n}[X]$ s.t.

$$
\|p-f\|_{[a, b]}=\inf _{q \in \mathbb{R}_{n}[X]}\|q-f\|_{[a, b]}
$$

An algorithm by Remez gives p (minimax function in Maple, also available in Sollya http://sollya.gforge.inria.fr/).

Problem: we can't directly use minimax approx. in a computer since the coefficients of p can't be represented on a finite number of bits.

Truncated Polynomials

Our context: the coefficients of the polynomials must be written on a finite (imposed) number of bits.

Let $m=\left(m_{i}\right)_{0 \leq i \leq n}$ a finite sequence of rational integers. Let
$\mathcal{P}_{n}^{m}=\left\{q=q_{0}+q_{1} x+\cdots+q_{n} x^{n} \in \mathbb{R}_{n}[X] ; q_{i}\right.$ integer multiple of $\left.2^{-m_{i}}, \forall i\right\}$.

First idea. Remez $\rightarrow p(x)=p_{0}+p_{1} x+\cdots+p_{n} x^{n}$. Every p_{i} rounded to $\hat{a}_{i} / 2^{m_{i}}$, the nearest integer multiple of $2^{-m_{i}} \rightarrow \hat{p}(x)=\frac{\hat{a}_{0}}{2^{m_{0}}}+\frac{\hat{a}_{1}}{2^{m_{1}}} x+\cdots+\frac{\hat{a}_{n}}{2^{m_{n}}} x^{n}$.

Problem: \hat{p} not necessarily a minimax approx. of f among the polynomials of \mathcal{P}_{n}^{m}.

Approximation of the function \cos over $[0, \pi / 4]$ by a degree- 3 polynomial

Maple or Sollya tell us that the polynomial

$$
p=0.9998864206+0.00469021603 x-0.5303088665 x^{2}+0.06304636099 x^{3}
$$

is \sim the best approximant to cos. We have $\varepsilon=\|\cos -p\|_{[0, \pi / 4]}=0.0001135879 \ldots$
We look for $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{Z}$ such that

$$
\max _{0 \leq x \leq \pi / 4}\left|\cos x-\left(\frac{a_{0}}{2^{12}}+\frac{a_{1}}{2^{10}} x+\frac{a_{2}}{2^{6}} x^{2}+\frac{a_{3}}{2^{4}} x^{3}\right)\right|
$$

is minimal.

Approximation of the function \cos over $[0, \pi / 4]$ by a degree- 3 polynomial

Maple or Sollya tell us that the polynomial

$$
p=0.9998864206+0.00469021603 x-0.5303088665 x^{2}+0.06304636099 x^{3}
$$

is \sim the best approximant to cos. We have $\varepsilon=\|\cos -p\|_{[0, \pi / 4]}=0.0001135879 \ldots$
We look for $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{Z}$ such that

$$
\max _{0 \leq x \leq \pi / 4}\left|\cos x-\left(\frac{a_{0}}{2^{12}}+\frac{a_{1}}{2^{10}} x+\frac{a_{2}}{2^{6}} x^{2}+\frac{a_{3}}{2^{4}} x^{3}\right)\right|
$$

is minimal.
The naive approach gives the polynomial $\hat{p}=\frac{2^{12}}{2^{12}}+\frac{5}{2^{10}} x-\frac{34}{2^{6}} x^{2}+\frac{1}{2^{4}} x^{3}$. We have $\hat{\varepsilon}=\|\cos -\hat{p}\|_{[0, \pi / 4]}=0.00069397 \ldots$.

Applications

Two targets:

- specific hardware implementations in low precision (~ 15 bits). Reduce the cost (time and silicon area) keeping a correct accuracy;
- single or double IEEE precision software implementations. Get very high accuracy keeping an acceptable cost (time and memory).

Statement of the problem

Let $f:[a, b] \rightarrow \mathbb{R}, n \in \mathbb{N}, m=\left(m_{i}\right)_{0 \leq i \leq n}$ a finite sequence of rational integers, $p(x)=p_{0}+p_{1} x+\cdots+p_{n} x^{n}$ the minimax approx. of f over $[a, b]$ (Remez). Let

$$
\mathcal{P}_{n}^{m}=\left\{q(x)=\frac{a_{0}}{2^{m_{0}}}+\frac{a_{1}}{2^{m_{1}}} x+\cdots+\frac{a_{n}}{2^{m_{n}}} x^{n} ; a_{i} \in \mathbb{Z}, \forall i\right\} .
$$

Every p_{i} rounded to $\hat{a}_{i} / 2^{m_{i}}$, the nearest integer multiple of $2^{-m_{i}} \rightarrow$ $\hat{p}(x)=\frac{\hat{a}_{0}}{2^{m_{0}}}+\frac{\hat{a}_{1}}{2^{m_{1}}} x+\cdots+\frac{\hat{a}_{n}}{2^{m_{n}}} x^{n}$.

Statement of the problem

Let $f:[a, b] \rightarrow \mathbb{R}, n \in \mathbb{N}, m=\left(m_{i}\right)_{0 \leq i \leq n}$ a finite sequence of rational integers, $p(x)=p_{0}+p_{1} x+\cdots+p_{n} x^{n}$ the minimax approx. of f over $[a, b]$ (Remez). Let

$$
\mathcal{P}_{n}^{m}=\left\{q(x)=\frac{a_{0}}{2^{m_{0}}}+\frac{a_{1}}{2^{m_{1}}} x+\cdots+\frac{a_{n}}{2^{m_{n}}} x^{n} ; a_{i} \in \mathbb{Z}, \forall i\right\} .
$$

Every p_{i} rounded to $\hat{a}_{i} / 2^{m_{i}}$, the nearest integer multiple of $2^{-m_{i}} \rightarrow$ $\hat{p}(x)=\frac{\hat{a}_{0}}{2^{m_{0}}}+\frac{\hat{a}_{1}}{2^{m_{1}}} x+\cdots+\frac{\hat{a}_{n}}{2^{m_{n}}} x^{n}$.

Let

$$
\varepsilon=\|f-p\|_{[a, b]} \text { and } \hat{\varepsilon}=\|f-\hat{p}\|_{[a, b]} .
$$

We compare ε to $\hat{\varepsilon}$.

Let

$$
\varepsilon=\|f-p\|_{[a, b]} \text { and } \hat{\varepsilon}=\|f-\hat{p}\|_{[a, b]} .
$$

We compare ε to $\hat{\varepsilon}$.
Given $K \in[\varepsilon, \hat{\varepsilon}]$. We search for a truncated polynomial $p^{\star} \in \mathcal{P}_{n}^{m}$ s.t.

$$
\left\|f-p^{\star}\right\|_{[a, b]}=\min _{q \in \mathcal{P}_{n}^{m}}\|f-q\|_{[a, b]}
$$

and

$$
\left\|f-p^{\star}\right\|_{[a, b]} \leq K
$$

A first approach using linear programming

We put $p^{\star}(x)=\frac{a_{0}^{\star}}{2^{m_{0}}}+\frac{a_{1}^{\star}}{2^{m_{1}}} x+\cdots+\frac{a_{n}^{\star}}{2^{m_{n}}} x^{n}\left(a_{0}^{\star}, \ldots, a_{n}^{\star} \in \mathbb{Z}\right.$ are the unknowns).

1. We find relations satisfied by the $a_{i}^{\star} \Rightarrow$ finite number of candidate polynomials.
2. If this number is small enough, we perform an exhaustive search: computation of the norms $\|f-q\|_{[a, b]}, q$ running among the candidate polynomials.

More details in: N. Brisebarre, J.-M. Muller, A. Tisserand, Computing Machine-Efficient Polynomial Approximations, ACM Transactions on Math. Software, 2006.

Approximation of the function \cos over $[0, \pi / 4]$ by a degree- 3 polynomial

Maple or Sollya tell us that the polynomial

$$
p=0.9998864206+0.00469021603 x-0.5303088665 x^{2}+0.06304636099 x^{3}
$$

is \sim the best approximant to cos. We have $\varepsilon=\|\cos -p\|_{[0, \pi / 4]}=0.0001135879 \ldots$
We look for $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{Z}$ such that

$$
\max _{0 \leq x \leq \pi / 4}\left|\cos x-\left(\frac{a_{0}}{2^{12}}+\frac{a_{1}}{2^{10}} x+\frac{a_{2}}{2^{6}} x^{2}+\frac{a_{3}}{2^{4}} x^{3}\right)\right|
$$

is minimal.
The naive approach gives the polynomial $\hat{p}=\frac{2^{12}}{2^{12}}+\frac{5}{2^{10}} x-\frac{34}{2^{6}} x^{2}+\frac{1}{2^{4}} x^{3}$. We have $\hat{\varepsilon}=\|\cos -\hat{p}\|_{[0, \pi / 4]}=0.00069397 \ldots$.

Best approximant:

$$
p^{\star}=\frac{4095}{2^{12}}+\frac{6}{2^{10}} x-\frac{34}{2^{6}} x^{2}+\frac{1}{2^{4}} x^{3}
$$

which gives a distance to $\cos , \| \cos -\left.p^{\star}\right|_{[0, \pi / 4]}$, equal to 0.0002441406250 .
In this example, we gain $-\log _{2}(0.35) \approx 1.5$ bits of accuracy.

This method gives a best polynomial for a given sequence of m_{i}.
It should make it possible to tackle with degree-8 or 10 polynomials: this is nice for hardware-oriented applications but not satisfying for all softwareoriented applications.

Another drawback: we need to have a good insight of the error K.

- if K is underestimated, there won't be any solution found,
- if K is overestimated, there might be far too many candidates: it becomes untractable.

We designed a tool for getting a relevant estimate of K.
This tool proved to give more than expected.

A second approach through lattice basis reduction

A reminder on lattice basis reduction

Definition. Let L be a nonempty subset of \mathbb{R}^{d}, L is a lattice iff there exists a set of vectors $b_{1}, \ldots, b_{k} \mathbb{R}$-linearly independent such that

$$
L=\mathbb{Z} . b_{1} \oplus \cdots \oplus \mathbb{Z} . b_{k} .
$$

$\left(b_{1}, \ldots, b_{k}\right)$ is a basis of the lattice L.
Examples. \mathbb{Z}^{d}, every subgroup of \mathbb{Z}^{d}.
Remark. We say that a lattice L is integer (resp. rational) when $L \in \mathbb{Z}^{d}$ (resp. \mathbb{Q}^{d}).

The lattice $\mathbb{Z}(2,0) \oplus \mathbb{Z}(1,2)$.

Proposition. If $\left(e_{1}, \ldots, e_{k}\right)$ and $\left(f_{1}, \ldots, f_{j}\right)$ are two free families that generate the same lattice, then $k=j$ (rank of the lattice) and there exists a $k \times k$ dimensional matrix M, with integer coefficients, and determinant equal to ± 1 such that $\left(e_{i}\right)=\left(f_{i}\right) M$.

The lattice $\mathbb{Z}(2,0) \oplus \mathbb{Z}(1,2)$.

Proposition. If $\left(e_{1}, \ldots, e_{k}\right)$ and $\left(f_{1}, \ldots, f_{j}\right)$ are two free families that generate the same lattice, then $k=j$ (rank of the lattice) and there exists a $k \times k$ dimensional matrix M, with integer coefficients, and determinant equal to ± 1 such that $\left(e_{i}\right)=\left(f_{i}\right) M$.

There exists an infinity of bases (if $k \geq 2$) but some are more interesting than others.

$$
\text { Let } x=\left(x_{1}, \ldots, x_{d}\right) \text { and } y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d} \text {, then }
$$

$$
(x \mid y)=x_{1} y_{1}+\cdots+x_{d} y_{d}
$$

We set $\|x\|=(x \mid x)^{1 / 2}=\left(x_{1}^{2}+\cdots+x_{d}^{2}\right)^{1 / 2}$ and $\|x\|_{\infty}=\max _{1 \leq i \leq d}\left|x_{i}\right|$.
There are several notions of what a "good" basis is but most of the time, it is required that it is made of short vectors.

Shortest vector problem

Problem . (SVP) Given a basis of a rational lattice L, find a shortest nonzero vector of L.

Associated approximation problem: find $v \in L \backslash\{0\}$ s.t. $\|v\| \leq \gamma \lambda_{1}(L)$ where $\gamma \in \mathbb{R}$ is fixed and $\lambda_{1}(L)$ denotes the norm of a shortest nonzero vector of L.

Theorem . [Ajtai (1997), Miccianco (1998)] The problem of finding a vector v s.t. $\|v\|=\lambda_{1}(L)$ is NP-hard under randomized polynomial reductions, and remains NP-hard if we tolerate an approximation factor $<\sqrt{2}$.

Closest vector problem

Problem . (CVP) Given a basis of a rational lattice L and $x \in \mathbb{R}^{d}$, find $y \in L$ s.t. $\|x-y\|=\operatorname{dist}(x, L)$.

Associated approximation problem: find $y \in L \backslash\{0\}$ s.t. $\|x-y\| \leq \gamma \operatorname{dist}(x, L)$ where $\gamma \in \mathbb{R}$ is fixed.

Emde Boas (1981) : CVP is NP-hard

Lenstra-Lenstra-Lovász algorithm

Factoring Polynomials with Rational Coefficients, A. K. Lenstra, H. W. Lenstra and L. Lovász, Math. Annalen 261, 515-534, 1982.

Theorem. Let L a lattice of rank k.
LLL provides a basis $\left(b_{1}, \ldots, b_{k}\right)$ made of "pretty" short vectors. We have $\left\|b_{1}\right\| \leq 2^{(k-1) / 2} \lambda_{1}(L)$ where $\lambda_{1}(L)$ denotes the norm of a shortest nonzero vector of L.

LLL terminates in at most $O\left(k^{6} \ln ^{3} B\right)$ operations with $B \geq\left\|b_{i}\right\|^{2}$ for all i.
Remark. In practice, the returned basis is of better quality and given faster than expected.

Absolute error problem

We search for (one of the) best(s) polynomial of the form

$$
p^{\star}=\frac{a_{0}^{\star}}{2^{m_{0}}}+\frac{a_{1}^{\star}}{2^{m_{1}}} X+\cdots+\frac{a_{n}^{\star}}{2^{m_{n}}} X^{n}
$$

(where $a_{i}^{\star} \in \mathbb{Z}$ and $m_{i} \in \mathbb{Z}$) that minimizes $\|f-p\|_{[a, b]}$.
Discretize the continuous problem: we choose x_{1}, \cdots, x_{d} points in $[a, b]$ such that $\frac{a_{0}^{\star}}{2^{m_{0}}}+\frac{a_{1}^{\star}}{2^{m_{1}}} x_{i}+\cdots+\frac{a_{n}^{\star}}{2^{m n}} x_{i}^{n}$ as close as possible to $f\left(x_{i}\right)$ for all $i=1, \ldots, d$.

That is to say we want the vectors

$$
\left(\begin{array}{c}
\frac{a_{0}^{\star}}{2^{m_{0}}}+\frac{a_{1}^{\star}}{2^{m_{1}}} x_{1}+\cdots+\frac{a_{n}^{\star}}{2^{m}} x_{1}^{n} \\
\frac{a_{0}^{\star}}{2^{m_{0}}}+\frac{a_{1}^{\star}}{2^{m_{1}}} x_{2}+\cdots+\frac{a_{n}^{\star}}{2^{m_{n}}} x_{2}^{n} \\
\vdots \\
\frac{a_{0}^{\star}}{2^{m_{0}}}+\frac{a_{1}^{\star}}{2^{m_{1}}} x_{d}+\cdots+\frac{a_{n}^{\star}}{2^{m_{n}}} x_{d}^{n}
\end{array}\right) \text { and }\left(\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{d}\right)
\end{array}\right)
$$

to be as close as possible, which can be rewritten as: we want the vectors

$$
a_{0}^{\star} \underbrace{\left(\begin{array}{c}
\frac{1}{2^{m_{0}}} \\
\frac{2^{m}}{2^{m}} \\
\vdots \\
\frac{1}{2^{m_{0}}}
\end{array}\right)}_{\overrightarrow{v_{0}}}+a_{1}^{\star} \underbrace{\left(\begin{array}{c}
\frac{x_{1}}{2^{m_{1}}} \\
\frac{x_{2}}{2^{m_{1}}} \\
\vdots \\
\frac{x_{d}}{2^{m_{1}}}
\end{array}\right)}_{\overrightarrow{v_{1}}}+\cdots+a_{n}^{\star} \underbrace{\left(\begin{array}{c}
\frac{x_{1}^{n}}{2^{m_{n}}} \\
\frac{x_{2}^{n}}{2^{m_{n}}} \\
\vdots \\
\frac{x_{d}^{n}}{2^{m_{n}}}
\end{array}\right)}_{\overrightarrow{v_{n}}} \text { and } \underbrace{\left(\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{d}\right)
\end{array}\right)}_{\vec{y}}
$$

to be as close as possible.
We have to minimize $\left\|a_{0}^{\star} \overrightarrow{v_{0}}+\cdots+a_{n}^{\star} \overrightarrow{v_{n}}-\vec{y}\right\|$.

We have to minimize $\left\|a_{0}^{\star} \overrightarrow{v_{0}}+\cdots+a_{n}^{\star} \overrightarrow{v_{n}}-\vec{y}\right\|$.
This is a closest vector problem in a lattice!
It is NP-hard : LLL algorithm gives an approximate solution.

Focus on the method

We search for (one of the) best(s) polynomial of the form

$$
p^{\star}=\frac{a_{0}^{\star}}{2^{m_{0}}}+\frac{a_{1}^{\star}}{2^{m_{1}}} X+\cdots+\frac{a_{n}^{\star}}{2^{m_{n}}} X^{n}
$$

(where $a_{i}^{\star} \in \mathbb{Z}$ and $m_{i} \in \mathbb{Z}$) that minimizes $\|f-p\|_{[a, b]}$.
Choose d points in $[a, b]: x_{1}, \cdots, x_{d}$.
Our problem is to have $\frac{a_{0}^{\star}}{2^{m_{0}}}+\frac{a_{1}^{\star}}{2^{m_{1}}} x_{i}+\cdots+\frac{a_{n}^{\star}}{2^{m_{n}}} x_{i}^{n}$ as close as possible to $f\left(x_{i}\right)$ for all $i=1, \ldots, d$.

Here again, the choice of the points is critical (it relies on some preliminary computations: linear programming and best polynomial approximation computation).

Applying our method to Intel's erf code

erf is defined by $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t$ for all $x \in \mathbb{R}$.

- We looked at Intel's erf code on the interval $[1 ; 2]$: it uses an argument reduction and the final problem is to approximate $\operatorname{erf}(x+1)$ on $[0 ; 1]$ with a polynomial to obtain an accuracy of 64 bits.
- Intel uses a polynomial of degree 19 with 20 extended-double coefficients.

How we can improve it

- We can't use a smaller degree because even the minimax polynomial of degree 18 doesn't provide a sufficient accuracy. But we can reduce the size of the coefficients.
- We search for polynomials using the most possible number of double coefficients.

Result

We get, almost instantaneously, a polynomial approximant

- with only two extended-double coefficients,
- that provides the same accuracy as the one with 20 extended-double coefficients, currently used in Intel's code.
- This leads to smaller tables, faster cache loading time.

Summary

- We've just seen that our method is able to give us a smaller (in term of degree and/or size of the coefficients) polynomial providing the same accuracy.
- But we can also use it to find a much better polynomial (in term of accuracy) with same precision for the coefficients than the rounded minimax.
- Let's look at an example from CRLibm.

An example from CRlibm

- CRlibm is a library designed to compute correctly rounded functions in an efficient way (target : IEEE double precision).
http://lipforge.ens-lyon.fr/www/crlibm/
- It uses specific formats such as double-double or triple-double.
- Here is an example we worked on with C. Lauter, and which is used to compute $\arcsin (x)$ on $[0.79 ; 1]$.

Arcsine function

- After argument reduction we have the problem to approximate

$$
g(z)=\frac{\arcsin (1-(z+m))-\frac{\pi}{2}}{\sqrt{2 \cdot(z+m)}}
$$

where $0 \times B F B C 28 F 800009107 \leq z \leq 0 \times 3$ FBC28F7FFFF6EF1 (i.e. approximately $-0.110 \leq z \leq 0.110$) and $m=0 \times 3$ FBC28F80000910F $\simeq 0.110$.

Data

Target accuracy to achieve correct rounding : 2^{-119}.
The minimax of degree 21 is sufficient (error $=2^{-119.83}$).
Each approximant is of the form

where the p_{i} are either double precision numbers (d.), a sum of two double precision numbers (d.d.), a sum of two double precision numbers (t.d.).

Figure 1: binary logarithm of the absolute error of several approximants

Target	-119
Minimax	-119.83
Rounded minimax	-103.31
Our polynomial	-119.77

Exact minimax, rounded minimax, our polynomial

We save 16 bits with our method.

Exact minimax, rounded minimax, our polynomial

We save 16 bits with our method.
g - Remez' polynomial

g - our polynomial

Conclusion

- Two methods which improve the results provided by existing Remez' based method.

The first method, based on linear programming, gives a best polynomial possible (for a given sequence of m_{i}).

The second method, based on lattice basis reduction, much faster and more efficient than the first one, gives a very good approximant. We use linear programming to show that the error provided by this approach is tight.

All these tools are or shall be part of the free software Sollya http: //sollya.gforge.inria.fr/. Sollya is a tool environment for safe floating-point code development.

- Can be adapted to several kind of coefficients (fixed-point format, multidouble, classical floating point arithmetic with several precision formats).

