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GPU architecture

A modern Graphics Processing Unit (GPU) is made of:

Global memory (typically 1 Gb)

Compute units (typically 27)

Each compute unit is made of:

Processing elements (typically 8)

Local memory (typically 16 kb)

The same program can be executed on all the processing elements
at the same time.

All the processing elements have access to the global memory

The processing elements have only access to the local memory
of their compute unit.

The access to the global memory is slow while the access to
the local memory is fast.
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A (virtual) GPU with 2 Compute Units and 4 Processing Elements
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OpenCL

Host: the computer into which the GPU is plugged.

Kernel: a program that is executed on the processing elements.

OpenCL means �Open Computing Language�. It includes:

A library of C functions, called from the host, in order to drive

the GPU.

A C-like language for writing the kernels that will be executed

on the processing elements.

Practically available since september 2009. The speci�cation is
managed by the Khronos Group (OpenGL).
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Work-items and work-groups

In order to perform a complex task, a kernel has to be executed
many times.

Each execution of a kernel is called a work-item.

Each work-item is identi�ed globally by a global ID,
i , 0≤ i < Nglobal .

A work-group is a collection of work-items running on the
processing elements of a given compute unit. They can access
the local memory of their compute unit.

Each work-item is identi�ed locally, in its work-group, by a
local ID, j , 0≤ j < Nlocal .

Each work-group is identi�ed by a group ID,
k , 0≤ k < Ngroup.

i = k×Nlocal + j .
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Work-items and work-groups

If Nglobal is the total number of work-items, Nlocal the
number of work-items in a work-group and Ngroup the
number of work-groups, then

Nglobal = Ngroup×Nlocal .

For e�ciency reasons, it is advised that Ngroup� 27 and
Nlocal � 8.

The distribution of the work-groups on the compute units and
the work-items on the processing elements is managed by the
OpenCL implementation.

The order of execution is completely arbitrary. The algorithm
has to take it into account...
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OpenCL/CUDA

CUDA OpenCL

multiprocessor compute unit

scalar core processing element

global memory global memory

shared memory local memory

local memory private memory

kernel kernel

block work-group

thread work-item
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Solving a transport equation with OpenCL
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Transport equation

We want to solve numerically the transport equation

∂tw +u∂xw = 0.

The unknown is a function w(x , t) that depends on the space
variable x ∈ [0,L] and the time variable t ∈ [0,T ].

The constant velocity u > 0 is given.

The initial condition at t = 0 is known w(x ,0) = w0(x).

We also know the left boundary value w(0, t) = 0.
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Finite volume approximation

We consider a space step ∆x = L/N, a time step
∆t = β ∆x/u, the instants tn = n∆t and the points
xi = (i + 1

2
)∆x (xi is the middle of the cell

Ci =]i∆x ,(i +1)∆x [, i = 0 · · ·N−1).

N is the number of approximations points in the x direction.

The CFL number β is such that 0< β < 1.

We want to compute an approximation wn
i ' w(xi , tn).

The approximation is given by an upwind �nite volume scheme

wn+1
i −wn

i

∆t
+u

wn
i −wn

i−1
∆x

= 0, n = 0,1,2 · · ·
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A simple kernel

At a given time-step n the values of wn
i for i = 0 · · ·N−1 are stored

in the global memory of the GPU in an array wn[]. The work-item
of global ID i , will compute the new value wn+1

i . The kernel is the
following

__kernel void transport(__global float* wn) {

int i = get_global_id(0);

int N =get_global_size(0);

float dx=1.f/N;

float dt=dx*0.8f;

if(i>0 && i<N) wn[i] = wn[i]-dt/dx*(wn[i]-wn[i-1]);

}
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The boring part

Now, we have to plug all the wires between this kernel, the GPU
and the host, initialize the variables and the OpenCL framework,
etc.

The �boring part� can be largely simpli�ed with recently developed
tools (PyOpenCL, for instance)
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1) Create an OpenCL context

// context creation

Context = clCreateContext(

0, // optional

1, // number of detected devices

&Devices[0], // chosen device

NULL, // optional

NULL, // optional

&status); // error code

assert (status == CL_SUCCESS);

The devices list is obtained from other OpenCL API calls...
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2) Create a command queue

CommandQueue = clCreateCommandQueue

(Context, // the context

Devices[0], // the chosen device

0, // optional

&status); // error code

assert (status == CL_SUCCESS);
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3) Create a program

Program = clCreateProgramWithSource

(Context, // the context

1, // number of source strings

(const char **) & prog, // string with

// kernel source

NULL, // optional

&err);

assert(Program);

The kernel source is read from a �le and put into a C++ string.
Note that at this point, the kernel is still not build. Compilation is
made at runtime.
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4) Build the program

err = clBuildProgram(Program, 0, NULL, NULL,

NULL, NULL);

assert(err == CL_SUCCESS);

The OpenCL kernel compiler is invoked at runtime. If the build is
not successful, it is of course possible to obtain the compiler errors
with the function clGetProgramBuildInfo(...).
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5) Create a kernel

Kernel = clCreateKernel(

Program, // the program

"transport", // name of the function

// that defines the kernel

&err);

A program source may contain several kernel functions. This
instruction is needed to select a particular function in the program
source.
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6) Create a bu�er for the initial data in the GPU

wa_gpu = clCreateBuffer(

Context, // the context

CL_MEM_READ_WRITE, // the buffer will be r/w

sizeof(cl_float) * _N, // size of the buffer

NULL, // optional

NULL); // optional
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7) Copy the initial data in the GPU

err = clEnqueueWriteBuffer

(CommandQueue, // the command queue

wa_gpu, // the buffer that has

// to be filled in the gpu

CL_TRUE, // indicates a blocking write

0, // optional

sizeof(float) * _N, // size of the buffer

wa, // pointer to the host

// memory to copy in the gpu

0, // optional

NULL, // optional

NULL); // optional

assert(err == CL_SUCCESS);
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8) Link the arguments of the kernel to the right bu�er

err = clSetKernelArg(

Kernel, // the kernel

0, // number of the argument (0,1,2,...)

sizeof(cl_mem), // size of the argument value

&wa_gpu); // pointer to the gpu buffer

//in global memory

The same function has to be called for de�ning each argument of
the kernel. We present here only the case of an argument pointing
to global memory. For local or constant memory arguments, the
call to clSetKernelArg(...) is slightly di�erent. See [OCL] and
below.
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9) Compute the time-steps on the GPU

while(t<0.25){

t=t+dt;

err = clEnqueueNDRangeKernel(

CommandQueue, // the command queue

Kernel, // the kernel to execute

1,NULL,

&NbGlobal, // total number of work-items

// (= N the number cells)

&NbWorks, // number of work-items

// inside a work-group

0,NULL,NULL);

}

In our simple example, the value of NbWorks is not very important
because we do not use the local memory.
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10) Read back the results from the GPU

clEnqueueReadBuffer(

CommandQueue,

wa_gpu,

CL_TRUE,0,

sizeof(float) * _N,

wa,

0,NULL,NULL);

This call to clEnqueueReadBuffer(...) copy the bu�er pointed
by wa_gpu to the bu�er pointed by wa. Then, we can compare to
the results obtained on the host CPU.
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11) Enjoy your work !

Execution on a MacBook GPU (NVidia GeForce 9400M)

Données calcul: Mem GPU=512Gb

Nb Procs=4

Nb Works Max=512

Mem locale=16kb

Plateformes:1

Devices:2

copie dans le gpu

NbGlobal=51200 _N=51200

début du calcul...

temps gpu=3 s

temps cpu=14 s

Computed 48205/51200correct values!

speedup=4.66667
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Other important notions

Optimizations in local memory;

Atomic operations;

Sharing objects with OpenGL (not tested);

Using multiple devices, including CPU (not tested).
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Local memory optimizations

Philippe Helluy, Anaïs Crestetto Introduction à OpenCL et applications



OpenCL
Solving a transport equation with OpenCL

Local memory optimizations
Atomic operations

Sod's shock tube

We consider a model for an inviscid compressible gas

∂tw + ∂x f (w) = 0.

w(x , t) is now a vector ∈ R3. w = (ρ,ρu,ρE )T . The density
is ρ , the velocity u and the total energy E . The �ux is given
by f (w) = (ρu,ρu2 +p,(ρE +p)u)T .

The pressure is given by p = (γ−1)(ρE − 1
2
ρu2) where γ > 1

is the polytropic constant.

The initial condition is piecewise constant (Riemann's problem)

w(x ,0) =

{
wL if x < 0,
wR if x > 0.
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Finite volume scheme

The approximation is given by a �nite volume scheme

wn+1
i −wn

i

∆t
+

f ni+1/2− f ni−1/2

∆x
= 0.

The numerical �ux at the cell boundaries

f ni+1/2 = f (wn
i ,w

n
i+1)

has a rather complex expression (we use the VFRoe scheme
[MFG99] with an entropy correction at sonic points [HHMM09]).
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Main kernel

At a given time-step n the values of wn
i and wn+1

i for
i = 0 · · ·N−1 are stored in the global memory of the GPU in
two arrays of cl_float4 (a value is unused).

In order to avoid too much access to global memory, we �rst
copy for each work-group a part of the array containing wn

i

in local memory. The cache size imposes the maximal size of
the work-group.

The �rst and the last cell in a work-group are not computed,
which implies a two-cell overlap between the work-groups.

At the end of the time step the updated values are written
back in the other array in global memory.

A pointer exchange permits to avoid another transfer in global
memory before the next time step.
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Work-group overlap

k: work-group number

i: global work-item number

j: local work-item number in work-group k

i-1 i+1i

Work-group k-1

Work-group k

This cell is not computed in
work-group k

This cell is not computed in
work-group k-1

j=0 j=1 j=2 ...
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Perfs

We compare several GPUs for a 100,000 cells computations.
time (s) proc. CPU/GPU

NVIDIA GeForce GTX 260 75 216 63

ATI Radeon HD 5750 102 720 46

NVIDIA GeForce 9400M 572 16 8

NVIDIA GeForce 9600M GT 281 32 17

AMD Phenom II x4 i810 (OpenCL) 2057 4 2.3

AMD Phenom II x4 i810 (on one core) 4722 1 1
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Results

Comparison between the exact and the numerical solution with or
without entropy correction for 12,600 cells.
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Atomic operations
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The PIC method

Vlasov-Poisson system:{
∂ f
∂ t

(x ,v , t) + v ∂ f
∂x

(x ,v , t)−E (x , t) ∂ f
∂v

(x ,v , t) = 0
∂E
∂x

(x , t) = ρ(x , t) = 1−
∫+∞

−∞
f (x ,v , t)dv

.

The Particle-In-Cell (PIC) method:

we consider N macro-particles: position xk , velocity vk and weight
ωk = ω ,

we approach f by: fN(x ,v , t) = ∑
N
k=1ωkδ (x− xk(t))δ (v − vk(t)).

We solve the electric �eld equation at grid points xi = i∆x ,
∆x = L/Nx .

We move the macro-particles with the Newton's law: dxk
dt

= vk

and dvk
dt

=−E .
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Algorithm

We know xnk , v
n
k for each particle k = 0, . . . ,N−1, En

i at each grid
point i = 0, . . . ,Nx −1.

Explicit Euler's scheme (for example) for moving the particles:

vn+1
k = vnk −∆tEn

ik
, with ik such that xnk ∈ [xik ,xik+1]

xn+1
k = xnk + ∆tvnk ,

the charges ρ
n+1
i calculated by linear interpolation from the

position of the particles located in [xi−1,xi ] and [xi ,xi+1] at
time n+1,

electric �eld En+1
i : we need the charges ρ

n+1
j , for j < i .
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GPU programing

We work with particles (N ∼ 1 000 000) and on a grid (Nx ∼ 128).

Particle move: one work-item per particle,

E : one work-item for each grid point.
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charge computation

First idea and �rst problem: move the particles and compute their
contribution to ρ in the same Kernel → problem when two particles
add at the same time their contribution to the same grid point:

k0 reads ρn

1
,

k3 reads ρn

1
,

k0 adds its contribution to ρn

1
and writes ρ1 : ρ1 = ρn

1
+ contr(k0),

k3 adds its contribution to ρn

1
and overwrites ρ1 : ρ1 = ρn

1
+ contr(k3).

Finally ρ1 = ρn

1
+ contr(k3) instead of ρ1 = ρn

1
+ contr(k0) + contr(k3).
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Atomic addition

Solution: use the atomic addition to add the contributions of
particles.

When a particle reads ρ and adds its contribution, the other
work-items are stopped until this addition is �nished. Can be
complex [SDG08].
Simple solution: add integer values.
Cut each cell and transform the contributions into integer
values:

if xk ∈ [xi ,xi+1] and if k is in the subcell j , this particle adds s− j

to contri and 1+ j to contri+1.

When we compute E we use the good densities ρi = contri
s+1

ω

∆x
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Speedups

524 288 particles CPU NVIDIA GeForce ATI Radeon
GTX 260 HD 5750

Time 37s. 15s. 5s.

Speedup 2.47 7.40

1 048 576 particles CPU NVIDIA GeForce ATI Radeon
GTX 260 HD 5750

Time 75s. 30s. 9s.

Speedup 2.50 8.33

2 097 152 particles CPU NVIDIA GeForce ATI Radeon
GTX 260 HD 5750

Time 151s. 61s. 19s.

Speedup 2.48 7.95
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Graph
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Comments

2D version coming soon...

�aws in the current OpenCL implementations: memory (ATI),
crashes (ATI/NVIDIA), computations on the CPU device
(NVIDIA), documentation (ATI), double precision
(ATI/NVIDIA), etc.

lack of libraries for numerical algorithms.

But OpenCL is already portable and e�cient. It looks very
promising.
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