

Séminaire de la SMAI : Calcul scientifique pour la médecine 04/06/2007

Modélisation d'un accident vasculaire cérébral ischémique

Marie-Aimée Dronne¹, Thierry Dumont²

¹ Equipe « Evaluation et Modélisation des Effets Thérapeutiques », UMR 5558, Université Lyon 1 - CNRS, Lyon

² Institut Camille Jordan, Université Lyon 1, Lyon

Projet ANR « AVC - in silico »

- Equipe EMET, UMR 5558 Université Lyon 1 CNRS, Lyon
- Unité de Mathématiques Pures et Appliquées, ENS, Lyon
- Institut Camille Jordan, Université Lyon 1, Lyon
- Service de Neurologie, CHU, Grenoble
- ERI 22 INSERM, Faculté de Médecine Laënnec, Lyon
- INSERM U678, Université Paris 6, CHU Pitié Salpétrière, Paris
- UMR CNRS 7102, Université Paris 6, Paris
- Laboratoire de Neuropathologie, CHU Pitié Salpétrière, Paris
- CEA, DIF, Bruyères-le-Châtel
- INSERM U594, Université Grenoble 1, Grenoble
- Laboratoire CREATIS, Lyon

Sommaire

• Introduction

• Modèle EDO

- Hypothèses biologiques
- Equations
- Résultats de simulation

• Modèle EDP

- Hypothèses biologiques
- Equations
- Premiers résultats de simulation
- Conclusions et perspectives

AVC ischémique (AVCi)

• 80% des AVC

• Problème majeur de santé publique

- 3^{ème} cause de mortalité
- 1^{ère} cause de handicap acquis de l'adulte

(source : Service de Neurologie, CHU de Grenoble)

Pourquoi un modèle de l'AVCi?

- Problème des agents neuroprotecteurs
 - résultats prometteurs chez le rongeur
 - résultats décevants chez l'homme

Discordance entre ces résultats mal comprise

- → Modélisation mathématique
- Objectifs du modèle de l'AVCi :
 - Elaboration d'un modèle des principaux mécanismes physiopathologiques précoces de l'AVCi
 - Réalisation d'expériences *in silico* simulant l'action de neuroprotecteurs chez l'homme et chez le rongeur

Principaux mécanismes physiopathologiques

Mécanismes précoces de l'AVCi

Modèle homme/modèle rongeur

Cerveau homme

<u>Figures 1 et 2</u> : coupes coronales de cerveaux (échelle non respectée !) (<u>http://www.brainmuseum.org/index.html</u>)

Variables du modèle électrophysiologique

• Variables principales :

- Concentrations ioniques intracellulaires : C_{s,i}
- Concentrations ioniques extracellulaires : $C_{s,e}$
- Potentiels de membrane : Vm_i
- Proportions de volume cellulaire : \mathbf{f}_i

• Variables intermédiaires :

- Potentiels d'équilibre ioniques : E_{s.i}
- Courants ioniques : $I_{s,i,k}$

avec $s = Na^+$, K^+ , Ca^{2+} , Cl^- , $glu^$ i = neurone, cellule gliale k = canal, transporteur, pompe,...

Equations du modèle

Système de 17 EDO

• Concentrations ioniques : C_{s,i} and C_{s,e}

$$\frac{dC_{s,i}}{dt} = -\frac{n_i.s_i}{f_i.z_s.F.v} \times \sum_k I_{s,i,k} - \frac{C_{s,i}}{f_i} \times \frac{df_i}{dt}$$

 s_i : surface du compartiment i n_i : nombre de cellules i par sous-unité z_s : valence de l'ion s F : constante de Faraday

v : volume d'une sous-unité

• Proportions de volumes cellulaires : f_i

$$\frac{df_i}{dt} = \frac{1}{S_0} \cdot \frac{d}{dt} \left(f_i \cdot \sum_{s} C_{s,i} \right)$$

S₀ : somme des concentrations extracellulaires dans les conditions physiologiques

Equations du modèle

• Potentiels de membrane : Vm_i

- z_s : valence de l'ion s $C_{s,i}$: concentration en ions s dans i
- Potentiels d'équilibre : E_{s,i}

$$E_{s,i} = \frac{R.T}{Z_s.F} \ln\left(\frac{C_{s,e}}{C_{s,i}}\right)$$

• Courants ioniques : I_{s,i,k}

$$I_{s,i,k} = g_{i,k}.m^{p}.h^{q}.(Vm_{i} - E_{s,i})$$

R : constante des gaz parfaits T : température absolue F : constante de Faraday C_{s.e} : concentration extracellulaire en ions s

 $\begin{array}{l} g_{i,k}: \text{ conductance max du canal k dans i} \\ m: \text{ proba d'ouverture de la porte d'activation} \\ h: \text{ proba d'ouverture de la porte d'inactivation} \\ Vm_i: \text{ potentiel de membrane de i} \\ E_{s,i}: \text{ potentiel d'équilibre de l'ion s dans i} \end{array}$

Simulation d'une ischémie modérée

• Concentrations extracellulaires (en mM) en fonction du temps (en min) :

• Potentiels membranaires (en mV) :

• rADCw :

→ Résultats conformes aux résultats des expériences *in vitro* et *in vivo* obtenus pour la zone de pénombre

Simulation d'une ischémie sévère

• Concentrations extracellulaires (en mM) en fonction du temps (en min) :

• Potentiels membranaires (en mV) :

• rADCw :

rADCw						
	10	20	30	40	50	60
0.9						
0.8						
0.7						
0.6						
0.5						

→ Résultats conformes aux résultats des expériences *in vitro* et *in vivo* obtenus pour la zone infarcie

Essais effectués avec des agents « neuroprotecteurs »

• Bloqueurs des canaux sodiques voltage-dépendants

- Fosphénytoine (Pulsinelli, 1999)

• Bloqueurs des canaux calciques voltage-dépendants

- Nimodipine (VENUS, Horn et al., 2001)
- Flunarizine (FIST, Franke et al., 1996)

• Antagonistes des récepteurs NMDA

- Selfotel (Morris et al., 1999)
- Aptiganel (Albers et al., 2001)

→ Résultats positifs chez le rongeur mais absence d'efficacité chez l'homme (phase III)

Représentation spatiale

- Région cérébrale : matrice de 256 x 256 sous-unités
- Vascularisation :
 - 1 vaisseau obstrué (V₁)
 - 4 vaisseaux sains $(V_2 V_3 V_4 V_5)$

Effet d'un bloqueur du canal NaP chez le rongeur

Evolution des 3 zones ischémiques sur 40 minutes lors de l'introduction d'un bloqueur du canal NaP dans la SG du rongeur

→ Récupération de la zone de pénombre d'environ 95%

Effet d'un bloqueur du canal NaP dans la SG de l'homme

Evolution des 3 zones ischémiques sur 40 minutes lors de l'introduction d'un bloqueur du canal NaP dans la SG de l'homme

 \rightarrow Récupération de la zone de pénombre d'environ 20%

Nouveau modèle

Prise en compte de la diffusion

• Diffusion dans la substane grise :

- Extracellulaire

- Inter-astrocytaire

$$\frac{\partial C_{s,a}}{\partial t} - \alpha_{s,a} \cdot \ddot{A}C_{s,a} = -\frac{n_a \cdot s_a}{f_a \cdot z_s \cdot F \cdot v} \times \sum_k I_{s,a,k} - \frac{C_{s,a}}{f_a} \times \frac{\partial f_a}{\partial t}$$

- Diffusion dans la substance blanche :
 - Extracellulaire

Propagation d'ondes

• Représentation de la région cérébrale :

• Ondes sans récupération :

sansrecup_sansbloc

 \rightarrow Propagation d'ondes dans la substance grise

Propagation d'ondes

• Modélisation de la récupération des ondes : Introduction de 2 ED supplémentaires

avecrecup_sansbloc

 \rightarrow Récupération des ondes dans la zone saine

• Simulation de l'effet de différents neuroprotecteurs sur les ondes : Exemple du bloqueur du capal CaHVA :

Exemple du bloqueur du canal CaHVA :

avecrecup_blocCaHVA

 \rightarrow Arrêt de la propagation des ondes avec ce bloqueur

Conclusions - Perspectives

• Conclusions :

- Obtention d'un 1^{er} modèle des principaux mécanismes de l'AVCi
- Réalisation d'expériences *in silico* chez l'homme et le rongeur avec différents agents thérapeutiques
- Perspectives :
 - Ajouts d'autres mécanismes physiopathologiques
 - Apoptose
 - Inflammation
 - Prise en compte d'autres différences hommes/rongeur
 - Vascularisation
 - Validation par l'imagerie médicale
 - IRM de perfusion
 - IRM de diffusion