
11/10/2012

1

OpenACC Standard

Directives for Accelerators

• http://www.openacc.org/

o V1.0: November 2011 Specification

• OpenACC, Directives for Accelerators, Nvidia Slideware

• CAPS OpenACC Compiler, HMPP Workbench 3.1.x, CAPS
entreprise

Credits

www.caps-entreprise.com 2

http://www.openacc.org/
http://www.openacc.org/

11/10/2012

2

• OpenACC Overview and Compilers

• Programming Model

• Managing Data

• Loops

• Asynchronism

• Runtime API

Agenda

www.caps-entreprise.com 3

OpenACC Overview and
Compilers

11/10/2012

3

• Three ways of programming GPGPU applications:

www.caps-entreprise.com 5

Directive-based Programming

Libraries

Ready-to-use

Acceleration

Directives

Quickly Accelerate

Existing Applications

Programming

Languages

Maximum Performance

Directive-based Programming

www.caps-entreprise.com 6 11/10/2012

11/10/2012

4

• Keeping a unique version of codes, preferably mono-

language

o Reduces maintenance cost

o Preserves code assets

o Is less sensitive to fast moving hardware targets

• Codes last several generations of hardware architecture

• Help to get "portable" performance

o Multiple forms of parallelism cohabiting

• Multiple devices (e.g. GPUs) with their own address space

• Multiple threads inside a device

• Vector/SIMD parallelism inside a thread

o Dealing with massive parallelism

• OpenACC is a promising approach

www.caps-entreprise.com 7

Introduction to Directive-based

Programming

• A CAPS, CRAY, Nvidia and PGI initiative

• Open Standard

• A directive-based approach for programming heterogeneous

many-core hardware for C and FORTRAN applications

• Available for implementation

o As CRAY’s, PGI’s…

o CAPS OpenACC Compiler  released in April 2012 with HMPP 3.1

• Satisfies the OpenACC Test Suite provided by University of Houston

• Visit http://www.openacc-standard.com for more information

www.caps-entreprise.com 8

OpenACC Initiative

http://www.openacc-standard.com/
http://www.openacc-standard.com/
http://www.openacc-standard.com/

11/10/2012

5

• Express data and computations to be executed on an

accelerator

o Using marked code regions

• Main OpenACC constructs

o Parallel and kernel regions

o Parallel loops

o Data regions

o Runtime API

www.caps-entreprise.com 9

OpenACC Initiative

Data/stream/vector

parallelism to be

exploited by HWA
e.g. CUDA / OpenCL

CPU and HWA linked with a

PCIx bus

Composed of 3 parts:

• A set of directives to program
hardware accelerators
o Drive your HWAs, launch

computations, manage transfers

• A complete toolchain to build
manycore applications
o Build your hybrid application

• A runtime to adapt to platform
configuration

www.caps-entreprise.com 10

HMPP Compiler

11/10/2012

6

• The directives

o Define hardware implementations of native functions (codelets)

o Indicate resource allocation and communication

o Ensure portability (future-proof) and default execution (no exit cost)

• The toolchain

o Helps building manycore applications

o Includes compilers and target code generators

o Insulates hardware specific computations

o Uses hardware vendor SDK

• The runtime

o Helps to adapt to platform configuration

o Manages hardware resource availability

www.caps-entreprise.com 11

HMPP Compiler

• HMPP drives all compilation

passes

o Host application compilation

• Calls traditional CPU compilers

• HMPP Runtime is linked to the

host part of the application

o Device code production

• According to the specified target

• A dynamic library is built

www.caps-entreprise.com 12

HMPP Compiler

$ hmpp gcc myprogram.c

$ hmpp gfortran myprogram.f90

11/10/2012

7

Programming Model

13 11/10/2012

• Among a bulk of computations executed by the CPU, some

regions can be offloaded to hardware accelerators

• Host is responsible for:

o Allocating memory space on accelerator

o Initiating data transfers

o Lauching computations

o Waiting for completion

o Deallocating memory space

• Accelerators execute parallel regions:

o Use work-sharing directive

o Specify level of parallelization

www.caps-entreprise.com 14

Execution Model

11/10/2012

8

• Host-controlled execution

• Based on three parallelism levels

o Gangs – coarse grain

o Workers – fine grain

o Vectors – finest grain

www.caps-entreprise.com 15

Levels of Parallelism

Gang

workers
Gang

workers
Gang

workers
Gang

workers

• C

• Fortran

www.caps-entreprise.com 16

Directive Syntax

!$acc directive-name [clause [, clause] …]

 code to offload

!$acc end directive-name

#pragma acc directive-name [clause [, clause] …]

{

 code to offload

}

11/10/2012

9

• Starts parallel execution on the accelerator

• Creates gangs and workers

• The number of gangs and workers remains constant for the

parallel region

• One worker in each gang begins executing the code in the

region

www.caps-entreprise.com 17

Work Management: Parallel Construct

#pragma acc parallel […]

{

 …

}

$!acc parallel […]

 …

$!acc end parallel

• The clauses:

o num_gangs

o num_workers

Enables to specify the number of gangs and workers in the

corresponding parallel section

www.caps-entreprise.com 18

Parallel Construct: Gangs and Workers

#pragma acc parallel, num_gangs[32], num_workers[256]

{

 …

 for(i=0; i < n; i++) {

 for(j=0; j < n; j++) {

 …

 }

 }

 …

}

Work distribution over 32 gangs

and 256 workers

11/10/2012

10

• Kernels construct

o Defines a region of code to be compiled into a sequence of

accelerator kernels

• Typically, each loop nest will be a distinct kernel

o The number of gangs and workers can be different for each kernel

www.caps-entreprise.com 19

Work Management: Kernels Construct

#pragma acc kernels […]

{

 for(i=0; i < n; i++) {

 …

 }

 …

 for(j=0; j < n; j++) {

 …

 }

}

$!acc kernels […]

 DO i=1,n

 …

 END DO

 …

 DO j=1,n

 …

 END DO

$!acc end kernels

1st Kernel

2nd Kernel

Managing Data

20 www.caps-entreprise.com 11/10/2012

11/10/2012

11

• Mirroring duplicates a CPU memory block into the HWA memory

o Mirror identifier is a CPU memory block address

o Only one mirror per CPU block

o Users ensure consistency of copies via directives

Data Storage

www.caps-entreprise.com 21 OpenACC Webinar

Host Memory

Master copy

……………………
……………………
……………………
……………….

HWA Memory

……………………
……………………
……………………
……………….

HMPP RT
Descriptor

Mirror copy

• Defines scalars, arrays and subarrays to be allocated on the

device memory for the duration of the region

o Data can be copied from the host to the device when entering region

o Data can be copied from the device to the host when exiting region

• if clause can be used

www.caps-entreprise.com 22 11/10/2012

Data Management: Data Constructs

#pragma acc data […]

{

 …

}

$!acc data […]

 …

$!acc end data

11/10/2012

12

• Declares variable, arrays or subarrays to be allocated in the

device memory

• No data specified in this clause will be copied between host

and device

www.caps-entreprise.com 23

Data Allocation: Create Clause

#pragma acc data, create (A)

{

 …

}

$!acc data, create (A)

 …

$!acc end data

• In C and C++, specified with start and length

 ie: elements a[2], a[3], …, a[2+n-1]

o If the lower bound is missing, zero is used

o If the length is missing, the difference between the lower bound and the
declared size of the array is used

• In Fortran, specified with a list of range specifications

 ie: elements a(1,5), a(2,5), a(3,5), a(1,6), a(2,6), a(3,6)

• Any Array or subarray must be a contiguous block of memory

www.caps-entreprise.com 24 11/10/2012

Subarrays

a[2:n]

a(1:3,5:6)

11/10/2012

13

• Declares data that need to be copied from the host to the

device when entering the data section

• These data are assigned values on the device that need to

be copied back to the host when exiting the data section

www.caps-entreprise.com 25

Transfers: Copy Clause

#pragma acc data, copy (A)

{

 …

}

$!acc data, copy (A)

 …

$!acc end data

• copyin

o Declares data that need to be copied from the host to the device

when entering the data section

• copyout

o Declares data that need to be copied from the device to the host

when exiting data section

www.caps-entreprise.com 26

Transfers: Copyin/Copyout Clause

#pragma acc data, copyin (A)

{

 …

}

$!acc data, copyout (A)

 …

$!acc end data

11/10/2012

14

• Declares data that are already present on the device

o Thanks to data region that contains this region of code

• HMPP Runtime will find and use the data on device

www.caps-entreprise.com 27

Present Clause

#pragma acc data, copy (A)

{

 …

 #pragma acc data, present (A)

 {

 …

 }

}

$!acc data, copy (A)

 …

 $!acc data, present (A)

 …

 $!acc end data

$!acc end data

• Declares data that may be present

o If data is already present, use value in the device memory

o If not, allocate data on device when entering region and deallocate

when exiting

• May be shortened to pcreate

www.caps-entreprise.com 28

Data Allocation: Present_or_create Clause

#pragma acc data, pcreate (A)

{

 …

}

$!acc data, pcreate (A)

 …

$!acc end data

11/10/2012

15

• If data is already present, use value in the device memory

• If not:

o Allocates data on device and copies the value from the host at region

entry

o Copies the value from the device to the host and deallocate memory

at region exit

• May be shortened to pcopy

www.caps-entreprise.com 29

Transfers: Present_or_copy Clause

#pragma acc data, pcopy (A)

{

 …

}

$!acc data, pcopy (A)

 …

$!acc end data

• If data is already present, use value in the device memory

• If not:

o Both present_or_copyin/present_or_copyout allocate memory on

device at region entry

o present_or_copyin copies the value from the host at region entry

o present_or_copyout copies the value from the device to the host at

region exit

o Both present_or_copyin/present_or_copyout deallocate memory at

region exit

• May be shortened to pcopyin and pcopyout

www.caps-entreprise.com 30

Transfers: Present_or_copyin /

Present_or_copyout Clause

#pragma acc data, pcopyin (A)

{

 …

}

$!acc data, pcopyout (A)

 …

$!acc end data

11/10/2012

16

• Kernels and parallel constructs implicitly define data regions

• Data clauses also apply to these structures

• Kernels and parallel constructs cannot contain other kernels

or parallel regions

• Data inside kernels or parallel regions data can be managed

by a data construct at an higher level

www.caps-entreprise.com 31 11/10/2012

Kernels, Parallel Contructs and Data

Clauses

int A[n]

…

#pragma acc data, copyin (A)

{

 …

 function(A)

 …

}

data.c

function(float A[n])

{

 #pragma acc kernels, \

 pcopyin (A)

 {

 …

 }

}

kernels.c

• HMPP compiler is able to detect the variables required on

the device for the kernels and parallel constructs.

• Depending on their type, they follow the following policies

o Tables: present_or_copy behavior

o Scalar

• if not live in or live out variable: private behavior

• copy behavior otherwise

www.caps-entreprise.com 32

Data Management: Default Behavior

11/10/2012

17

Loop Constructs

33 www.caps-entreprise.com 11/10/2012

• Loop directive applies to a loop that immediately follow the

directive

• Describes what kind of parallelism to use

www.caps-entreprise.com 34

Kernel Optimization: Loop Construct

#pragma acc loop […]

for(i=0; i<n; i++)

{

 …

}

$!acc loop […]

DO i=1,n

 …

END DO

11/10/2012

18

• The seq clause specifies that the associated loop should be

executed sequentially

• This is the default behavior in a parallel region

www.caps-entreprise.com 35

Sequential Execution

#pragma acc loop seq

for(i=0; i<n; i++)

{

 …

}

$!acc loop seq

DO i=1,n

 …

END DO

• The clause independent specifies that iterations of the loop

are data-independent

• Allowed on loop directives in kernels regions

• Allows the compiler to generate code to execute the

iterations in parallel with no synchronisation

www.caps-entreprise.com 36

Data Independence

#pragma acc loop independent

for(i=0; i<n; i++)

{

 for(j=0; j<m; j++)

 {

 A(j,i*3+MOD(i,2)) = i*j;

 }

}

#pragma acc loop independent

for(i=0; i<n; i++)

{

 for(j=0; j<m; j++)

 {

 A(j,i*3+MOD(i,2)) =

 i*A(i,j-1);

 }

}

Programming error

11/10/2012

19

• Gang clause:

o The iterations of the following loop are executed in parallel

o In a parallel construct:

• Iterations are distributed among the gangs created by the parallel

contruct

• No argument is allowed

o In a kernels construct

• Iterations are distributed among the gangs created by the kernel created

by a loop

• An argument can specify the number of gangs to use for this loop

www.caps-entreprise.com 37

Gangs

• Worker clause:

o The iterations of the following loop are executed in parallel

o In a parallel construct:

• Iterations are distributed among the multiple workers withing a single

gang

• No argument is allowed

• Loop iterations must be data independent, unless it performs a reduction

operation

o In a kernels construct:

• Iterations are distributed among the workers within the gangs created by

the kernel within a loop

• An argument can specify the number of workers to use for this loop

www.caps-entreprise.com 38

Workers

11/10/2012

20

Asynchronism

39 www.caps-entreprise.com 11/10/2012

• By default, the code on the accelerator is synchronous

o The host waits for completion of the parallel or kernels region

• The async clause enables to use the device while the host

process continues with the code following the region

• Can be used on parallel and kernels regions and update

directives

www.caps-entreprise.com 40

Asynchronism

CPU GPU

1

2

3

4

5

CPU GPU

1

2

3

4

5

11/10/2012

21

• Causes the program to wait for an asynchronous activity

o Parallel, kernels regions or update directives

• An identifier can be added to the async clause and wait

directive:

o Host thread will wait for the asynchronous activities with the same ID

• Without any identifier, the host process waits for all

asynchronous activities

www.caps-entreprise.com 41

Wait Directive

#pragma acc kernels, async

{

 …

}

#pragma acc kernels, async

{

 …

}

#pragma acc wait

$!acc kernels, async 1

 …

$!acc end kernels

 …

$!acc kernels, async 2

 …

$!acc end kernels

 …

$!acc wait 1

Runtime API

42 www.caps-entreprise.com 11/10/2012

11/10/2012

22

• For C:

o Header file: openacc.h

• For Fortran:

o Interface declaration in: openacc_lib.h in a Fortran module called

openacc

• acc_device_t: type of accelerator device

o acc_device_none

o acc_device_default

o acc_device_host

o acc_device_not_host

o …

 www.caps-entreprise.com 43

Runtime Library Definition

• int acc_get_num_device (acc_device_t) (C)

• integer function acc_get_num_device (devicetype) (Fortran)

o Returns the number of accelerator devices of the given type attached

to the host

• int acc_set_device_type (acc_device_t) (C)

• subroutine acc_set_device_type (devicetype) (Fortran)

o Tells the runtime which type of device to use

• acc_device_type acc_get_device_type (void) (C)

• function acc_get_device_type () (Fortran)

o Tells the program what type of device will be used

www.caps-entreprise.com 44

Runtime API

11/10/2012

23

• void acc_set_device_num (int, acc_device_t) (C)

• subroutine acc_set_device_num (devicenum, devicetype)

(Fortran)

o Tells the runtime which device to use

• int acc_get_device_num (acc_device_t) (C)

• Integer function acc_get_device_num (devicetype) (Fortran)

o Return the device number of the specified device type that will be

used

www.caps-entreprise.com 45

Runtime API

• void acc_init (acc_device_t) (C)

• Subroutine acc_init (devicetype) (Fortran)
o Initialize the runtime for the given type

• void acc_shutdown (acc_device_t) (C)

• Subroutine acc_shutdown (devicetype) (Fortran)
o Disconnect the program from the accelerator device

• void* acc_malloc (size_t) (C)
o Allocates memory on accelerator device

o Pointers assigned to this function may be reused

• void* acc_free (size_t) (C)
o Deallocates memory on accelerator device

www.caps-entreprise.com 46 11/10/2012

Runtime API

11/10/2012

24

• Beware of compiler-dependent behaviors

• Fast development of high-level heterogenous applications

o For C and FORTRAN code

• Explicit the calls to a hardware accelerator in your code

o Whatever the target

o CAPS OpenACC compiler supports:

• Nvidia Tesla GPUs

• AMD

• X86 Intel Phi

www.caps-entreprise.com 47 11/10/2012

Conclusion

Accelerator Programming Model Parallelization

Directive-based programming GPGPU Manycore programming

Hybrid Manycore Programming HPC community OpenACC

 Petaflops Parallel computing HPC open standard

Multicore programming Exaflops NVIDIA Cuda

Code speedup Hardware accelerators programming

 High Performance Computing OpenHMPP

Parallel programming interface

 Massively parallel

 Open CL

http://www.caps-entreprise.com
http://twitter.com/CAPSentreprise
http://www.openacc-standard.org/

http://www.openhmpp.org

http://www.caps-entreprise.com/
http://www.caps-entreprise.com/
http://www.caps-entreprise.com/
http://twitter.com/CAPSentreprise
http://twitter.com/CAPSentreprise
http://twitter.com/CAPSentreprise
http://www.openhmpp.org/
http://www.openhmpp.org/

