cars
OpenACC Standard
Directives for Accelerators
@
O/
. 0. %
et
2 Sosc 5o an
et wtlesle A
o™ - “‘s‘:‘o
- e W
" - e e e
= e e
- T S
_—e B e e
Credits caps

- http://www.openacc.org/
o V1.0: November 2011 Specification

« OpenACC, Directives for Accelerators, Nvidia Slideware

« CAPS OpenACC Compiler, HMPP Workbench 3.1.x, CAPS
entreprise

WWw.caps-entreprise.com 2

11/10/2012

http://www.openacc.org/
http://www.openacc.org/

11/10/2012

CAPS
CAPS

WWw.caps-entreprise.com

OpenACC Overview and
Compilers

« OpenACC Overview and Compilers
Runtime API

Agenda

» Programming Model
« Managing Data

» Loops

» Asynchronism

(U
..........,,//,,s.—
.....,u%,ﬁ

11/10/2012

Directive-based Programming caps”

» Three ways of programming GPGPU applications:

: - : : Programmin
Libraries Directives g g
Languages
Ready-to- Quickly A lerat: .
Aeczze)l/ergtzjosr? Exiilt(i:ng A:Ffl‘fcz;ﬁ)ﬁ s Maximum Performance

WWw.caps-entreprise.com

5
. . . oy
Directive-based Programming CAPS
main() { main() {
double pi = 0.0; long i; double pi =0.0; long i;
#pragma acc paralle!
#pragma omp parallel for reduction(+:pi) for (1=0; i<N; l++)
for (i=0; i<N; i++) {
{ double 1 = (double)((i+0.05)/N);
double t = (double)((i+0.05)/N); pi+=4.0/(1,0+17);
pi += 4.0/(1.0+t'1);)
printf("pl = %An", pi/N);
printf(“pi = %f\n", pi/N);
11/10/2012 WWw.caps-entreprise.com 6

Introduction to Directive-based
Programming

» Keeping a unique version of codes, preferably mono-
language
o Reduces maintenance cost
o Preserves code assets
o Is less sensitive to fast moving hardware targets
» Codes last several generations of hardware architecture
» Help to get "portable" performance

o Multiple forms of parallelism cohabiting
» Multiple devices (e.g. GPUSs) with their own address space
» Multiple threads inside a device
» Vector/SIMD parallelism inside a thread

o Dealing with massive parallelism

« OpenACC is a promisSing.approach

WWw.caps-entreprise.com

7 4
CAPS

OpenACC Initiative

OpenACC.

DIRECTIVES FOR ACCELERATORS

cars” cRaes amwvoia PG

« A CAPS, CRAY, Nvidia and PGl initiative
* Open Standard

oy

CAPS

» Adirective-based approach for programming heterogeneous

many-core hardware for C and FORTRAN applications

 Available for implementation
o As CRAY’s, PGI's...

o CAPS OpenACC Compiler =» released in April 2012 with HMPP 3.1
 Satisfies the OpenACC Test Suite provided by University of Houston

« Visit http://lwww.openacc-standard.com for more information

WWw.caps-entreprise.com

11/10/2012

http://www.openacc-standard.com/
http://www.openacc-standard.com/
http://www.openacc-standard.com/

OpenACC Initiative

7
CAPS

* Express data and computations to be executed on an

accelerator
o Using marked code regions

* Main OpenACC constructs
Parallel and kernel regions

Parallel loops
Data regions

]
]
(]
o Runtime API | t

Www.caps-entreprise.com

Data/stream/vector

parallelism to be
exploited by HWA
e.g. CUDA/ OpenCL

e

HMPP Compiler

Composed of 3 parts:

» Aset of directives to program
hardware accelerators

o Drive your HWAs, launch
computations, manage transfers

+ Acomplete toolchain to build
manycore applications
o Build your hybrid application

+ Aruntime to adapt to platform
configuration

WWw.Caps-entreprise.com

~y

CAPS

HMPP Compiler
HMPP Prepmcess or HMPP Generators

Host application

HWARuntime

10

11/10/2012

HMPP Compiler

The directives

o Define hardware implementations of native functions (codelets)
o Indicate resource allocation and communication
o Ensure portability (future-proof) and default execution (no exit cost)

The toolchain
Helps building manycore applications

Insulates hardware specific computations
Uses hardware vendor SDK

O O O O

The runtime
o Helps to adapt to platform configuration
o Manages hardware resource availability

WWw.caps-entreprise.com

Includes compilers and target code generators

oy

CAPS

11

HMPP Compiler

* HMPP drives all compilation
passes

oy

CAPS

HMPP Annotated

o Host application compilation
 Calls traditional CPU compilers

* HMPP Runtime is linked to the
host part of the application

Shmpop Compiler

o Device code production
» According to the specified target
* Adynamic library is built

Application

HMPP
Container

" OHMPP " HMPP N[rrcaiback
Preprocessor Target Generator

Host Compiler

Binary host
application

$ hmpp gcc myprogram.c
$ hmpp gfortran myprogram.£f90

WWw.caps-entreprise.com

12

11/10/2012

7 4

CAPS
Programming Model
-
o,
> o T, —
e S 7
-l S — e e
- == —_— = e~
s == — - “ -
= - - - “ -
- -— - - “
- —— - -—
. 7 4
Execution Model CAPS

« Among a bulk of computations executed by the CPU, some
regions can be offloaded to hardware accelerators

» Host is responsible for:
o Allocating memory space on accelerator
o Initiating data transfers
o Lauching computations
o Waiting for completion
o Deallocating memory space

» Accelerators execute parallel regions:
o Use work-sharing directive
o Specify level of parallelization

WWw.caps-entreprise.com 14

11/10/2012

11/10/2012

. o~y
Levels of Parallelism CAPS

» Host-controlled execution

* Based on three parallelism levels
o Gangs — coarse grain
o Workers — fine grain
o Vectors — finest grain

Gang

—c>< o4

WWw.caps-entreprise.com 15

Directive Syntax caps”

- C

#pragma acc directive-name [clause [, clause] ..]
{

code to offload
}

e [Fortran

'Sacc directive-name [clause [, clause] ..]
code to offload
'$Sacc end directive-name

Www.caps-entreprise.com 16

Work Management: Parallel Construct caps”

 Starts parallel execution on the accelerator
» Creates gangs and workers

» The number of gangs and workers remains constant for the
parallel region

» One worker in each gang begins executing the code in the
region

#pragma acc parallel [..]

‘ $lacc parallel [..]

$lacc end parallel

} i I—

WWw.caps-entreprise.com 17

oy

Parallel Construct: Gangs and Workers CAPS

* The clauses:
o num_gangs
o num_workers

Enables to specify the number of gangs and workers in the
corresponding parallel section

#pragma acc parallel, num gangs[32], num workers[256]
{ -_

for(i=0; i < n; i++) {
for(3=0; 3 < ni 3+ { | Work distribution over 32 gangs

and 256 workers
}

}

WWw.caps-entreprise.com 18

11/10/2012

11/10/2012

oy

Work Management: Kernels Construct CAPS

» Kernels construct
o Defines a region of code to be compiled into a sequence of
accelerator kernels
» Typically, each loop nest will be a distinct kernel
o The number of gangs and workers can be different for each kernel

#pragma acc kernels [..] $lacc kernels [..]
{ _ .
for(i=0; i < n; i++) { } DO i=1,n }
- 1st Kernel
} (END DO ‘
for (3j=0; j < n; J++) { DO j=1,n
2nd Kernel
} END DO

$'acc end kernels

WWw.caps-entreprise.com 19

o
CAPS
Managing Data
-
oSS
POCS< N]
T > %//
P
—_—— e
- e
L T = B e
= - = N e “:—_-”- -
= == N ———— T
== -— - e e
= - N
m1m?mm—entr3prise.com ‘_—_ “ "20

10

Data Storage caps”

* Mirroring duplicates a CPU memory block into the HWA memory
o Mirror identifier is a CPU memory block address
o Only one mirror per CPU block
o Users ensure consistency of copies via directives

HMPP RT
Descriptor

OpenACC Webinar WwWw.caps-entreprise.com 21

Data Management: Data Constructs caps”

» Defines scalars, arrays and subarrays to be allocated on the
device memory for the duration of the region
o Data can be copied from the host to the device when entering region
o Data can be copied from the device to the host when exiting region

e |f clause can be used

#pragma acc data [..]

; $lacc data [..]

$'lacc end data

}

11/10/2012 Www.caps-entreprise.com 22

11/10/2012

11

Data Allocation: Create Clause caps’

» Declares variable, arrays or subarrays to be allocated in the
device memory

» No data specified in this clause will be copied between host
and device

#pragma acc data, create (A)
{

$'acc data, create (A)

) - $'acc end data

WWw.caps-entreprise.com 23

oy

Subarrays CAPS

* In C and C++, specified with start and length

af[2:n]

ie: elements a[2], a[3], ..., a[2+n-1]

o If the lower bound is missing, zero is used

o If the length is missing, the difference between the lower bound and the
declared size of the array is used

* In Fortran, specified with a list of range specifications

a(l:3,5:6)

ie: elements a(1,5), a(2,5),-a(3;5), a(1,6), a(2,6)+a(3,6)

* Any Array or subarray must-be‘a.contiguous-block of'memeory

11/10/2012 WWw.caps-entreprise.com 24

11/10/2012

12

Transfers: Copy Clause cAPS’

» Declares data that need to be copied from the host to the
device when entering the data section

» These data are assigned values on the device that need to
be copied back to the host when exiting the data section

A
?prag'ma acc data, copy (A) T e aep—
) $lacc end data

25

WWw.caps-entreprise.com

Transfers: Copyin/Copyout Clause caps”

« copyin
o Declares data that need to be copied from the host to the device
when entering the data section

* copyout
o Declares data that need to be copied from the device to the host

when exiting data section

i A
?pragma acc data, copyin (A) Sircn Ao, e 9
$'lacc end data

} B — BN

WWw.caps-entreprise.com 26

11/10/2012

13

oy

Present Clause CAPS

» Declares data that are already present on the device
o Thanks to data region that contains this region of code

« HMPP Runtime will find and use the data on device

#pragma acc data, copy (A)

($lacc data, copy (A)

.
#pragma acc data, present (A) i

t $lacc end data

$lacc end data

}

} e e

Www.caps-entreprise.com

27

oy

Data Allocation: Present_or_create Clause cAars

» Declares data that may be present
o If data is already present, use value in the device memory
o If not, allocate data on device when entering region and deallocate
when exiting

« May be shortened to pcreate

#pragma acc data, pcreate (A) $lacc data, pcreate (A)
{

$lacc end data

}

WWw.caps-entreprise.com

28

11/10/2012

14

oy

Transfers: Present_or_copy Clause CAPS

 |f data is already present, use value in the device memory
 If not:

o Allocates data on device and copies the value from the host at region
entry

o Copies the value from the device to the host and deallocate memory
at region exit

» May be shortened to pcopy

#pragma acc data, pcopy (A) $lacc data, pcopy (A)
{

$lacc end data

}

WWw.caps-entreprise.com 29

Transfers: Present_or_copyin / caps™
Present_or_copyout Clause

 |f data is already present, use value in the device memory
* If not:

o Both present_or_copyin/present_or_copyout allocate memory on
device at region entry

o present_or_copyin copies the value from the host at region entry

o present_or_copyout copies the value from the device to the host at
region exit

o Both present_or_copyin/present_or_copyout deallocate memory at
region exit

« May be shortened to pcopyin and pcopyout

#pragma acc data, pcopyin (A) $lacc data, pcopyout (A)
{ -
$lacc end data

}

WWw.caps-entreprise.com 30

11/10/2012

15

Kernels, Parallel Contructs and Data
Clauses

* Kernels and parallel constructs implicitly define data regions
» Data clauses also apply to these structures

* Kernels and parallel constructs cannot contain other kernels
or parallel regions

» Data inside kernels or parallel regions data can be managed
by a data construct at an higher level

74
CAPS

data.c kernels.c
int A[n] function (float A[n])
{
#pragma acc data, copyin (R) #pragma acc kernels, \
{ pcopyin (A)
{
function (4) .
}
} }
11/10/2012 WWw.caps-entreprise.com 31
. 7 4
Data Management: Default Behavior CAPS

« HMPP compiler is able to detect the variables required on
the device for the kernels and parallel constructs.

« Depending on their type, they follow the following policies
o Tables: present_or_copy behavior
o Scalar

« if not live in or live out variable: private behavior
» copy behavior otherwise

WWw.caps-entreprise.com 32

11/10/2012

16

oy

CAPS

Loop Constructs

> o T, —
o> o O %
S
- «‘;ﬁ’!!izzzaﬁ%?g;ﬁﬂﬂiF'
- e
- B S S s
- -;::=_ ‘=E=» q;;3=;=»‘5*52222:?=E==i._
,.g, ."g:‘—;-g —— —— “- -‘.‘
= = — —_— .
';:fi_ - - - 1..;‘..> g
'Olz\l\?mm-entreprise.com -- “ ‘33
— . o
Kernel Optimization: Loop Construct CAPS

» Loop directive applies to a loop that immediately follow the
directive

» Describes what kind of parallelism to use

#pragma acc loop [..]

]
for (i=0; i<n; i++) HETEE G EE =)

DO i=1,n
{
END DO
} L e
WWw.caps-entreprise.com 34

11/10/2012

17

. . 7 4
Sequential Execution cAaPs

* The seq clause specifies that the associated loop should be
executed sequentially

* This is the default behavior in a parallel region

#pragma acc loop seq
for (i=0; i<n; i++)
{

$lacc loop seq
DO i=1,n
} - END DO

WWw.caps-entreprise.com 35

oy

Data Independence cAPs

* The clause independent specifies that iterations of the loop
are data-independent

+ Allowed on loop directives in kernels regions

» Allows the compiler to generate code to execute the
iterations in parallel with no synchronisation

#pragma acc loop..independent
for (i=0; ;<n; i++)
(B e,
for (3£0; s4<mi~ j++),
N
A(J31*3+MODY1, 29) =

#pragma acc loop independent
for (i=0; i<n; i++)
{
for (3=0; j<m; J++)
{
A(j,i*3+MOD(1i,2)) = 1i*j;

} e ia@d, 3-1)
) :
}
Pregrammingeerror
WWw.caps-entreprise.com 36

11/10/2012

18

Gangs caps

o The iterations of the following loop are executed in parallel

o In a parallel construct:

* Iterations are distributed among the gangs created by the parallel
contruct

* No argument is allowed
o In akernels construct

* Iterations are distributed among the gangs created by the kernel created
by a loop
* An argument can specify the number of gangs to use for this loop

WWw.caps-entreprise.com 37

o
Workers CAPS

o The iterations of the following loop are executed in parallel
o In a parallel construct:
* lterations are distributed among the multiple workers withing a single
gang
* No argument is allowed

» Loop iterations must be data independent, unless it performs a reduction
operation

o In a kernels construct:

* Iterations are distributed among the workers within the gangs created by
the kernel within a loop

* An argument can specify the number of workers to use for this loop

WwWw.caps-entreprise.com 38

11/10/2012

19

11/10/2012

74
CAPS

Asynchronism

Asynchronism CAPS

« By default, the code on the accelerator is synchronous
o The host waits for completion of the parallel or kernels region

* The async clause enables to use the device while the host
process continues with the code following the region

« Can be used on parallel and kernels regions and update

directives
CPU GPU CPU GPU

1 1

WWw.caps-entreprise.com 40

20

11/10/2012

N . . ry 4
Wait Directive CAPS

» Causes the program to wait for an asynchronous activity
o Parallel, kernels regions or update directives

» An identifier can be added to the async clause and wait
directive:

o Host thread will wait for the asynchronous activities with the same ID

« Without any identifier, the host process waits for all
asynchronous activities

#pragma acc kernels, async $lacc kernels, async 1

{

. $lacc end kernels
}
#pragma acc kernels, async $lacc kernels, async 2
{

$'acc end kernels

}

#pragma acc wait $lacc wait 1
WWw.caps-entreprise.com 41
7 4
CAPS
Runtime API
N~
oSS
O O T,]
SOSOSTSS T
4Ei5.:‘=!25’='?5255222?E;¥5=E§
- A
5 - — e e e
b=~ == é"‘—;_ "—-;;""-':._."
= = -— - ~
— - il “
IR0 1 200y caps-entrEpiiseicom ._‘ 'l . ‘42

21

Runtime Library Definition

For C:
o Header file: openacc.h
For Fortran:

o Interface declaration in: openacc_lib.h in a Fortran module called
openacc

acc_device_t: type of accelerator device
o acc_device_none

o acc_device_default

o acc_device host

o acc_device_not_host

]

WWw.caps-entreprise.com 43

7 4
CAPS

oy

Runtime API CAPS

int acc_get_num_device (acc_device_t) (C)
integer function acc_get_num_device (devicetype) (Fortran)

o Returns the number of accelerator devices of the given type attached
to the host

int acc_set_device_type (acc_device_t) (C)

subroutine acc_set_device_type (devicetype) (Fortran)
o Tells the runtime which type of device to use
acc_device_type acc_get_device_type (void) (C)
function acc_get_device_type () (Fortran)

o Tells the program what type of device will be used

WWw.caps-entreprise.com 44

11/10/2012

22

Runtime API caps

» void acc_set_device_num (int, acc_device_t) (C)
» subroutine acc_set_device_num (devicenum, devicetype)

(Fortran)
o Tells the runtime which device to use

» intacc_get _device_num (acc_device_t) (C)
 Integer function acc_get_device_num (devicetype) (Fortran)

o Return the device number of the specified device type that will be
used

WWw.caps-entreprise.com 45

oy

Runtime API CAPS

 void acc_init (acc_device _t) (C)
« Subroutine acc_init (devicetype) (Fortran)
o Initialize the runtime for the given type

» void acc_shutdown (‘acc_device t) (C)

« Subroutine acc_shutdown (devicetype) (Fortran)
o Disconnect the program from the accelerator device

« void* acc_malloc (size_t) (C)
o Allocates memory on accelerator device
o Pointers assigned to this function may be reused

« void* acc_free (size_t)(C)
o Deallocates memory on accelerator device

11/10/2012 WWw.caps-entreprise.com 46

11/10/2012

23

. o~y
Conclusion CAPS

* Beware of compiler-dependent behaviors

» Fast development of high-level heterogenous applications
o For C and FORTRAN code

» Explicit the calls to a hardware accelerator in your code
o Whatever the target

o CAPS OpenACC compiler supports:
* Nvidia Tesla GPUs

+ AMD
+ X86 Intel Phi
11/10/2012 WWw.caps-entreprise.com 47
Accelerator Programming Model cars "
Directive-based programming GPGPU Manycore programming
Hybrid Manycore Programming OpenACC
Parallel computing HPC open standard

Multicore programming

Hardware accelerators programming
High Performance Computing OpenHMPP ‘

Parallel programming interface
Massively parallel Py

o4& |OpenACC

CA PS IRECTIVES FOR ACCELERATORS D e n

http://www.caps-entreprise.com
http://twitter.com/CAPSentreprise
http://www.openacc-standard.org/
http://www.openhmpp.org

11/10/2012

24

http://www.caps-entreprise.com/
http://www.caps-entreprise.com/
http://www.caps-entreprise.com/
http://twitter.com/CAPSentreprise
http://twitter.com/CAPSentreprise
http://twitter.com/CAPSentreprise
http://www.openhmpp.org/
http://www.openhmpp.org/

