
Optimization in C & C++: good practices, pitfalls

Sébastien Binet

2012-02-07

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 1 / 54

Outline

Constructors and destructors
Temporaries
Cost of virtual functions
Cost of exceptions
If and when to inline functions
Standard library containers
Templates

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 2 / 54

Common vocabulary - goal

C/C++ performance has many aspects
I execution speed
I code size
I data size
I memory footprint at run-time
I time and space consumed by the edit/compile/link cycle

C++ is a large language with many features, idioms and constructs
I constructors/destructors, exceptions, templates, late-binding,

overloading, RAII, . . .
I knowing (or having a rough idea of) the cost of these features is

important for building a (re)usable efficient application
I model of time and space overheads of various C++ language features

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 3 / 54

Classes and inheritance

C++ supports object-oriented programming

involves (possibly deep) inheritance hierarchies of classes
operations performed on classes and class hierarchies
space and time overheads of using classes instead of structs ?

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 4 / 54

Representation overhead

C++ class with no virtual function
I no space overhead wrt a good old C struct
I WYSIWYG
I non-virtual functions do NOT take any space in an object
I ditto for static data
I ditto for static function

struct C
{

int i;
int j;
int k;

};

class Cxx
{ public:

int i;
int j;
int k;

};

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 5 / 54

Representation overhead

a polymorphic class (with at least one virtual function)
I per-object overhead of 1 pointer (vptr)
I per-class overhead of a virtual function table

F 1 or 2 words per virtual function
I per-class overhead of a type information object (RTTI)

F O(10) bytes
F name string (identifying the class)
F couple of words of more infos
F couple of words for each base class

class Polymorphic
{ virtual void f1();

virtual void f2();
int i;
int j;
int k;

};
Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 6 / 54

Basic classes operations

cost of calling non-virtual, non-static, non-inline member function
compared to calling a freestanding function with one extra pointer

lr basic fct call timings
non-virtual
px->f(1) 0.016
g(ps,1) 0.016

non-virtual
x.g(1) 0.016

g(\&s,1) 0.016
static fct mbr

X::h(1) 0.013
h(1) 0.013

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 7 / 54

Virtual function

calling a virtual function
calling a function through a pointer stored in an array

virtual fct call timings
virtual
px->f(1) 0.019
x.f(1) 0.016
ptr-to-fct
p[1](ps,1) 0.016
p[1](\&s,1) 0.018

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 8 / 54

Virtual functions of class templates

new C++ support structures (vtbl) for each specialization
pure replication of code at the instruction level
workarounds

I use non-template helper functions
I factor out non-parametric functionalities into a non-templated base

class

void foo_helper_fct(...);
template<class T> class Foo
{...};

class Base { void dostuff(); };
template<class T> class Derived : public Base
{...};

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 9 / 54

Inlining

calling a function has a cost
for simple functions, it may be pure overhead
inlining: directly copy callee’s body at call site

timings
non-inline
px->g(1) 0.016
x.g(1) 0.016
inline
px->k(1) 0.006
x.k(1) 0.005
macro
K(ps,1) 0.005
K(\&s,1) 0.005

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 10 / 54

Multiple inheritance

more complicated binary layout of instances
for each call, need to adjust the this pointer to get the right
substructure

I caller applies an offset to this from the vtbl
I or use a thunk: man-in-the-middle fragment of code

timings
SI, non-virtual px->g(1) 0.016
Base1, non-virtual pc->g(1) 0.016
Base2, non-virtual pc->gg(1) 0.017
SI, virtual px->f(1) 0.019
Base1, virtual pa->f(1) 0.019
Base2, virtual pa->ff(1) 0.024

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 11 / 54

Virtual base classes

additional overhead wrt simple multiple inheritance
I position of base class subobject not known at compile time
I needs one additional indirection

timings
SI, non-virtual px->g(1) 0.016
VBC, non-virtual pd->gg(1) 0.021
SI, virtual px->f(1) 0.019
VBC, virtual pa->f(1) 0.025

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 12 / 54

Exception handling

systematic and robust way to cope with errors
traditional alternatives

I returning error codes
I setting error states indicators (errno)
I calling error handling functions
I escaping into error handling code using longjmp
I passing along a pointer to a state object w/ each call

double f1(int a) { return 1.0 / a; }
double f2(int a) { return 2.0 / a; }
double f3(int a) { return 3.0 / a; }

// no error handling
double g(int x, int y, int z)
{ return f1(x) + f2(y) + f3(z); }

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 13 / 54

Exception handling

with error handling

int error_state = 0;
double f1(int a) {

if (a <= 0) {
error_state = 42;
return 0;

}
return 1.0 / a;

}
double g(...) {

double xx = f1(x);
if (error_state) {...}
...
return xx+yy+zz;

}

with EH

struct Err {...};
double f1(int a) {

if (a <= 0)
throw Err(42);

return 1.0 / a;
}

double g(...) {
try {

return f1(x)+f2(y)
+f3(z);

} catch (Err& err) {...}
}

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 14 / 54

Exception handling

3 sources of overhead
I data and code associated with try blocks
I data and code associated with the normal execution of additional fcts
I data and code associated with throw expressions

implementation issues
I context setup of try blocks for associated catch clauses
I catch clause needs some kind of type identification
I clean-up of handled exceptions (memory mgt)
I ctors/dtors of non-trivial objects
I . . .

2 main implementation techniques
I the ‘code’ approach
I the ‘table’ approach

both need some kind of RTTI (thus code/data increase)

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 15 / 54

Exception handling

the ‘code’ approach
I dynamically maintain auxiliary data structures

F to manage execution contexts
F to track the list of objects to be unwound (in case an exception

occured)
I associated stack and run-time costs can be significant
I even when no exception is thrown, bookkeeping is performed

the ‘table’ approach (g++)
I read-only tables are generated

F to determine the current execution context
F to locate catch clauses
F to track the list of objects to be unwound

I all bookkeeping is pre-computed
I no run-time cost if no exception is thrown (zero cost overhead for

normal execution path)

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 16 / 54

Templates

template overheads
I for each new specialization, generation of a new instantiation of code
I can lead to unexpectedly large amount of code and data

F EH, vtbl, . . .
I canonical experiment:

F instantiate 100 std::list<T*> for some fixed T type
F instantiate 1 std::list<T*> for 100 T different types
F measure programs’ size

I optimization:
F recognize that all different specializations project onto the same

generated machine code
F can be done by the compiler
F or by a clever STL implementation
F ie: implement (under the hood) all std::list<T*> in terms of void*

I compilation time

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 17 / 54

Templates vs inheritance

templates are usually more runtime efficiency friendly
deep inheritance trees incur overhead:

I ctors/dtors
I pointer indirection / virtual functions

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 18 / 54

Programmer directed optimizations

usual disclaimer:
—

don’t do it:
I early (performance) optimization is the root of all evil
I spend that time on unit tests (make sure the code is right),

documentation and new features

think twice before applying performance any optimization tips
make it thrice

—
in the following:

a few rules of thumb
cover usual gotchas

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 19 / 54

Constructors & Destructors

C++ creates instances of classes with ctors
I allocate memory
I initialize fields

. . . and cleans-up/relinquishes resources with dtors

{ /* in good old C */
struct S s;
S_init(&s);
/* compute s... */
S_cleanup(&s);

}

{ // in C++
S s;
// compute s...

}

in an ideal world: no overhead introduced by ctor/dtor

in practice:
I overhead because of inheritance
I overhead because of composition

overhead: perform computations which may be rarely needed

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 20 / 54

Object construction

in ctors prefer to use initializers
I no need to do the work twice

UsuallyOk::UsuallyOk(...) : m_1(42), m_2(str) {...}
UsuallyBad::UsuallyBad(...) { m_1 = ...; m_2 = str; }

define variables as close to use-site than possible
define variables when ready to initialize (no ctor+assign)

X x1 = 42; X x2; x2 = 42;

passing arguments to a function by value is. . .
I cheap for built-ins
I potentially expensive for class types
I prefer passing by const-ref or address

void f(const std::string&);
void g(const T*);

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 21 / 54

Implicit conversions & temporaries

Calling a function with the ‘wrong’ arg.’s type implies type conversion

may require work at run-time

void f1(double);
f1(7.0); // no conversion but copy
f1(7); // conversion: f1(double(7));

void f2(const double&);
f2(7.0); // no conversion
f2(7); // const double tmp =7; f2(tmp);

void f3(std::string); std::string s = "foo";
f3(s); // no conversion but copy
f3("bar"); // f3(std::string("bar"))

void f4(const std::string&);
f4(s); // no conversion, no copy
f4("f"); // const std::string tmp("f"); f4(tmp);

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 22 / 54

Explicit constructors

consider the class definition:

class Rational
{

friend Rational operator+(const Rational&,
const Rational&);

public:
Rational(int a=0, int b=1) : num(a), den(b) {}

private:
int num; // Numerator
int den; // Denominator

};

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 23 / 54

Explicit constructors

and the following snippet:

Rational r;
// ...
r = 100;

no assignment operator with int so the above will be “translated” to:

Rational tmp(100);
r.operator=(tmp);
tmp.~Rational();

usually a good idea to define ctors which can be called with one
argument, as explicit:

explicit Rational(int a=0, int b=1) : num(a), den(b) {}

also good to overload operator=(T)

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 24 / 54

Default constructors

class X
{

A a;
B b;
virtual void fct();

};

class Y : public X
{

C c;
D d;

};

class Z : public Y
{

E e;
F f;

public:
Z() {}

};

Z z;

compiler-generated default constructors are inline
substantial (!) amount of machine code can be inserted each time a Z
is constructed. . .

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 25 / 54

Temporary objects

probably the most acute problem wrt performance and efficiency.
preventing creation of temporaries benefits

I run-time speed
F creating temporaries takes CPU cycles
F destroying them, too !

I memory footprint
understand how and when compilers generate temporary objects

I initializing objects
I passing parameters to functions
I returning values from functions

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 26 / 54

Temporaries & initialization

quick example:

{ std::string s1 = "Hello";
std::string s2 = "World";
std::string s3;
s3 = s1 + s2; // s3 is now: "HelloWorld"

}

where the last statement is equivalent to:

{ std::string _temp;
operator+(_temp, s1, s2); // pass _temp by reference
s3.std::string::operator=(_temp); // assign _temp to s3
_temp.std::string::~string(); // destroy _temp

}

on top of that, the string concatenation function may itself create
temporaries.

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 27 / 54

Temporaries, loops and type mismatch

what’s wrong with that code (short of being midly useful) ?

Complex operator+(const Complex& rhs,
const Complex& lhs);

Complex a, b;
for (int i=0; i<100; ++i) a = i*b + 1.0;

temporary generated to represent the complex 1+0j

lift the constant expression out of the loop

Complex one(1.0);
for (int i=0; i<100; ++i) a = i*b + one;

a clever optimizer might do it for you (YMMV)

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 28 / 54

Eliminate temporaries with [some-op]=()

the following snippet generates 3 temporaries:

std::string s1,s2,s3,s4;
std::string s5 = s1 + s2 + s3 + s4;

the following does not:

std::string s5 = s1;
s5 += s2;
s5 += s3;
s5 += s4;

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 29 / 54

Pass by value

avoid writing APIs which use this pattern :

void f(T t) { /* do something with t*/ }

{
T t;
f(t);

}
// is equivalent to:
{

T t;
T _temp;
_temp.T::T(t); // copy construct _temp from t
f(_temp); // pass _temp by reference
_temp.T::~T(); // destroy _temp

}

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 30 / 54

Return by value

another source of temporaries is function return value:

std::string fct()
{

std::string s;
... // compute ’s’
return s;

}

// the following snippet:
{

std::string p;
// ...
p = fct();

}

// is equivalent to: (pseudo-code)
{

std::string p;
// ...
std::string _temp;
// pass _temp by reference
fct(_temp);

// assign _temp to p
p.std::string::operator=(_temp);

// destroy _temp
_temp.std::string::~string();

}

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 31 / 54

Return value - corollary

so we don’t like (performance-wise) functions which return objects

class T
{
public:
T operator++(int i); // foo++
T operator++(); // ++foo
...

};

prefer prefix over postfix increment operator

for (std::vector<T>::iterator
it = vec.begin(),

end= vec.end();
it != end; ++it) { // <-- and NOT: it++

//...
}

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 32 / 54

Return value optimization (RVO)

one way to side-step inefficiency of return by value: write ‘C-like’ APIs:

T fct();
T t;
//...
t = fct();

void compute_t(T& t);
T t;
compute_t(t);

another way is to enable the compiler to apply RVO. . .

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 33 / 54

RVO

class Complex {
public:
Complex(double re=0., double im=0.);
double re, im;

};

Complex operator+(const Complex& a, const Complex& b) {
Complex res;
res.re = a.re + b.re;
res.im = a.im + b.im;
return res;

}

Complex c1,c2,c3;
c3 = c1 + c2;

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 34 / 54

RVO

without any optimization, the emitted (pseudo)code would look like:

Complex _tmp;
_add_complex(_tmp, c1, c2);
c3.operator=(_tmp);
_tmp.~Complex();

void _add_complex(Complex &_tmp,
const Complex &a, const Complex &b) {

Complex ret;
//... as previously
_tmp.operator=(ret);
ret.~Complex();
return;

}

how to remove all these temporaries and their associated c/dtors ?

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 35 / 54

RVO

rewrite the add function to remove the local named temporary
use an unnamed temporary to help the compiler:

Complex operator+(const Complex &a, const Complex &b) {
double re = a.re + b.re;
double im = a.im + b.im;
return Complex(re, im);

}

note that complicated functions with multiple return statements are
harder to elect for RVO
RVO is not mandatory

I done at the discretion of the compiler
I inspection of generated code + trial & error

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 36 / 54

Inlining basics

replaces a function call with a verbatim copy of the function at
call-site

I kind of like a C-macro
works around the overhead of calling functions.
2 ways to express intent of inlining a function

class FourMom {
float m_px, m_py, m_pz, m_ene;

public:
// implicit inlining:
// definition provided w/ declaration
float px() const { return m_px; }
void set_px(float px);

};

// use inline keyword
inline void FourMom::set_px(float px) { m_px = px; }

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 37 / 54

Inlining basics

at source-code level, inlined functions are used like any other function:

int main(int, char**)
{
FourMom mom;
mom.set_px(20.*GeV);
std::cout << "px: " << mom.px()

<< std::endl;
return 0;

}

code expanded inline at call site:
I call site must know the definition of the function
I compilation coupling
I potential compilation time increase

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 38 / 54

cross-call optimizations

int main(int, char**)
{
FourMom mom;
mom.set_px(20.*GeV);
std::cout << "px: " << mom.px()

<< std::endl;
return 0;

}

inlining is most nutritious with cross-call optimizations

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 39 / 54

cross-call optimizations

int main(int, char**)
{
FourMom mom;
mom.m_px = 20.*GeV;
std::cout << "px: " << mom.m_px

<< std::endl;
return 0;

}

inlining is most nutritious with cross-call optimizations

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 40 / 54

cross-call optimizations

int main(int, char**)
{
FourMom mom;
mom.m_px = 20.*GeV;
std::cout << "px: " << mom.m_px

<< std::endl;
return 0;

}

inlining is most nutritious with cross-call optimizations

int main(int, char**)
{
std::cout << "px: " << 20.

<< std::endl;
return 0;

}
Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 41 / 54

why not inline

code expansion
I disk space
I memory size
I cache size, increase cache fault
I code size

compilation coupling
recursive methods

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 42 / 54

Logical data structures
Graphics Toolkits!

Scalar

Pointer

Structure / Array
Linked list

Hash

27!

…

Getting Hands Dirty: Logical Data Structures

…

Balanced Binary
Tree, e.g. Red-Black

…

K
V

K
V

K
V

K
V

/

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K
V

C
L
R

K = key, V = value, C = color, L = left, R = right
= by far the most efficient

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 43 / 54

Logical vs Real data structures

Graphics Toolkits!

!is logical linked list…

28!

Logical vs. Real Data Structures

Could be scattered in virtual
address space like this…

And in physical
memory like this…

0GB

1GB

2GB

3GB

4GB

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 44 / 54

Standard Template Library (STL)

a powerful combination of containers and generic algorithms
performance guarantees of the asymptotic complexity of containers
and algorithms:

I an approximation of algorithm performance - big-O notation
I O(N), O(N*N),...

choosing the right container is based on the type of frequent and
critical operations applied on it

I various trade-offs
I no one true best container
I only best compromise for task at hand

containers manage storage space for their elements
provide methods to access elements, directly or through iterators

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 45 / 54

std::vector

std::vector<double> v;
v.reserve(4);
v.push_back(1.0);
v.push_back(3.14);
v.push_back(7.133);

Graphics Toolkits!

Getting Hands Dirty: C++ Types
std::vector<double>

std::vector<double> vec; !
vec.reserve(4); !
vec.push_back(1.0); !
vec.push_back(3.14); !
vec.push_back(7.133); !

A good and efficient data structure in general.
– Good locality usually, guaranteed contiguous allocation.
– Avoid small vectors because of the overhead; more on this in a moment.
– Beware creating vectors incrementally without reserve(). Grows exponentially

and copies old contents on every growth step if there isn’t enough space!
– Beware making a copy, the dynamically allocated part is copied!
– Beware using erase(), it also causes incremental copying.

29!

start

finish

capacity

1.0

3.14

7.133

X

A good and efficient data structure in general.

Good locality usually, guaranteed contiguous allocation.
Avoid small vectors because of the overhead
Beware creating vectors incrementally without reserve(). Grows
exponentially and copies old contents on every growth step if there
isn’t enough space!
Beware making a copy, the dynamically allocated part is copied!
Beware using erase(), it also causes incremental copying.

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 46 / 54

std::vector<std::vector<std::vector<int> > >

typedef std::vector<int> VI; typedef std::vector<VI> VVI;
std::vector<VVI> vvvi;
for (int i = 0, j, k; i < 10; ++i)

for (vvvi.push_back(VVI()), j = 0; j < 10; ++j)
for (vvvi.back().push_back(VI()), k = 0; k < 10; ++k)

vvvi.back().back().push_back(k);

A very common mistake. C++ vectors of vectors are expensive, and not
contiguous matrices.

Naively: 111 allocations, 5’320 bytes
Reality: 980 allocs, total 30’402 bytes alloc’d, 5’632 at end, 9’508
peak.
+780% # allocs, +460% bytes alloc’d, 79% working and 6% residual
overhead!
Versus 1 allocation, 4’440 bytes and some pointer setup had we used a
real matrix.

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 47 / 54

std::vector<std::vector<std::vector<int> > >

std::vector<VVI> vvvi, vvvi2;
for (/*...*/) {/*...*/ }
vvvi2 = vvvi;

Why you should avoid making container copies by value. . .

+111 allocations, +5’320 bytes
an allocation storm is inevitable if you copy nested containers by
value. Evil bonus: memory churn. Because of the alloc/free pattern,
by-value copies are an effective way to scatter the memory blocks all
over the heap
‘a nested container’ does not have to be a standard library container.
It can refer to any object type which makes an expensive deep copy
(e.g. any normal type with std::string, std::vector,. . . data
members, or objects which “clone” pointed-to objects on copy.)
a simple "=" line may also generate lots of code

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 48 / 54

std::vector<uint16_t>

Typical std::vector<uint16_t> overhead is 40 bytes (64-bit system.)

3 pointers × 8 bytes for vector itself, plus average 2 words × 8 bytes
malloc() overhead for dynamically allocated array data chunk.
so, if x always has N <= 20 elements, it’d better to just use a
uint16_t x[N].
more generally, if 95+\% of uses of x have only N elements for some
small N, it may be better to have an uint16_t x[N] for the
common case, and a separate dynamically allocated “overflow” buffer
for the rare N large case. (measure to see!)
even more generally, this applies to any small object allocated from
heap.

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 49 / 54

std::list

a sequence container
doubly linked list
efficient insertion and removal anywhere in the container: O(1)
efficient at moving (blocks of) elements within the container or
between containers (O(1))

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 50 / 54

associative containers

std::map<K,V,Cmp,Alloc>
I unique key-values
I elements follow a strict weak ordering (at all time)
I efficient access of elements by key (logarithmic complexity)
I logarithmic complexity for insertion

std::tr1::unordered_map<K,V,Hash,Pred,Alloc> (hash_map)
I unique key-values
I constant time insertion/access

Beware of temporaries in x["foo"] = abc(); x["foo"].call();

Beware code growth when using maps inside loops:
for (...) { std::map<K,V> mymap; ...}

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 51 / 54

better than STL ?

STL is generic
if you know something about the problem’s domain, you can squeeze
some perfs wrt STL.

e.g. compare strings of a known format "aaaa1" and "aaaa2"
—

the STL is an uncommon combination of abstraction, flexibility and
efficiency (curtosy of generic programming)
depending on your application, some containers are more efficient than
others for a particular usage pattern
unless you know something about the problem domain that STL
doesn’t, it is unlikely you will beat STL by a wide enough margin
outperforming STL is still possible in some specific scenarios

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 52 / 54

C++ - Concluding remarks

C++ is a wide and powerful language, difficult to really master entirely
be wary of using fancy constructs and features

I when in doubt, choose simplicity

pay attention to compiler warnings
strive for warning-free builds
innocently looking C++ code can be treacheous
profile before sprinkling your code with optimizations
remember the code the C++ compiler automatically generates for you
remember the trade-offs of inlining

—
Remember, with great power, comes great responsibility

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 53 / 54

Ack.

many thanks to L. Tuura for some of the material

Sébastien Binet (LAL) Optimization in C & C++: good practices, pitfalls 2012-02-07 54 / 54

	Optimization in C & C++: good practices, pitfalls

