
De calculer juste
à calculer au plus juste

Introduction à l’école PRCN

Florent de Dinechin
AriC project

My research group

The AriC project @ École Normale Supérieure de Lyon:
Arithmetic and Computing at large

Hardware and software

From addition to linear algebra

Fixed point, floating-point, multiple-precision,
finite fields,

Pervasive concern of performance, numerical
quality and validation

Interactions with computing at large

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 2

Outline

Floating-point in your machine

Accuracy versus reproductibility

Performance versus accuracy

Conclusion: It’s the Hardware, Stupid

Space-filling advertising: hardware computing just right

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 3

Floating-point in your machine

Floating-point in your machine

Accuracy versus reproductibility

Performance versus accuracy

Conclusion: It’s the Hardware, Stupid

Space-filling advertising: hardware computing just right

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 4

We have a nice floating-point standard

It is called IEEE-754, and you will hear a lot about it.
For instance,

Correct rounding to the nearest

The basic operations (noted ⊕, 	, ⊗, �), and the square root should
return the FP number closest to the mathematical result.

(In case of tie, round to the number with an even significand
=⇒ no bias.)

No compromise: this is the best that the format allows

Nice properties :

If a + b is a FP number, then a⊕ b returns it

Rounding is monotonic

Rounding does not introduce any statistical bias

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 5

We have a nice floating-point standard

It is called IEEE-754, and you will hear a lot about it.
For instance,

Correct rounding to the nearest

The basic operations (noted ⊕, 	, ⊗, �), and the square root should
return the FP number closest to the mathematical result.

(In case of tie, round to the number with an even significand
=⇒ no bias.)

No compromise: this is the best that the format allows

Nice properties :

If a + b is a FP number, then a⊕ b returns it

Rounding is monotonic

Rounding does not introduce any statistical bias

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 5

We have a nice floating-point standard

It is called IEEE-754, and you will hear a lot about it.
For instance,

Correct rounding to the nearest

The basic operations (noted ⊕, 	, ⊗, �), and the square root should
return the FP number closest to the mathematical result.

(In case of tie, round to the number with an even significand
=⇒ no bias.)

No compromise: this is the best that the format allows

Nice properties :

If a + b is a FP number, then a⊕ b returns it

Rounding is monotonic

Rounding does not introduce any statistical bias

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 5

We have a nice floating-point standard

It is called IEEE-754, and you will hear a lot about it.
For instance,

Correct rounding to the nearest

The basic operations (noted ⊕, 	, ⊗, �), and the square root should
return the FP number closest to the mathematical result.

(In case of tie, round to the number with an even significand
=⇒ no bias.)

No compromise: this is the best that the format allows

Nice properties :

If a + b is a FP number, then a⊕ b returns it

Rounding is monotonic

Rounding does not introduce any statistical bias

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 5

However and nevertheless,

Let us compile the following C program:

1 float ref , index;
2

3 ref = 169.0 / 170.0;
4

5 for (i = 0; i < 250; i++) {
6 index = i;
7 if (ref == (index / (index + 1.0))) break;
8 }
9

10 printf ("i=%d\n",i);

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 6

First conclusion

Equality test between FP variables is dangerous.
Or,

If you can replace a==b with (a-b)<epsilon in your code, do it!

A physical point of view

Given two coordinates (x , y) on a snooker table,
the probability that the ball stops at position (x , y) is always zero.

Still, on this expensive laptop, FP computing is not straightforward,
even within such a small program.

Go fetch me the person in charge

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 7

First conclusion

Equality test between FP variables is dangerous.
Or,

If you can replace a==b with (a-b)<epsilon in your code, do it!

A physical point of view

Given two coordinates (x , y) on a snooker table,
the probability that the ball stops at position (x , y) is always zero.

Still, on this expensive laptop, FP computing is not straightforward,
even within such a small program.

Go fetch me the person in charge

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 7

First conclusion

Equality test between FP variables is dangerous.
Or,

If you can replace a==b with (a-b)<epsilon in your code, do it!

A physical point of view

Given two coordinates (x , y) on a snooker table,
the probability that the ball stops at position (x , y) is always zero.

Still, on this expensive laptop, FP computing is not straightforward,
even within such a small program.

Go fetch me the person in charge

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 7

First conclusion

Equality test between FP variables is dangerous.
Or,

If you can replace a==b with (a-b)<epsilon in your code, do it!

A physical point of view

Given two coordinates (x , y) on a snooker table,
the probability that the ball stops at position (x , y) is always zero.

Still, on this expensive laptop, FP computing is not straightforward,
even within such a small program.

Go fetch me the person in charge

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 7

Who is in charge of floating-point?

The processor

has internal FP registers,
performs basic FP operations,
raises exceptions,
writes results to memory.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 8

Who is in charge of floating-point?

The processor

The operating system

handles exceptions
computes functions/operations not handled directly in hardware

I most elementary functions (sine/cosine, exp, log, ...),
I divisions and square roots on recent processors
I subnormal numbers

handles floating-point status: precision, rounding mode, ...
I older processors: global status register
I more recent FPUs: rounding mode may be encoded in the

instruction

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 9

Who is in charge of floating-point?

The processor

The operating system

The programming language

should have a well-defined semantic

,
... (detailed in some arcane 1000-pages document)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 10

Who is in charge of floating-point?

The processor

The operating system

The programming language

should have a well-defined semantic,
... (detailed in some arcane 1000-pages document)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 10

Who is in charge of floating-point?

The processor

The operating system

The programming language

The compiler

has hundreds of options

some of which to preserve the well-defined semantic of the language
but probably not by default:
Marketing says: default should be optimize for speed!

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 11

Who is in charge of floating-point?

The processor

The operating system

The programming language

The compiler

has hundreds of options
some of which to preserve the well-defined semantic of the language
but probably not by default:

Marketing says: default should be optimize for speed!

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 11

Who is in charge of floating-point?

The processor

The operating system

The programming language

The compiler

has hundreds of options
some of which to preserve the well-defined semantic of the language
but probably not by default:
Marketing says: default should be optimize for speed!

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 11

Who is in charge of floating-point?

The processor

The operating system

The programming language

The compiler

The programmer

... is in charge in the end.

Of course, eventually, the programmer will get the blame.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 12

Who is in charge of floating-point?

The processor

The operating system

The programming language

The compiler

The programmer

... is in charge in the end.

Of course, eventually, the programmer will get the blame.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 12

The common denominator of modern processors

Hardware support for

addition/subtraction and multiplication
in single-precision (binary32) and double-precision (binary64)
SIMD versions: two binary32 operations for one binary64
various conversions and memory accesses

Typical performance (for one SIMD way):

3-7 cycles for addition and multiplication, pipelined (1 op/cycle)
15-50 cycles for division and square root,

hard or soft, not pipelined (1 op / n cycles).
50-500 cycles for elementary functions (soft)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 13

The common denominator of modern processors

Hardware support for

addition/subtraction and multiplication
in single-precision (binary32) and double-precision (binary64)
SIMD versions: two binary32 operations for one binary64
various conversions and memory accesses

Typical performance (for one SIMD way):

3-7 cycles for addition and multiplication, pipelined (1 op/cycle)
15-50 cycles for division and square root,

hard or soft, not pipelined (1 op / n cycles).
50-500 cycles for elementary functions (soft)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 13

Keep clear from the legacy IA32/x87 FPU

It is slower than the (more recent) SSE2 FPU

It is more accurate (“double-extended” 80 bit format), but at the
cost of entailing horrible bugs in well-written programs

the bane of floating-point between 1985 and 2005

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 14

A funny horror story

(real story, told by somebody at CERN)

Use the (robust and tested) standard sort function of the STL
C++ library

to sort objects by their radius: according to x*x+y*y.

Sometimes (rarely) segfault, infinite loop...

Why? Because the sort algorithm works under the following naive
assumption: if A ≮ B, then, later, A ≥ B

x*x+y*y inlined and compiled differently at two points of the
program,
computation on 64 or 80 bits, depending on register allocation
enough to break the assumption (horribly rarely).

We will see there was no programming mistake.
And it is very difficult to fix.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 15

The SSE2 unit of current IA32 processors

Available for all recent x86 processors (AMD and Intel)

An additional set of 128-bit registers

An additional FP unit able of

2 identical binary64 FP operations in parallel, or
4 identical binary32 FP operations in parallel.

clean and standard implementation

subnormals trapped to software, or flushed to zero
depending on a compiler switch (gcc has the safe default)

And soon AVX: multiply all these numbers by 2
(256-bit registers, etc)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 16

Quickly, the Power family

Power and PowerPC processors, also in IBM mainframes and
supercomputers

No floating-point adders or multipliers

Instead, one or two FMA: Fused Multiply-and-Add

Compute ◦(a× b + c):

faster: roughly in the time of a FP multiplication
more accurate: only one rounding instead of two
enable efficient implementation of division and square root

Standardized in IEEE-754-2008

but not yet in your favorite language

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 17

Quickly, the Power family

Power and PowerPC processors, also in IBM mainframes and
supercomputers

No floating-point adders or multipliers

Instead, one or two FMA: Fused Multiply-and-Add

Compute ◦(a× b + c):

faster: roughly in the time of a FP multiplication
more accurate: only one rounding instead of two
enable efficient implementation of division and square root

Standardized in IEEE-754-2008

but not yet in your favorite language

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 17

FMA: the good

Compute ◦(a× b + c):

faster: roughly in the time of a FP multiplication
more accurate: only one rounding instead of two
enable efficient implementation of division and square root

All the modern FPUs are built around the FMA:
ARM, Power, IA64, all GPGPUs, and even latest Intel and AMD
processors.

enables classical operations, too...

Addition: ◦(a× 1 + c)
Multiplication: ◦(a× b + 0)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 18

FMA: the good

Compute ◦(a× b + c):

faster: roughly in the time of a FP multiplication
more accurate: only one rounding instead of two
enable efficient implementation of division and square root

All the modern FPUs are built around the FMA:
ARM, Power, IA64, all GPGPUs, and even latest Intel and AMD
processors.

enables classical operations, too...

Addition: ◦(a× 1 + c)
Multiplication: ◦(a× b + 0)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 18

FMA: the good

Compute ◦(a× b + c):

faster: roughly in the time of a FP multiplication
more accurate: only one rounding instead of two
enable efficient implementation of division and square root

All the modern FPUs are built around the FMA:
ARM, Power, IA64, all GPGPUs, and even latest Intel and AMD
processors.

enables classical operations, too...

Addition: ◦(a× 1 + c)
Multiplication: ◦(a× b + 0)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 18

FMA: ...the bad and the ugly

◦(a× b + c)

Using it breaks some expected mathematical propertie

Loss of symmetry in
√

a2 + b2

Worse: a2 − b2, when a = b :
◦(◦(a× a)− a× a)

Worse: if b2 ≥ 4ac then (...)
√

b2 − 4ac

Do you see the sort bug lurking?

By default, gcc disables the use of FMA altogether
(except as + and ×)

(compiler switches to turn it on)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 19

FMA: ...the bad and the ugly

◦(a× b + c)

Using it breaks some expected mathematical propertie

Loss of symmetry in
√

a2 + b2

Worse: a2 − b2, when a = b :
◦(◦(a× a)− a× a)

Worse: if b2 ≥ 4ac then (...)
√

b2 − 4ac

Do you see the sort bug lurking?

By default, gcc disables the use of FMA altogether
(except as + and ×)

(compiler switches to turn it on)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 19

Reproductibility begins with predictability

When you write

sqrt(b*b-4*a*c)

do you know how it is going to be compiled?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 20

In general: evaluation of an expression

Consider the following program, whatever the language

float a,b,c,x;

x = a+b+c+d;

Two questions:

In which order will the three addition be executed?

What precision will be used for the intermediate results?

Fortran, C and Java have completely different answers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 21

In general: evaluation of an expression

Consider the following program, whatever the language

float a,b,c,x;

x = a+b+c+d;

Two questions:

In which order will the three addition be executed?

What precision will be used for the intermediate results?

Fortran, C and Java have completely different answers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 21

Evaluation of an expression

float a,b,c,x;

x = a+b+c+d;

In which order will the three addition be executed?

With two FPUs (dual FMA, or SSE2, ...),
(a + b) + (c + d) faster than ((a + b) + c) + d

If a, c , d are constants, (a + c + d) + b faster.
(here we should remind that FP addition is not associative
Consider 2100 + 1− 2100)
Is the order fixed by the language, or is the compiler free to choose?
Similar issue: should multiply-additions be fused in FMA?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 22

Evaluation of an expression

float a,b,c,x;

x = a+b+c+d;

In which order will the three addition be executed?

With two FPUs (dual FMA, or SSE2, ...),
(a + b) + (c + d) faster than ((a + b) + c) + d
If a, c , d are constants, (a + c + d) + b faster.

(here we should remind that FP addition is not associative
Consider 2100 + 1− 2100)
Is the order fixed by the language, or is the compiler free to choose?
Similar issue: should multiply-additions be fused in FMA?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 22

Evaluation of an expression

float a,b,c,x;

x = a+b+c+d;

In which order will the three addition be executed?

With two FPUs (dual FMA, or SSE2, ...),
(a + b) + (c + d) faster than ((a + b) + c) + d
If a, c , d are constants, (a + c + d) + b faster.
(here we should remind that FP addition is not associative
Consider 2100 + 1− 2100)

Is the order fixed by the language, or is the compiler free to choose?
Similar issue: should multiply-additions be fused in FMA?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 22

Evaluation of an expression

float a,b,c,x;

x = a+b+c+d;

In which order will the three addition be executed?

With two FPUs (dual FMA, or SSE2, ...),
(a + b) + (c + d) faster than ((a + b) + c) + d
If a, c , d are constants, (a + c + d) + b faster.
(here we should remind that FP addition is not associative
Consider 2100 + 1− 2100)
Is the order fixed by the language, or is the compiler free to choose?

Similar issue: should multiply-additions be fused in FMA?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 22

Evaluation of an expression

float a,b,c,x;

x = a+b+c+d;

In which order will the three addition be executed?

With two FPUs (dual FMA, or SSE2, ...),
(a + b) + (c + d) faster than ((a + b) + c) + d
If a, c , d are constants, (a + c + d) + b faster.
(here we should remind that FP addition is not associative
Consider 2100 + 1− 2100)
Is the order fixed by the language, or is the compiler free to choose?
Similar issue: should multiply-additions be fused in FMA?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 22

Evaluation of an expression

float a,b,c,x;

x = a+b+c+d;

In which order will the three addition be executed?

What precision will be used for the intermediate results?
Bottom up precision: (here all float)

I elegant (context-independent)
I portable
I sometimes dangerous: compare C=(F-32)*(5/9) and

C=(F-32)*5/9

Use the maximum precision available which is no slower
I in C, variable types refer to memory locations
I more accurate result

Is the precision fixed by the language, or is the compiler free to
choose?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 23

Evaluation of an expression

float a,b,c,x;

x = a+b+c+d;

In which order will the three addition be executed?

What precision will be used for the intermediate results?
Bottom up precision: (here all float)

I elegant (context-independent)
I portable
I sometimes dangerous: compare C=(F-32)*(5/9) and

C=(F-32)*5/9

Use the maximum precision available which is no slower
I in C, variable types refer to memory locations
I more accurate result

Is the precision fixed by the language, or is the compiler free to
choose?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 23

Evaluation of an expression

float a,b,c,x;

x = a+b+c+d;

In which order will the three addition be executed?

What precision will be used for the intermediate results?
Bottom up precision: (here all float)

I elegant (context-independent)
I portable
I sometimes dangerous: compare C=(F-32)*(5/9) and

C=(F-32)*5/9

Use the maximum precision available which is no slower
I in C, variable types refer to memory locations
I more accurate result

Is the precision fixed by the language, or is the compiler free to
choose?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 23

Fortran’s philosophy (1)

Citations are from the Fortran 2000 language standard: International
Standard ISO/IEC1539-1:2004. Programming languages – Fortran –
Part 1: Base language

The FORmula TRANslator translates mathematical formula into
computations.

Any difference between the values of the expressions (1./3.)*3. and
1. is a computational difference, not a mathematical difference. The
difference between the values of the expressions 5/2 and 5./2. is a
mathematical difference, not a computational difference.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 24

Fortran’s philosophy (1)

Citations are from the Fortran 2000 language standard: International
Standard ISO/IEC1539-1:2004. Programming languages – Fortran –
Part 1: Base language

The FORmula TRANslator translates mathematical formula into
computations.

Any difference between the values of the expressions (1./3.)*3. and
1. is a computational difference, not a mathematical difference. The
difference between the values of the expressions 5/2 and 5./2. is a
mathematical difference, not a computational difference.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 24

Fortran’s philosophy (1)

Citations are from the Fortran 2000 language standard: International
Standard ISO/IEC1539-1:2004. Programming languages – Fortran –
Part 1: Base language

The FORmula TRANslator translates mathematical formula into
computations.

Any difference between the values of the expressions (1./3.)*3. and
1. is a computational difference, not a mathematical difference. The
difference between the values of the expressions 5/2 and 5./2. is a
mathematical difference, not a computational difference.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 24

Fortran’s philosophy (2)

Fortran respects mathematics, and only mathematics.

(...) the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.
Two expressions of a numeric type are mathematically equivalent if, for
all possible values of their primaries, their mathematical values are
equal. However, mathematically equivalent expressions of numeric type
may produce different computational results.

Remark: This philosophy applies to both order and precision.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 25

Fortran’s philosophy (2)

Fortran respects mathematics, and only mathematics.

(...) the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.
Two expressions of a numeric type are mathematically equivalent if, for
all possible values of their primaries, their mathematical values are
equal. However, mathematically equivalent expressions of numeric type
may produce different computational results.

Remark: This philosophy applies to both order and precision.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 25

Fortran in details

X,Y,Z of any numerical type, A,B,C of type real or complex, I, J of integer
type.

Expression Allowable alternative form
X+Y Y+X
X*Y Y*X
-X + Y Y-X
X+Y+Z X + (Y + Z)
X-Y+Z X - (Y - Z)
X*A/Z X * (A / Z)
X*Y-X*Z X * (Y - Z)
A/B/C A / (B * C)
A / 5.0 0.2 * A

Consider the last line :

A/5.0 is actually more accurate 0.2*A. Why?

This line is valid if you replace 5 by 4, but not by 3. Why?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 26

The Patriot bug

In 1991, a Patriot anti-missile failed to intercept a Scud missile.
28 people were killed.

The code worked with time increments of 0.1 s.

But 0.1 is not representable in binary.

In the 24-bit format used, the number stored was
0.099999904632568359375

The error was 0.0000000953.

After 100 hours = 360,000 seconds, time is wrong by 0.34s.

In 0.34s, a Scud moves 500m

Test: which of the following increments should you use?

10 5 3 1 0.5 0.25 0.2 0.125 0.1

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 27

Fortran in details (2)

Fortunately, Fortran respects your parentheses.

In addition to the parentheses required to establish the desired
interpretation, parentheses may be included to restrict the alternative
forms that may be used by the processor in the actual evaluation of the
expression. This is useful for controlling the magnitude and accuracy of
intermediate values developed during the evaluation of an expression.

(this was the solution to the last FP bug of LHC@Home at CERN)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 28

Fortran in details (3)

X,Y,Z of any numerical type, A,B,C of type real or complex, I, J of
integer type.

Expression Forbidden alternative form

I/2 0.5 * I
X*I/J X * (I / J)
I/J/A I / (J * A)
(X + Y) + Z X + (Y + Z)
(X * Y) - (X * Z) X * (Y - Z)
X * (Y - Z) X*Y-X*Z

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 29

Fortran in details (4)

You have been warned.

The inclusion of parentheses may change the mathematical value of an
expression. For example, the two expressions A*I/J and A*(I/J) may
have different mathematical values if I and J are of type integer.

Difference between C=(F-32)*(5/9) and C=(F-32)*5/9.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 30

Enough standard, the rest is in the manual

(yes, you should read the manual of your favorite language
and also that of your favorite compiler)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 31

The C philosophy

The “C11” standard:
International Standard ISO/IEC ISO/IEC 9899:2011.

Contrary to Fortran, the standard imposes an order of evaluation

Parentheses are always respected,
Otherwise, left to right order with usual priorities
If you write x = a/b/c/d (all FP), you get 3 (slow) divisions.

Consequence: little expressions rewriting

Only if the compiler is able to prove that the two expressions always
return the same FP number, including in exceptional cases

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 32

C in the gory details

Morceaux choisis from appendix F.8.2 of the C11 standard:

Commutativities are OK

x/2 may be replaced with 0.5*x,
because both operations are always exact in IEEE-754.

but x/5.0 may not be replaced with 0.2*x

(C won’t introduce the Patriot bug)

x*1 and x/1 may be replaced with x

x-x may not be replaced with 0

unless the compiler is able to prove that x will never be ∞ nor NaN

Worse: x+0 may not be replaced with x

unless the compiler is able to prove that x will never be −0
because (−0) + (+0) = (+0) and not (−0)

On the other hand x-0 may be replaced with x

if the compiler is sure that rounding mode will be to nearest.

x == x may not be replaced with true

unless the compiler is able to prove that x will never be NaN.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 33

C in the gory details

Morceaux choisis from appendix F.8.2 of the C11 standard:

Commutativities are OK

x/2 may be replaced with 0.5*x,
because both operations are always exact in IEEE-754.

but x/5.0 may not be replaced with 0.2*x

(C won’t introduce the Patriot bug)

x*1 and x/1 may be replaced with x

x-x may not be replaced with 0

unless the compiler is able to prove that x will never be ∞ nor NaN

Worse: x+0 may not be replaced with x

unless the compiler is able to prove that x will never be −0
because (−0) + (+0) = (+0) and not (−0)

On the other hand x-0 may be replaced with x

if the compiler is sure that rounding mode will be to nearest.

x == x may not be replaced with true

unless the compiler is able to prove that x will never be NaN.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 33

C in the gory details

Morceaux choisis from appendix F.8.2 of the C11 standard:

Commutativities are OK

x/2 may be replaced with 0.5*x,
because both operations are always exact in IEEE-754.

but x/5.0 may not be replaced with 0.2*x

(C won’t introduce the Patriot bug)

x*1 and x/1 may be replaced with x

x-x may not be replaced with 0

unless the compiler is able to prove that x will never be ∞ nor NaN

Worse: x+0 may not be replaced with x

unless the compiler is able to prove that x will never be −0
because (−0) + (+0) = (+0) and not (−0)

On the other hand x-0 may be replaced with x

if the compiler is sure that rounding mode will be to nearest.

x == x may not be replaced with true

unless the compiler is able to prove that x will never be NaN.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 33

C in the gory details

Morceaux choisis from appendix F.8.2 of the C11 standard:

Commutativities are OK

x/2 may be replaced with 0.5*x,
because both operations are always exact in IEEE-754.

but x/5.0 may not be replaced with 0.2*x

(C won’t introduce the Patriot bug)

x*1 and x/1 may be replaced with x

x-x may not be replaced with 0

unless the compiler is able to prove that x will never be ∞ nor NaN

Worse: x+0 may not be replaced with x

unless the compiler is able to prove that x will never be −0
because (−0) + (+0) = (+0) and not (−0)

On the other hand x-0 may be replaced with x

if the compiler is sure that rounding mode will be to nearest.

x == x may not be replaced with true

unless the compiler is able to prove that x will never be NaN.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 33

C in the gory details

Morceaux choisis from appendix F.8.2 of the C11 standard:

Commutativities are OK

x/2 may be replaced with 0.5*x,
because both operations are always exact in IEEE-754.

but x/5.0 may not be replaced with 0.2*x

(C won’t introduce the Patriot bug)

x*1 and x/1 may be replaced with x

x-x may not be replaced with 0

unless the compiler is able to prove that x will never be ∞ nor NaN

Worse: x+0 may not be replaced with x

unless the compiler is able to prove that x will never be −0
because (−0) + (+0) = (+0) and not (−0)

On the other hand x-0 may be replaced with x

if the compiler is sure that rounding mode will be to nearest.

x == x may not be replaced with true

unless the compiler is able to prove that x will never be NaN.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 33

C in the gory details

Morceaux choisis from appendix F.8.2 of the C11 standard:

Commutativities are OK

x/2 may be replaced with 0.5*x,
because both operations are always exact in IEEE-754.

but x/5.0 may not be replaced with 0.2*x

(C won’t introduce the Patriot bug)

x*1 and x/1 may be replaced with x

x-x may not be replaced with 0

unless the compiler is able to prove that x will never be ∞ nor NaN

Worse: x+0 may not be replaced with x

unless the compiler is able to prove that x will never be −0
because (−0) + (+0) = (+0) and not (−0)

On the other hand x-0 may be replaced with x

if the compiler is sure that rounding mode will be to nearest.

x == x may not be replaced with true

unless the compiler is able to prove that x will never be NaN.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 33

C in the gory details

Morceaux choisis from appendix F.8.2 of the C11 standard:

Commutativities are OK

x/2 may be replaced with 0.5*x,
because both operations are always exact in IEEE-754.

but x/5.0 may not be replaced with 0.2*x

(C won’t introduce the Patriot bug)

x*1 and x/1 may be replaced with x

x-x may not be replaced with 0

unless the compiler is able to prove that x will never be ∞ nor NaN

Worse: x+0 may not be replaced with x

unless the compiler is able to prove that x will never be −0
because (−0) + (+0) = (+0) and not (−0)

On the other hand x-0 may be replaced with x

if the compiler is sure that rounding mode will be to nearest.

x == x may not be replaced with true

unless the compiler is able to prove that x will never be NaN.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 33

C in the gory details

Morceaux choisis from appendix F.8.2 of the C11 standard:

Commutativities are OK

x/2 may be replaced with 0.5*x,
because both operations are always exact in IEEE-754.

but x/5.0 may not be replaced with 0.2*x

(C won’t introduce the Patriot bug)

x*1 and x/1 may be replaced with x

x-x may not be replaced with 0

unless the compiler is able to prove that x will never be ∞ nor NaN

Worse: x+0 may not be replaced with x

unless the compiler is able to prove that x will never be −0
because (−0) + (+0) = (+0) and not (−0)

On the other hand x-0 may be replaced with x

if the compiler is sure that rounding mode will be to nearest.

x == x may not be replaced with true

unless the compiler is able to prove that x will never be NaN.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 33

Obvious impact on performance

Therefore, default behaviour of commercial compiler tend to ignore this
part of the standard...

But there is always an option to enable it.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 34

Obvious impact on performance

Therefore, default behaviour of commercial compiler tend to ignore this
part of the standard...
But there is always an option to enable it.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 34

The C philosophy (2)

So, perfect determinism wrt order of evaluation

Strangely, intermediate precision is not determined by the
standard: it defines a bottom-up minimum precision, but invites
the compiler to take the largest precision which is larger than this
minimum, and no slower

Idea:

If you wrote float somewhere, you probably did so because you
thought it would be faster than double.
If the compiler gives you long double for the same price,
you won’t complain.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 35

Drawbacks of C philosophy

Small drawback

Before SSE, float was almost always double or double-extended
With SSE, float should be single precision (2-4× faster)
Or, on a newer PC, the same computation became much less
accurate!

Big drawbacks

The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)
It does so almost randomly (it totally depends on the context)
But... storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore (C philosophy) it should be avoided.
Thus, sometimes a value is rounded twice, which may be even less
accurate than the target precision
And sometimes, the same computation may give different results at
different points of the program.

The sort bug explained (because double promoted to 80 bits)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 36

Drawbacks of C philosophy

Small drawback

Before SSE, float was almost always double or double-extended
With SSE, float should be single precision (2-4× faster)
Or, on a newer PC, the same computation became much less
accurate!

Big drawbacks

The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)

It does so almost randomly (it totally depends on the context)
But... storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore (C philosophy) it should be avoided.
Thus, sometimes a value is rounded twice, which may be even less
accurate than the target precision
And sometimes, the same computation may give different results at
different points of the program.

The sort bug explained (because double promoted to 80 bits)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 36

Drawbacks of C philosophy

Small drawback

Before SSE, float was almost always double or double-extended
With SSE, float should be single precision (2-4× faster)
Or, on a newer PC, the same computation became much less
accurate!

Big drawbacks

The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)
It does so almost randomly (it totally depends on the context)

But... storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore (C philosophy) it should be avoided.
Thus, sometimes a value is rounded twice, which may be even less
accurate than the target precision
And sometimes, the same computation may give different results at
different points of the program.

The sort bug explained (because double promoted to 80 bits)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 36

Drawbacks of C philosophy

Small drawback

Before SSE, float was almost always double or double-extended
With SSE, float should be single precision (2-4× faster)
Or, on a newer PC, the same computation became much less
accurate!

Big drawbacks

The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)
It does so almost randomly (it totally depends on the context)
But... storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore (C philosophy) it should be avoided.

Thus, sometimes a value is rounded twice, which may be even less
accurate than the target precision
And sometimes, the same computation may give different results at
different points of the program.

The sort bug explained (because double promoted to 80 bits)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 36

Drawbacks of C philosophy

Small drawback

Before SSE, float was almost always double or double-extended
With SSE, float should be single precision (2-4× faster)
Or, on a newer PC, the same computation became much less
accurate!

Big drawbacks

The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)
It does so almost randomly (it totally depends on the context)
But... storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore (C philosophy) it should be avoided.
Thus, sometimes a value is rounded twice, which may be even less
accurate than the target precision

And sometimes, the same computation may give different results at
different points of the program.

The sort bug explained (because double promoted to 80 bits)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 36

Drawbacks of C philosophy

Small drawback

Before SSE, float was almost always double or double-extended
With SSE, float should be single precision (2-4× faster)
Or, on a newer PC, the same computation became much less
accurate!

Big drawbacks

The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)
It does so almost randomly (it totally depends on the context)
But... storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore (C philosophy) it should be avoided.
Thus, sometimes a value is rounded twice, which may be even less
accurate than the target precision
And sometimes, the same computation may give different results at
different points of the program.

The sort bug explained (because double promoted to 80 bits)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 36

Quickly, Java

Integrist approach to determinism: compile once, run everywhere

float and double only.
Evaluation semantics with fixed order and precision.

⊕ No sort bug.
	 Performance impact, but...

only on PCs (Sun also sold SPARCs)
	 You’ve paid for double-extended processor, and you can’t use it

(because it doesn’t run anywhere)

The great Kahan doesn’t like it.

Many numerical unstabilities are solved by using a larger precision

Look up Why Java hurts everybody everywhere on the Internet

I tend to disagree with him here. We can’t allow the sort bug.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 37

Quickly, Java

Integrist approach to determinism: compile once, run everywhere

float and double only.
Evaluation semantics with fixed order and precision.

⊕ No sort bug.
	 Performance impact, but... only on PCs (Sun also sold SPARCs)
	 You’ve paid for double-extended processor, and you can’t use it

(because it doesn’t run anywhere)

The great Kahan doesn’t like it.

Many numerical unstabilities are solved by using a larger precision

Look up Why Java hurts everybody everywhere on the Internet

I tend to disagree with him here. We can’t allow the sort bug.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 37

Quickly, Java

Integrist approach to determinism: compile once, run everywhere

float and double only.
Evaluation semantics with fixed order and precision.

⊕ No sort bug.
	 Performance impact, but... only on PCs (Sun also sold SPARCs)
	 You’ve paid for double-extended processor, and you can’t use it

(because it doesn’t run anywhere)

The great Kahan doesn’t like it.

Many numerical unstabilities are solved by using a larger precision

Look up Why Java hurts everybody everywhere on the Internet

I tend to disagree with him here. We can’t allow the sort bug.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 37

Quickly, Python

Floating point numbers
These represent machine-level double precision floating point numbers.
You are at the mercy of the underlying machine architecture (and C or
Java implementation) for the accepted range and handling of overflow.

You have been warned.

Python does not support single-precision floating point numbers; the
savings in processor and memory usage that are usually the reason for
using these is dwarfed by the overhead of using objects in Python, so
there is no reason to complicate the language with two kinds of floating
point numbers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 38

Quickly, Python

Floating point numbers
These represent machine-level double precision floating point numbers.
You are at the mercy of the underlying machine architecture (and C or
Java implementation) for the accepted range and handling of overflow.

You have been warned.

Python does not support single-precision floating point numbers; the
savings in processor and memory usage that are usually the reason for
using these is dwarfed by the overhead of using objects in Python, so
there is no reason to complicate the language with two kinds of floating
point numbers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 38

Conclusion of this part: A historical perspective

Before 1985, floating-point was an ugly mess

From 1985 to 2000, the IEEE-754 standard becomes pervasive,
but the party is spoiled by x87 messy implementation WRT
extended precision

Newer instruction sets solve this, but introduce the FMA mess

2008 IEEE 754-2008 cleans all this, but adds the decimal mess

and then arrives the multicore mess

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 39

Conclusion of this part: A historical perspective

Before 1985, floating-point was an ugly mess

From 1985 to 2000, the IEEE-754 standard becomes pervasive,
but the party is spoiled by x87 messy implementation WRT
extended precision

Newer instruction sets solve this, but introduce the FMA mess

2008 IEEE 754-2008 cleans all this, but adds the decimal mess

and then arrives the multicore mess

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 39

Conclusion of this part: A historical perspective

Before 1985, floating-point was an ugly mess

From 1985 to 2000, the IEEE-754 standard becomes pervasive,
but the party is spoiled by x87 messy implementation WRT
extended precision

Newer instruction sets solve this, but introduce the FMA mess

2008 IEEE 754-2008 cleans all this, but adds the decimal mess

and then arrives the multicore mess

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 39

Conclusion of this part: A historical perspective

Before 1985, floating-point was an ugly mess

From 1985 to 2000, the IEEE-754 standard becomes pervasive,
but the party is spoiled by x87 messy implementation WRT
extended precision

Newer instruction sets solve this, but introduce the FMA mess

2008 IEEE 754-2008 cleans all this, but adds the decimal mess

and then arrives the multicore mess

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 39

Conclusion of this part: A historical perspective

Before 1985, floating-point was an ugly mess

From 1985 to 2000, the IEEE-754 standard becomes pervasive,
but the party is spoiled by x87 messy implementation WRT
extended precision

Newer instruction sets solve this, but introduce the FMA mess

2008 IEEE 754-2008 cleans all this, but adds the decimal mess

and then arrives the multicore mess

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 39

It shouldn’t be so messy, should it?

Don’t worry, things are improving

SSE2 has cleant up IA32 floating-point

Soon (AVX/SSE5) we have an FMA in virtually any processor and
we may use the fma() to exploit it safely and portably

The 2008 revision of IEEE-754 addresses the issues of

reproducibility versus performance
precision of intermediate computations
etc

but it will take a while to percolate to your programming
environment

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 40

Accuracy versus reproductibility

Floating-point in your machine

Accuracy versus reproductibility

Performance versus accuracy

Conclusion: It’s the Hardware, Stupid

Space-filling advertising: hardware computing just right

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 41

Accuracy is important

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 42

Is reproducibility important?

Let us review a few use cases where people wanted numerical
reproducibility.

For each of these use cases, consider these two questions:

The question people ask

What is the cost of reproducibility?

The question they should ask

Will the focus on reproducibility lead to good, or to evil?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 43

Is reproducibility important?

Let us review a few use cases where people wanted numerical
reproducibility.

For each of these use cases, consider these two questions:

The question people ask

What is the cost of reproducibility?

The question they should ask

Will the focus on reproducibility lead to good, or to evil?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 43

A toy use case

Blender is a 3D authoring tool

It includes blenderplayer: render Blender animations/games in
real time

Competition of animations using this tool

I am going to show one of the winning entries

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 44

The blenderplayer case

What is the cost of reproducibility?

I don’t know, I didn’t try. More on this on next slide.

Is the focus on reproducibility good or evil?

Would you design the launch system of a satellite this way?

What about a game that is playable on XStation but unplayable on
PlayBox?

Conclusion: in such a case,

A programmer that would insist on reproducibility would be an idiot

What we need here is tools that make computing
even less reproducible:

let me advertise stochastic arithmetic.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 45

The blenderplayer case

What is the cost of reproducibility?

I don’t know, I didn’t try. More on this on next slide.

Is the focus on reproducibility good or evil?

Would you design the launch system of a satellite this way?

What about a game that is playable on XStation but unplayable on
PlayBox?

Conclusion: in such a case,

A programmer that would insist on reproducibility would be an idiot

What we need here is tools that make computing
even less reproducible:

let me advertise stochastic arithmetic.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 45

The blenderplayer case

What is the cost of reproducibility?

I don’t know, I didn’t try. More on this on next slide.

Is the focus on reproducibility good or evil?

Would you design the launch system of a satellite this way?

What about a game that is playable on XStation but unplayable on
PlayBox?

Conclusion: in such a case,

A programmer that would insist on reproducibility would be an idiot

What we need here is tools that make computing
even less reproducible:

let me advertise stochastic arithmetic.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 45

By the way, what do we call reproducibility?

Some kind of predictability, because we have read the standards?

Two runs on the same computer with the same OS? But

two occurences of the same code may be compiled differently
the execution may be serialized differently in a multithreaded
environment

Two runs on different computers with the same OS? But

different processors have different arithmetic units

Two runs on the same computer with different OS’s? But

different mathematical libraries, policies WRT exceptions, default
behaviours...

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 46

By the way, what do we call reproducibility?

Some kind of predictability, because we have read the standards?

Two runs on the same computer with the same OS? But

two occurences of the same code may be compiled differently
the execution may be serialized differently in a multithreaded
environment

Two runs on different computers with the same OS? But

different processors have different arithmetic units

Two runs on the same computer with different OS’s? But

different mathematical libraries, policies WRT exceptions, default
behaviours...

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 46

By the way, what do we call reproducibility?

Some kind of predictability, because we have read the standards?

Two runs on the same computer with the same OS? But

two occurences of the same code may be compiled differently
the execution may be serialized differently in a multithreaded
environment

Two runs on different computers with the same OS? But

different processors have different arithmetic units

Two runs on the same computer with different OS’s? But

different mathematical libraries, policies WRT exceptions, default
behaviours...

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 46

By the way, what do we call reproducibility?

Some kind of predictability, because we have read the standards?

Two runs on the same computer with the same OS? But

two occurences of the same code may be compiled differently
the execution may be serialized differently in a multithreaded
environment

Two runs on different computers with the same OS? But

different processors have different arithmetic units

Two runs on the same computer with different OS’s? But

different mathematical libraries, policies WRT exceptions, default
behaviours...

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 46

The serious version of the Blender use case

Algorithmic geometry problems:

Example: compute the determinant of two vectors to decide their
relative orientation

Here we have a mathematical reference

We know what the code is supposed to compute.
Solution: write a test that detects if rounding may lead to wrong result,
and recompute with higher accuracy in this (hopefully rare) case.

What is the cost of reproducibility?

Minor in execution time, high in coffee consumption.
Let me advertise Gappa, a tool that will reduce coffee consumption.

Is the focus on reproducibility good or evil?

In CAD tools, I guess it is good.
In games, performance (WCET) is more important.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 47

The serious version of the Blender use case

Algorithmic geometry problems:

Example: compute the determinant of two vectors to decide their
relative orientation

Here we have a mathematical reference

We know what the code is supposed to compute.
Solution: write a test that detects if rounding may lead to wrong result,
and recompute with higher accuracy in this (hopefully rare) case.

What is the cost of reproducibility?

Minor in execution time, high in coffee consumption.
Let me advertise Gappa, a tool that will reduce coffee consumption.

Is the focus on reproducibility good or evil?

In CAD tools, I guess it is good.
In games, performance (WCET) is more important.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 47

The serious version of the Blender use case

Algorithmic geometry problems:

Example: compute the determinant of two vectors to decide their
relative orientation

Here we have a mathematical reference

We know what the code is supposed to compute.
Solution: write a test that detects if rounding may lead to wrong result,
and recompute with higher accuracy in this (hopefully rare) case.

What is the cost of reproducibility?

Minor in execution time, high in coffee consumption.
Let me advertise Gappa, a tool that will reduce coffee consumption.

Is the focus on reproducibility good or evil?

In CAD tools, I guess it is good.
In games, performance (WCET) is more important.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 47

The serious version of the Blender use case

Algorithmic geometry problems:

Example: compute the determinant of two vectors to decide their
relative orientation

Here we have a mathematical reference

We know what the code is supposed to compute.
Solution: write a test that detects if rounding may lead to wrong result,
and recompute with higher accuracy in this (hopefully rare) case.

What is the cost of reproducibility?

Minor in execution time, high in coffee consumption.
Let me advertise Gappa, a tool that will reduce coffee consumption.

Is the focus on reproducibility good or evil?

In CAD tools, I guess it is good.
In games, performance (WCET) is more important.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 47

If she moves fast enough you won’t notice the bugs

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 48

Use case: CERN’s LHC@home

Objective:
simulate various configurations
of the superconducting magnets
(before building them)

The simulated phenomenon is known chaotic

Computation distributed on a large number of untrusted PCs.

Confidence by redundancy:
if two PCs return the exact same result, it is trusted.

that is, the computation on each PC is trusted,
not its physical significance: the computation is chaotic.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 49

Use case: CERN’s LHC@home

Objective:
simulate various configurations
of the superconducting magnets
(before building them)

The simulated phenomenon is known chaotic

Computation distributed on a large number of untrusted PCs.

Confidence by redundancy:
if two PCs return the exact same result, it is trusted.

that is, the computation on each PC is trusted,
not its physical significance: the computation is chaotic.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 49

Use case: CERN’s LHC@home

Objective:
simulate various configurations
of the superconducting magnets
(before building them)

The simulated phenomenon is known chaotic

Computation distributed on a large number of untrusted PCs.

Confidence by redundancy:
if two PCs return the exact same result, it is trusted.

that is, the computation on each PC is trusted,
not its physical significance: the computation is chaotic.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 49

Maybe I am biased on this one.

Here we don’t have a mathematical reference

... not even a physical one: we are trying to frame it.

What is the cost of reproducibility?

Performance benefit (more PCs can be exploited)

Coffee consumption: several engineer-months.

Recipe:

chose a portable compiler,
add parentheses to Fortran
replace elementary functions with correctly-rounded ones

Is the focus on reproducibility good or evil?

Mostly good

... but cost/benefit disputable

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 50

Maybe I am biased on this one.

Here we don’t have a mathematical reference

... not even a physical one: we are trying to frame it.

What is the cost of reproducibility?

Performance benefit (more PCs can be exploited)

Coffee consumption: several engineer-months.

Recipe:

chose a portable compiler,
add parentheses to Fortran
replace elementary functions with correctly-rounded ones

Is the focus on reproducibility good or evil?

Mostly good

... but cost/benefit disputable

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 50

Maybe I am biased on this one.

Here we don’t have a mathematical reference

... not even a physical one: we are trying to frame it.

What is the cost of reproducibility?

Performance benefit (more PCs can be exploited)

Coffee consumption: several engineer-months.

Recipe:

chose a portable compiler,
add parentheses to Fortran
replace elementary functions with correctly-rounded ones

Is the focus on reproducibility good or evil?

Mostly good

... but cost/benefit disputable

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 50

Use case: the Intel Math Kernel Libraries

The MKL include elementary functions, BLAS, etc.

Since the transition to multicore, Intel gets bug reports:
the BLAS are no longer deterministic!

Solution: a compiler switch that basically imposes a deterministic
serialization

What is the cost of reproducibility?

Catastrophic in execution time (but may improve in the future)

Is the focus on reproducibility good or evil?

good for debugging

otherwise bad: serialization chosen for reproducibility, not for
accuracy

When different runs give different results, programmers question
them.

Here also we have a mathematical reference! Why not use it?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 51

Use case: the Intel Math Kernel Libraries

The MKL include elementary functions, BLAS, etc.

Since the transition to multicore, Intel gets bug reports:
the BLAS are no longer deterministic!

Solution: a compiler switch that basically imposes a deterministic
serialization

What is the cost of reproducibility?

Catastrophic in execution time (but may improve in the future)

Is the focus on reproducibility good or evil?

good for debugging

otherwise bad: serialization chosen for reproducibility, not for
accuracy

When different runs give different results, programmers question
them.

Here also we have a mathematical reference! Why not use it?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 51

Use case: the Intel Math Kernel Libraries

The MKL include elementary functions, BLAS, etc.

Since the transition to multicore, Intel gets bug reports:
the BLAS are no longer deterministic!

Solution: a compiler switch that basically imposes a deterministic
serialization

What is the cost of reproducibility?

Catastrophic in execution time (but may improve in the future)

Is the focus on reproducibility good or evil?

good for debugging

otherwise bad: serialization chosen for reproducibility, not for
accuracy

When different runs give different results, programmers question
them.

Here also we have a mathematical reference! Why not use it?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 51

Use case: the Intel Math Kernel Libraries

The MKL include elementary functions, BLAS, etc.

Since the transition to multicore, Intel gets bug reports:
the BLAS are no longer deterministic!

Solution: a compiler switch that basically imposes a deterministic
serialization

What is the cost of reproducibility?

Catastrophic in execution time (but may improve in the future)

Is the focus on reproducibility good or evil?

good for debugging

otherwise bad: serialization chosen for reproducibility, not for
accuracy

When different runs give different results, programmers question
them.

Here also we have a mathematical reference! Why not use it?
Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 51

Conclusion on this part

We shouldn’t care about reproducibility. What matters is accuracy.

Perfectly accurate results are reproducible (correct rounding)

Reproducibility by specification is good
Reproducibility of poorly understood code is dangerous.

I’d rather have
3 guaranteed digits everywhere
than
the exact same (totally wrong) result everywhere

In other words: reproducible accuracy

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 52

Conclusion on this part

We shouldn’t care about reproducibility. What matters is accuracy.

Perfectly accurate results are reproducible (correct rounding)

Reproducibility by specification is good
Reproducibility of poorly understood code is dangerous.

I’d rather have
3 guaranteed digits everywhere
than
the exact same (totally wrong) result everywhere

In other words: reproducible accuracy

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 52

Conclusion on this part

We shouldn’t care about reproducibility. What matters is accuracy.

Perfectly accurate results are reproducible (correct rounding)

Reproducibility by specification is good
Reproducibility of poorly understood code is dangerous.

I’d rather have
3 guaranteed digits everywhere
than
the exact same (totally wrong) result everywhere

In other words: reproducible accuracy

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 52

What is an error? What is accuracy?

The most important sentence of this talk

An error is a difference (absolute or relative) between two values,
one being a reference for the other.

Examples:

error of the FP addition is with reference of the real sum (easy)

error of the polynomial is with reference to the function (easy)

error of one FP addition within the polynomial evaluation?
(difficult because we have no direct reference in the function)

accuracy of the BLAS?

Never say “the error of this term is ...”:
it doesn’t mean anything without the reference.

If you are not able to define the reference value,
you will not be able to know how accurate you compute

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 53

What is an error? What is accuracy?

The most important sentence of this talk

An error is a difference (absolute or relative) between two values,
one being a reference for the other.

Examples:

error of the FP addition is with reference of the real sum (easy)

error of the polynomial is with reference to the function (easy)

error of one FP addition within the polynomial evaluation?
(difficult because we have no direct reference in the function)

accuracy of the BLAS?

Never say “the error of this term is ...”:
it doesn’t mean anything without the reference.

If you are not able to define the reference value,
you will not be able to know how accurate you compute

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 53

What is an error? What is accuracy?

The most important sentence of this talk

An error is a difference (absolute or relative) between two values,
one being a reference for the other.

Examples:

error of the FP addition is with reference of the real sum (easy)

error of the polynomial is with reference to the function (easy)

error of one FP addition within the polynomial evaluation?
(difficult because we have no direct reference in the function)

accuracy of the BLAS?

Never say “the error of this term is ...”:
it doesn’t mean anything without the reference.

If you are not able to define the reference value,
you will not be able to know how accurate you compute

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 53

What is an error? What is accuracy?

The most important sentence of this talk

An error is a difference (absolute or relative) between two values,
one being a reference for the other.

Examples:

error of the FP addition is with reference of the real sum (easy)

error of the polynomial is with reference to the function (easy)

error of one FP addition within the polynomial evaluation?
(difficult because we have no direct reference in the function)

accuracy of the BLAS?

Never say “the error of this term is ...”:
it doesn’t mean anything without the reference.

If you are not able to define the reference value,
you will not be able to know how accurate you compute

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 53

Performance versus accuracy

Floating-point in your machine

Accuracy versus reproductibility

Performance versus accuracy

Conclusion: It’s the Hardware, Stupid

Space-filling advertising: hardware computing just right

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 54

Bottom line of this part

Common wisdom

The more accurate you compute, the more expensive it gets

In practice

We (hopefully) notice it when our computation is
not accurate enough.

But do we notice it when it is too accurate for our needs?

Reconciling performance and accuracy?

Or, regain performance by computing just right?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 55

Bottom line of this part

Common wisdom

The more accurate you compute, the more expensive it gets

In practice

We (hopefully) notice it when our computation is
not accurate enough.

But do we notice it when it is too accurate for our needs?

Reconciling performance and accuracy?

Or, regain performance by computing just right?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 55

Bottom line of this part

Common wisdom

The more accurate you compute, the more expensive it gets

In practice

We (hopefully) notice it when our computation is
not accurate enough.

But do we notice it when it is too accurate for our needs?

Reconciling performance and accuracy?

Or, regain performance by computing just right?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 55

Double precision spoils us

The standard binary64 format (formerly known as double-precision)
provides roughly 16 decimal digits.

Why should anybody need such accuracy?

Count the digits in the following

Definition of the second: the duration of 9,192,631,770 periods of
the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium 133 atom.

Definition of the metre: the distance travelled by light in vacuum
in 1/299,792,458 of a second.

Most accurate measurement ever (another atomic frequency)
to 14 decimal places

Most accurate measurement of the Planck constant to date:
to 7 decimal places

The gravitation constant G is known to 3 decimal places only

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 56

Parenthesis: then why binary64?

This PC computes 109 operations per second (1 gigaflops)

An allegory due to Kulisch

print the numbers in 100 lines of 5 columns double-sided:
1000 numbers/sheet

1000 sheets ≈ a heap of 10 cm

109 flops ≈ heap height speed of 100m/s, or 360km/h

A teraflops (1012 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (1015 op/s)

each operation may involve a relative error of 10−16,
and they accumulate.

Doesn’t this sound wrong?

We would use these 16 digits just to accumulate garbage in them?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 57

Parenthesis: then why binary64?

This PC computes 109 operations per second (1 gigaflops)

An allegory due to Kulisch

print the numbers in 100 lines of 5 columns double-sided:
1000 numbers/sheet

1000 sheets ≈ a heap of 10 cm

109 flops ≈ heap height speed of 100m/s, or 360km/h

A teraflops (1012 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (1015 op/s)

each operation may involve a relative error of 10−16,
and they accumulate.

Doesn’t this sound wrong?

We would use these 16 digits just to accumulate garbage in them?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 57

Parenthesis: then why binary64?

This PC computes 109 operations per second (1 gigaflops)

An allegory due to Kulisch

print the numbers in 100 lines of 5 columns double-sided:
1000 numbers/sheet

1000 sheets ≈ a heap of 10 cm

109 flops ≈ heap height speed of 100m/s, or 360km/h

A teraflops (1012 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (1015 op/s)

each operation may involve a relative error of 10−16,
and they accumulate.

Doesn’t this sound wrong?

We would use these 16 digits just to accumulate garbage in them?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 57

Parenthesis: then why binary64?

This PC computes 109 operations per second (1 gigaflops)

An allegory due to Kulisch

print the numbers in 100 lines of 5 columns double-sided:
1000 numbers/sheet

1000 sheets ≈ a heap of 10 cm

109 flops ≈ heap height speed of 100m/s, or 360km/h

A teraflops (1012 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (1015 op/s)

each operation may involve a relative error of 10−16,
and they accumulate.

Doesn’t this sound wrong?

We would use these 16 digits just to accumulate garbage in them?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 57

Parenthesis: then why binary64?

This PC computes 109 operations per second (1 gigaflops)

An allegory due to Kulisch

print the numbers in 100 lines of 5 columns double-sided:
1000 numbers/sheet

1000 sheets ≈ a heap of 10 cm

109 flops ≈ heap height speed of 100m/s, or 360km/h

A teraflops (1012 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (1015 op/s)

each operation may involve a relative error of 10−16,
and they accumulate.

Doesn’t this sound wrong?

We would use these 16 digits just to accumulate garbage in them?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 57

One example of performance by computing just right

Correctly rounded elementary functions

IEEE-754 floating-point single or double-precision

Elementary functions: sin, cos, exp, log, implemented in the
“standard mathematical library” (libm)

Correctly rounded: As perfect as can be, considering the finite
nature of floating-point arithmetic

same standard of quality as +,×, /,√

Now recommended by the IEEE754-2008 standard,
but long considered too expensive

because of the Table Maker’s Dilemma

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 58

One example of performance by computing just right

Correctly rounded elementary functions

IEEE-754 floating-point single or double-precision

Elementary functions: sin, cos, exp, log, implemented in the
“standard mathematical library” (libm)

Correctly rounded: As perfect as can be, considering the finite
nature of floating-point arithmetic

same standard of quality as +,×, /,√

Now recommended by the IEEE754-2008 standard,
but long considered too expensive

because of the Table Maker’s Dilemma

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 58

One example of performance by computing just right

Correctly rounded elementary functions

IEEE-754 floating-point single or double-precision

Elementary functions: sin, cos, exp, log, implemented in the
“standard mathematical library” (libm)

Correctly rounded: As perfect as can be, considering the finite
nature of floating-point arithmetic

same standard of quality as +,×, /,√

Now recommended by the IEEE754-2008 standard,
but long considered too expensive

because of the Table Maker’s Dilemma

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 58

The Table Maker’s Dilemma

Finite-precision algorithm for evaluating f (x)

Approximation + rounding errors −→ overall error bound ε.

What we compute: y such that f (x) ∈ [y − ε, y + ε]

Dilemma if this interval contains a midpoint between two FP numbers

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 59

The Table Maker’s Dilemma

Finite-precision algorithm for evaluating f (x)

Approximation + rounding errors −→ overall error bound ε.

What we compute: y such that f (x) ∈ [y − ε, y + ε]

Dilemma if this interval contains a midpoint between two FP numbers

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 59

The Table Maker’s Dilemma

Finite-precision algorithm for evaluating f (x)

Approximation + rounding errors −→ overall error bound ε.

What we compute: y such that f (x) ∈ [y − ε, y + ε]

y ± ε

Dilemma if this interval contains a midpoint between two FP numbers

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 59

The Table Maker’s Dilemma

Finite-precision algorithm for evaluating f (x)

Approximation + rounding errors −→ overall error bound ε.

What we compute: y such that f (x) ∈ [y − ε, y + ε]

y ± ε

Dilemma if this interval contains a midpoint between two FP numbers

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 59

The Table Maker’s Dilemma

Finite-precision algorithm for evaluating f (x)

Approximation + rounding errors −→ overall error bound ε.

What we compute: y such that f (x) ∈ [y − ε, y + ε]

y ± ε y ± ε

Dilemma if this interval contains a midpoint between two FP numbers

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 59

The Table Maker’s Dilemma

Finite-precision algorithm for evaluating f (x)

Approximation + rounding errors −→ overall error bound ε.

What we compute: y such that f (x) ∈ [y − ε, y + ε]

?

y ± ε y ± ε

Dilemma if this interval contains a midpoint between two FP numbers

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 59

The first digital signature algorithm

I want 12 significant digits

I have an approximation scheme that
provides 14 digits

or,
y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly, and recorded them to

confound copiers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 60

The first digital signature algorithm

I want 12 significant digits

I have an approximation scheme that
provides 14 digits

or,
y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly, and recorded them to

confound copiers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 60

The first digital signature algorithm

I want 12 significant digits

I have an approximation scheme that
provides 14 digits

or,
y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly, and recorded them to

confound copiers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 60

The first digital signature algorithm

I want 12 significant digits

I have an approximation scheme that
provides 14 digits

or,
y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly, and recorded them to

confound copiers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 60

The first digital signature algorithm

I want 12 significant digits

I have an approximation scheme that
provides 14 digits

or,
y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly, and recorded them to

confound copiers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 60

The first digital signature algorithm

I want 12 significant digits

I have an approximation scheme that
provides 14 digits

or,
y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly, and recorded them to

confound copiers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 60

The first digital signature algorithm

I want 12 significant digits

I have an approximation scheme that
provides 14 digits

or,
y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly, and recorded them to

confound copiers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 60

Solving the table maker’s dilemma

Ziv’s onion peeling algorithm

1. Initialisation: ε = ε1

2. Compute y such that f (x) = y ± ε

3. Does y ± ε contain the middle point between two FP numbers?

If no, return RN(y)
If yes,dilemma! Reduce ε, and go back to 2

It is a while loop...

Lefèvre and Muller: compute just right the precision at which it
terminates.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 61

Solving the table maker’s dilemma

y ± ε1

Ziv’s onion peeling algorithm

1. Initialisation: ε = ε1

2. Compute y such that f (x) = y ± ε

3. Does y ± ε contain the middle point between two FP numbers?

If no, return RN(y)
If yes,dilemma! Reduce ε, and go back to 2

It is a while loop...

Lefèvre and Muller: compute just right the precision at which it
terminates.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 61

Solving the table maker’s dilemma

y ± ε1

Ziv’s onion peeling algorithm

1. Initialisation: ε = ε1

2. Compute y such that f (x) = y ± ε

3. Does y ± ε contain the middle point between two FP numbers?

If no, return RN(y)
If yes,dilemma! Reduce ε, and go back to 2

It is a while loop...

Lefèvre and Muller: compute just right the precision at which it
terminates.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 61

Solving the table maker’s dilemma

y ± ε1

Ziv’s onion peeling algorithm

1. Initialisation: ε = ε1

2. Compute y such that f (x) = y ± ε

3. Does y ± ε contain the middle point between two FP numbers?

If no, return RN(y)

If yes,dilemma! Reduce ε, and go back to 2

It is a while loop...

Lefèvre and Muller: compute just right the precision at which it
terminates.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 61

Solving the table maker’s dilemma

y ± ε1 y ± ε1

Ziv’s onion peeling algorithm

1. Initialisation: ε = ε1

2. Compute y such that f (x) = y ± ε

3. Does y ± ε contain the middle point between two FP numbers?

If no, return RN(y)
If yes,

dilemma! Reduce ε, and go back to 2

It is a while loop...

Lefèvre and Muller: compute just right the precision at which it
terminates.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 61

Solving the table maker’s dilemma

?

y ± ε1 y ± ε1

Ziv’s onion peeling algorithm

1. Initialisation: ε = ε1

2. Compute y such that f (x) = y ± ε

3. Does y ± ε contain the middle point between two FP numbers?

If no, return RN(y)
If yes,dilemma!

Reduce ε, and go back to 2

It is a while loop...

Lefèvre and Muller: compute just right the precision at which it
terminates.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 61

Solving the table maker’s dilemma

y ± ε1 y ± ε2

Ziv’s onion peeling algorithm

1. Initialisation: ε = ε1

2. Compute y such that f (x) = y ± ε

3. Does y ± ε contain the middle point between two FP numbers?

If no, return RN(y)
If yes,dilemma! Reduce ε, and go back to 2

It is a while loop...

Lefèvre and Muller: compute just right the precision at which it
terminates.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 61

Solving the table maker’s dilemma

y ± ε1 y ± ε2

Ziv’s onion peeling algorithm

1. Initialisation: ε = ε1

2. Compute y such that f (x) = y ± ε

3. Does y ± ε contain the middle point between two FP numbers?

If no, return RN(y)
If yes,dilemma! Reduce ε, and go back to 2

It is a while loop...

Lefèvre and Muller: compute just right the precision at which it
terminates.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 61

Solving the table maker’s dilemma

y ± ε1 y ± ε2

Ziv’s onion peeling algorithm

1. Initialisation: ε = ε1

2. Compute y such that f (x) = y ± ε

3. Does y ± ε contain the middle point between two FP numbers?

If no, return RN(y)
If yes,dilemma! Reduce ε, and go back to 2

It is a while loop...

Lefèvre and Muller: compute just right the precision at which it
terminates.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 61

Accuracy versus performance

When we know that the loop terminates...

CRLibm: 2-step approximation process

first step fast but accurate to ε1

sometimes not accurate enough

(rarely) second step slower but always accurate enough

Tavg = T1 + p2T2

For each step, we want to prove a tight bound ε such that

|F (x)− f (x)

f (x)
| ≤ ε

Overestimating ε2 degrades T2! (common wisdom)
Overestimating ε1 degrades p2 !

?

y ± ε1 y ± ε1

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 62

Accuracy versus performance

When we know that the loop terminates...

CRLibm: 2-step approximation process

first step fast but accurate to ε1

sometimes not accurate enough

(rarely) second step slower but always accurate enough

Tavg = T1 + p2T2

For each step, we want to prove a tight bound ε such that

|F (x)− f (x)

f (x)
| ≤ ε

Overestimating ε2 degrades T2! (common wisdom)
Overestimating ε1 degrades p2 !

?

y ± ε1 y ± ε1

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 62

Accuracy versus performance

When we know that the loop terminates...

CRLibm: 2-step approximation process

first step fast but accurate to ε1

sometimes not accurate enough

(rarely) second step slower but always accurate enough

Tavg = T1 + p2T2

For each step, we want to prove a tight bound ε such that

|F (x)− f (x)

f (x)
| ≤ ε

Overestimating ε2 degrades T2! (common wisdom)
Overestimating ε1 degrades p2 !

?

y ± ε1 y ± ε1

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 62

Accuracy versus performance

When we know that the loop terminates...

CRLibm: 2-step approximation process

first step fast but accurate to ε1

sometimes not accurate enough

(rarely) second step slower but always accurate enough

Tavg = T1 + p2T2

For each step, we want to prove a tight bound ε such that

|F (x)− f (x)

f (x)
| ≤ ε

Overestimating ε2 degrades T2! (common wisdom)

Overestimating ε1 degrades p2 !

?

y ± ε1 y ± ε1

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 62

Accuracy versus performance

When we know that the loop terminates...

CRLibm: 2-step approximation process

first step fast but accurate to ε1

sometimes not accurate enough

(rarely) second step slower but always accurate enough

Tavg = T1 + p2T2

For each step, we want to prove a tight bound ε such that

|F (x)− f (x)

f (x)
| ≤ ε

Overestimating ε2 degrades T2! (common wisdom)
Overestimating ε1 degrades p2 !

?

y ± ε1 y ± ε1

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 62

First function development in Arénaire

First correctly rounded elementary function in CRLibm

exp by David Defour

worst-case time T2 ≈ 10,000 cycles

complex, hand-written proof

duration: a Ph.D. thesis (2002)

Conclusion was:

performance and memory consumption of CR elem function is OK

problem now is: performance and coffee consumption of the programmer

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 63

First function development in Arénaire

First correctly rounded elementary function in CRLibm

exp by David Defour

worst-case time T2 ≈ 10,000 cycles

complex, hand-written proof

duration: a Ph.D. thesis (2002)

Conclusion was:

performance and memory consumption of CR elem function is OK

problem now is: performance and coffee consumption of the programmer

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 63

First function development in Arénaire

First correctly rounded elementary function in CRLibm

exp by David Defour

worst-case time T2 ≈ 10,000 cycles

complex, hand-written proof

duration: a Ph.D. thesis (2002)

Conclusion was:

performance and memory consumption of CR elem function is OK

problem now is: performance and coffee consumption of the programmer

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 63

First function development in Arénaire

First correctly rounded elementary function in CRLibm

exp by David Defour

worst-case time T2 ≈ 10,000 cycles

complex, hand-written proof

duration: a Ph.D. thesis (2002)

Conclusion was:

performance and memory consumption of CR elem function is OK

problem now is: performance and coffee consumption of the programmer

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 63

Latest function developments in Arénaire

C. Lauter at the end of his PhD,

development time for sinpi, cospi, tanpi:

2 days

worst-case time T2 ≈ 1,000 cycles

(but as a result of three more PhDs)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 64

Latest function developments in Arénaire

C. Lauter at the end of his PhD,

development time for sinpi, cospi, tanpi: 2 days

worst-case time T2 ≈ 1,000 cycles

(but as a result of three more PhDs)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 64

Latest function developments in Arénaire

C. Lauter at the end of his PhD,

development time for sinpi, cospi, tanpi: 2 days

worst-case time T2 ≈ 1,000 cycles

(but as a result of three more PhDs)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 64

Summary of the progress made

Tavg = T1 + p2T2

Reduction of T1 by learning from Intel

Reduction of p2 by automating the computation of tight ε1

(p2 is proportional to ε1)

Reduction of T2 by computing just right

Reduction of coffee consumption by automating the whole thing

The MetaLibm vision

Automate libm expertise so that a new, correct libm can be written for
a new processor/context in minutes instead of months.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 65

Summary of the progress made

Tavg = T1 + p2T2

Reduction of T1 by learning from Intel

Reduction of p2 by automating the computation of tight ε1

(p2 is proportional to ε1)

Reduction of T2 by computing just right

Reduction of coffee consumption by automating the whole thing

The MetaLibm vision

Automate libm expertise so that a new, correct libm can be written for
a new processor/context in minutes instead of months.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 65

Conclusion:

It’s the Hardware, Stupid

Floating-point in your machine

Accuracy versus reproductibility

Performance versus accuracy

Conclusion: It’s the Hardware, Stupid

Space-filling advertising: hardware computing just right

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 66

Let us end this talk with the introduction of another one

Doug Burger (Microsoft research) keynote at HiPEAC 2013.

until 2004: each technology generation gives smaller transistors
that are faster and consume less

between 2004 and now: we still get smaller transistor, but we
cannot clock them faster (power wall)

tomorrow, transistors still get smaller, but we can’t even use them
all together (dark silicon)

Nothing in our careers has been as fundamental as this transition

The way out according to Doug Burger

We could still “get more” by specializing the hardware.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 67

Let us end this talk with the introduction of another one

Doug Burger (Microsoft research) keynote at HiPEAC 2013.

until 2004: each technology generation gives smaller transistors
that are faster and consume less

between 2004 and now: we still get smaller transistor, but we
cannot clock them faster (power wall)

tomorrow, transistors still get smaller, but we can’t even use them
all together (dark silicon)

Nothing in our careers has been as fundamental as this transition

The way out according to Doug Burger

We could still “get more” by specializing the hardware.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 67

Let us end this talk with the introduction of another one

Doug Burger (Microsoft research) keynote at HiPEAC 2013.

until 2004: each technology generation gives smaller transistors
that are faster and consume less

between 2004 and now: we still get smaller transistor, but we
cannot clock them faster (power wall)

tomorrow, transistors still get smaller, but we can’t even use them
all together (dark silicon)

Nothing in our careers has been as fundamental as this transition

The way out according to Doug Burger

We could still “get more” by specializing the hardware.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 67

Let us end this talk with the introduction of another one

Doug Burger (Microsoft research) keynote at HiPEAC 2013.

until 2004: each technology generation gives smaller transistors
that are faster and consume less

between 2004 and now: we still get smaller transistor, but we
cannot clock them faster (power wall)

tomorrow, transistors still get smaller, but we can’t even use them
all together (dark silicon)

Nothing in our careers has been as fundamental as this transition

The way out according to Doug Burger

We could still “get more” by specializing the hardware.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 67

Let us end this talk with the introduction of another one

Doug Burger (Microsoft research) keynote at HiPEAC 2013.

until 2004: each technology generation gives smaller transistors
that are faster and consume less

between 2004 and now: we still get smaller transistor, but we
cannot clock them faster (power wall)

tomorrow, transistors still get smaller, but we can’t even use them
all together (dark silicon)

Nothing in our careers has been as fundamental as this transition

The way out according to Doug Burger

We could still “get more” by specializing the hardware.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 67

Let us end this talk with the introduction of another one

Doug Burger (Microsoft research) keynote at HiPEAC 2013.

until 2004: each technology generation gives smaller transistors
that are faster and consume less

between 2004 and now: we still get smaller transistor, but we
cannot clock them faster (power wall)

tomorrow, transistors still get smaller, but we can’t even use them
all together (dark silicon)

Nothing in our careers has been as fundamental as this transition

The way out according to Doug Burger

We could still “get more” by specializing the hardware.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 67

Meanwhile, at Intel

Jeff Arnold (Intel) says:

Single precision gives you 7 decimal digits. Do you really need this
accuracy to compute Angry birds trajectories entered with your fat
fingers?

... and shows the following slide from his colleagues at ISSCC 2012.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 68

Meanwhile, at Intel

Jeff Arnold (Intel) says:

Single precision gives you 7 decimal digits. Do you really need this
accuracy to compute Angry birds trajectories entered with your fat
fingers?

... and shows the following slide from his colleagues at ISSCC 2012.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 68

Meanwhile, at Intel

Jeff Arnold (Intel) says:

Single precision gives you 7 decimal digits. Do you really need this
accuracy to compute Angry birds trajectories entered with your fat
fingers?

... and shows the following slide from his colleagues at ISSCC 2012.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 68

The ISSCC 2012 paper

notion of “uncertainty”, a power of two attached to inputs and
outputs

technically, computing a center-radius interval

if uncertainty allows, compute center on 6 or 12 bits only.

this saves a lot of power.

Absolutely no use case here... Is this chip usable for real?

What software environment will it need?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 69

The ISSCC 2012 paper

notion of “uncertainty”, a power of two attached to inputs and
outputs

technically, computing a center-radius interval

if uncertainty allows, compute center on 6 or 12 bits only.

this saves a lot of power.

Absolutely no use case here... Is this chip usable for real?

What software environment will it need?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 69

The ISSCC 2012 paper

notion of “uncertainty”, a power of two attached to inputs and
outputs

technically, computing a center-radius interval

if uncertainty allows, compute center on 6 or 12 bits only.

this saves a lot of power.

Absolutely no use case here... Is this chip usable for real?

What software environment will it need?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 69

From computing right to computing just right

You (probably) came here to learn how to compute right.

This is half the work to compute just right.

What you will learn here might help you address the hardware industry’s
grand challenge.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 70

From computing right to computing just right

You (probably) came here to learn how to compute right.

This is half the work to compute just right.

What you will learn here might help you address the hardware industry’s
grand challenge.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 70

From computing right to computing just right

You (probably) came here to learn how to compute right.

This is half the work to compute just right.

What you will learn here might help you address the hardware industry’s
grand challenge.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 70

Space-filling advertising:
hardware computing just right

Floating-point in your machine

Accuracy versus reproductibility

Performance versus accuracy

Conclusion: It’s the Hardware, Stupid

Space-filling advertising: hardware computing just right

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 71

Computing just right

To sum up,

Doug Burger says “we should specialize our hardware”

Kaul et al say “we should design hardware that computes just
right”

We’ve been doing both since 2003.

The FloPoCo project

http://flopoco.gforge.inria.fr/

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 72

http://flopoco.gforge.inria.fr/

Computing just right

To sum up,

Doug Burger says “we should specialize our hardware”

Kaul et al say “we should design hardware that computes just
right”

We’ve been doing both since 2003.

The FloPoCo project

http://flopoco.gforge.inria.fr/

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 72

http://flopoco.gforge.inria.fr/

Two different ways of wasting silicon

Here are two universally programmable chips.

Who’s best for (insert your computation here) ?

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 73

Are FPGAs any good at floating-point?

Long ago (1995), people ported the basic operations: +,−,×
Versus the highly optimized FPU in the processor,

each operator 10x slower in an FPGA

This is the inavoidable overhead of programmability.

If you lose according to a metric, change the metric.

Peak figures for double-precision floating-point exponential

Pentium core: 20 cycles / DPExp @ 4GHz: 200 MDPExp/s

FPExp in FPGA: 1 DPExp/cycle @ 400MHz: 400 MDPExp/s

Chip vs chip: 6 Pentium cores vs 150 FPExp/FPGA

Power consumption also better

Single precision data better

(Intel MKL vector libm, vs FPExp in FloPoCo version 2.0.0)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 74

Are FPGAs any good at floating-point?

Long ago (1995), people ported the basic operations: +,−,×
Versus the highly optimized FPU in the processor,

each operator 10x slower in an FPGA

This is the inavoidable overhead of programmability.

If you lose according to a metric, change the metric.

Peak figures for double-precision floating-point exponential

Pentium core: 20 cycles / DPExp @ 4GHz: 200 MDPExp/s

FPExp in FPGA: 1 DPExp/cycle @ 400MHz: 400 MDPExp/s

Chip vs chip: 6 Pentium cores vs 150 FPExp/FPGA

Power consumption also better

Single precision data better

(Intel MKL vector libm, vs FPExp in FloPoCo version 2.0.0)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 74

Dura Amdahl lex, sed lex

SPICE Model-Evaluation, cut from Kapre and DeHon (FPL 2009)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 75

Custom arithmetic (not your Pentium’s)

multiplier

generic
polynomial

truncated

precomputed

ROM

Constant
multipliers

evaluator

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 76

Custom arithmetic (not your Pentium’s)

Never compute
1 bit more accurately
than needed!

multiplier

generic
polynomial

truncated

precomputed

ROM

Constant
multipliers

evaluator

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 76

Custom arithmetic (not your Pentium’s)

Never compute
1 bit more accurately
than needed!

multiplier

generic
polynomial

truncated

precomputed

ROM

Constant
multipliers

evaluator

Shift to fixed−point

normalize / round

generator
Need a

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 76

Useful operators that make sense in a processor

Should a processor include elementary functions ?
Yes (Paul&Wilson, 1976), No since the transition to RISC

Should a processor include a divider and square root?
Yes (Oberman et al, Arith, 1997), No since the transition to FMA
(IBM then HP then Intel)

Should a processor include decimal hardware?
Yes say IBM, No say Intel

Should a processor include a multiplier by log(2)?
No of course.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 77

Useful operators that make sense in an FPGA or ASIC

Elementary functions ?
Yes iff your application needs it

Divider or square root?
Yes iff your application needs it

Decimal hardware?
Yes iff your application needs it

A multiplier by log(2)?
Yes iff your application needs it

In FPGAs, useful means: useful to one application.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 78

Enough work to keep me busy to retirement

Arithmetic operators useful to at least one application:

Elementary functions (sine, exponential, logarithm...)

Algebraic functions (
x√

x2 + y 2
, polynomials, ...)

Compound functions (log2(1± 2x), e−Kt2
, ...)

Floating-point sums, dot products, sums of squares

Specialized operators: constant multipliers, squarers, ...

Complex arithmetic

LNS arithmetic

Decimal arithmetic

Interval arithmetic

...

Oh yes, basic operations, too.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 79

Enough work to keep me busy to retirement

Arithmetic operators useful to at least one application:

Elementary functions (sine, exponential, logarithm...)

Algebraic functions (
x√

x2 + y 2
, polynomials, ...)

Compound functions (log2(1± 2x), e−Kt2
, ...)

Floating-point sums, dot products, sums of squares

Specialized operators: constant multipliers, squarers, ...

Complex arithmetic

LNS arithmetic

Decimal arithmetic

Interval arithmetic

...

Oh yes, basic operations, too.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 79

What do we call arithmetic operators?

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect (usually)

An operator is the implementation of such a function

IEEE-754 FP standard: operator(x) = rounding(operation(x))

→ Clean mathematical definition (even for floating-point arithmetic)

The operator as a circuit...

... is a direct acyclic graph (DAG):

easy to build and pipeline

easy to test against its mathematical specification

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 80

What do we call arithmetic operators?

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect (usually)

An operator is the implementation of such a function

IEEE-754 FP standard: operator(x) = rounding(operation(x))

→ Clean mathematical definition (even for floating-point arithmetic)

The operator as a circuit...

... is a direct acyclic graph (DAG):

easy to build and pipeline

easy to test against its mathematical specification

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 80

What do we call arithmetic operators?

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect (usually)

An operator is the implementation of such a function

IEEE-754 FP standard: operator(x) = rounding(operation(x))

→ Clean mathematical definition (even for floating-point arithmetic)

The operator as a circuit...

... is a direct acyclic graph (DAG):

easy to build and pipeline

easy to test against its mathematical specification

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 80

The benefits of custom computing

Example: a floating-point sum of squares

x2 + y 2 + z2

(not a toy example but a useful building block)

A square is simpler than a multiplication
half the hardware required

x2, y 2, and z2 are positive:
one half of your FP adder is useless

Accuracy can be improved:
5 rounding errors in the floating-point version
(x*x+y*y)+z*z : asymmetrical

The FloPoCo Recipe

Floating-point interface for convenience

Clear accuracy specification for computing just right

Fixed-point internal architecture for efficiency

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 81

The benefits of custom computing

Example: a floating-point sum of squares

x2 + y 2 + z2

(not a toy example but a useful building block)

A square is simpler than a multiplication
half the hardware required

x2, y 2, and z2 are positive:
one half of your FP adder is useless

Accuracy can be improved:
5 rounding errors in the floating-point version
(x*x+y*y)+z*z : asymmetrical

The FloPoCo Recipe

Floating-point interface for convenience

Clear accuracy specification for computing just right

Fixed-point internal architecture for efficiency

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 81

The benefits of custom computing

Example: a floating-point sum of squares

x2 + y 2 + z2

(not a toy example but a useful building block)

A square is simpler than a multiplication
half the hardware required

x2, y 2, and z2 are positive:
one half of your FP adder is useless

Accuracy can be improved:
5 rounding errors in the floating-point version
(x*x+y*y)+z*z : asymmetrical

The FloPoCo Recipe

Floating-point interface for convenience

Clear accuracy specification for computing just right

Fixed-point internal architecture for efficiency

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 81

The benefits of custom computing

Example: a floating-point sum of squares

x2 + y 2 + z2

(not a toy example but a useful building block)

A square is simpler than a multiplication
half the hardware required

x2, y 2, and z2 are positive:
one half of your FP adder is useless

Accuracy can be improved:
5 rounding errors in the floating-point version
(x*x+y*y)+z*z : asymmetrical

The FloPoCo Recipe

Floating-point interface for convenience

Clear accuracy specification for computing just right

Fixed-point internal architecture for efficiency

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 81

The benefits of custom computing

Example: a floating-point sum of squares

x2 + y 2 + z2

(not a toy example but a useful building block)

A square is simpler than a multiplication
half the hardware required

x2, y 2, and z2 are positive:
one half of your FP adder is useless

Accuracy can be improved:
5 rounding errors in the floating-point version
(x*x+y*y)+z*z : asymmetrical

The FloPoCo Recipe

Floating-point interface for convenience

Clear accuracy specification for computing just right

Fixed-point internal architecture for efficiency

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 81

A floating-point adder

λ

LZC/shift

p + 1

p + 1

p + 1

p + 1

2p + 2

p p

p + 1

p

x y

z

exp. difference / swap

rounding,normalization
and exception handling

mxex +/–c/f ex − ey

close path c/f

ex

ez

my

shift

|mx −my |

my

1-bit shift

ex

ez

mx

far path
mz , r

mz , r

sticky

s

gr

prenorm (2-bit shift)

s

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 82

A fixed-point architecture

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

wE + wF + g

2 + wF + g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

MA2

R

4 + wF + g

shifter

sort

sort
squarer squarer

shifter

squarer

add

normalize/pack

unpack

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 83

The benefits of custom computing

A few results for floating-point sum-of-squares on Virtex4:

Simple Precision area performance

LogiCore classic 1282 slices, 20 DSP 43 cycles @ 353 MHz

FloPoCo classic 1188 slices, 12 DSP 29 cycles @ 289 MHz

FloPoCo custom 453 slices, 9 DSP 11 cycles @ 368 MHz

Double Precision area performance

FloPoCo classic 4480 slices, 27 DSP 46 cycles @ 276 MHz

FloPoCo custom 1845 slices, 18 DSP 16 cycles @ 362 MHz

all performance metrics improved, FLOP/s/area more than doubled

Plus: custom operator more accurate, and symmetrical

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 84

Custom also means: custom pipeline

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

wE + wF + g

2 + wF + g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

MA2

R

4 + wF + g

shifter

sort

sort
squarer squarer

shifter

squarer

add

normalize/pack

unpack

One operator does not fit all

Low frequency, low resource consumption

Faster but larger (more registers)

Combinatorial

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 85

Custom also means: custom pipeline

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

wE + wF + g

2 + wF + g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

MA2

R

4 + wF + g

shifter

sort

sort
squarer squarer

shifter

squarer

add

normalize/pack

unpack

One operator does not fit all

Low frequency, low resource consumption

Faster but larger (more registers)

Combinatorial

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 85

Custom also means: custom pipeline

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

wE + wF + g

2 + wF + g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

MA2

R

4 + wF + g

shifter

sort

sort
squarer squarer

shifter

squarer

add

normalize/pack

unpack

One operator does not fit all

Low frequency, low resource consumption

Faster but larger (more registers)

Combinatorial

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 85

More slides

All you ever wanted to know about division by 3

Application-specific floating-point accumulation

Architectures computing the floating-point exponential

...

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 86

	Floating-point in your machine
	Accuracy versus reproductibility
	Performance versus accuracy
	Conclusion: It's the Hardware, Stupid
	Space-filling advertising: hardware computing just right

