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Rounding mode

Let IF be the set of real numbers which can be coded exactly on a computer:
the set of floating point numbers.

Every real number x which is not a floating point number is approximated by a
floating point number X ∈ IF.

Let Xmin (resp. Xmax ) be the smallest (resp. the greatest) floating point
number:

∀x ∈ ]Xmin,Xmax [ , ∃
{

X−,X+
}
∈ IF2

such that
X− < x < X+ and

]
X−,X+

[
∩ IF = ∅

To choose the rounding mode is to choose the algorithm that, according to x ,
gives X− or X+.
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The 4 rounding modes of the IEEE 754 standard

Rounding to zero: x is represented by the floating point number the nearest
to x between x and 0.

Rounding to nearest: x is represented by the floating point number the
nearest to x .

Rounding to plus infinity: x is represented by X+.

Rounding to minus infinity: x is represented by X−.

The rounding operation is performed after each assignment and after every
elementary arithmetic operation.
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A significant example - I

0.3 ∗ x2 + 2.1 ∗ x + 3.675 = 0

Rounding to nearest
d = -3.81470E-06
There are two conjugate complex roots.
z1 = -.3500000E+01 + i * 0.9765625E-03
z2 = -.3500000E+01 + i * -.9765625E-03

Rounding to zero
d = 0.
The discriminant is null.
The double real root is -.3500000E+01
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A significant example - II

0.3 ∗ x2 + 2.1 ∗ x + 3.675 = 0

Rounding to plus infinity
d = 3.81470E-06
There are two different real roots.
x1 = -.3500977E+01
x2 = -.3499024E+01

Rounding to minus infinity
d = 0.
The discriminant is null.
The double real root is -.3500000E+01
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Inconsistency of the floating point arithmetic

On a computer, arithmetic operators are only approximations.

commutativity
no associativity
no distributivity

On a computer, order relationships are the same as in mathematics

=⇒ it leads to a global inconsistent behaviour.

X = Y ⇒/ x = y and x = y ⇒/ X = Y .

X ≥ Y ⇒/ x ≥ y and x ≥ y ⇒/ X ≥ Y .
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Round-off error model

Let r ∈ IR be the exact result of n elementary arithmetic operations.

On a computer, one obtains the result R ∈ IF which is affected by round-off
errors.

R can be modeled, at the first order with respect to 2−p, by

R ≈ r +
n∑

i=1

gi (d).2−p.αi

p is the number of bits used for the representation including the hidden bit,
gi (d) are coefficients depending only on data and αi are the round-off errors.

Remark: we have assumed that exponents and signs of intermediate results
do not depend on αi .
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A theorem on numerical accuracy

The number of significant bits in common between R and r is defined by

CR ≈ − log2

∣∣∣∣R − r
r

∣∣∣∣ = p − log2

∣∣∣∣∣
n∑

i=1

gi (d).
αi

r

∣∣∣∣∣
The last part corresponds to the accuracy which has been lost in the
computation of R, we can note that it is independent of p.

Theorem
The loss of accuracy during a numerical computation is independent of the
precision used.
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Round-off error analysis
Several approaches

Inverse analysis
based on the “ Wilkinson principle”: the computed solution is assumed to
be the exact solution of a nearby problem

provides error bounds for the computed results

Interval arithmetic
The result of an operation between two intervals contains all values that
can be obtained by performing this operation on elements from each
interval.

guaranteed bounds for each computed result
the error may be overestimated
specific algorithms

Probabilistic approach
uses a random rounding mode
estimates the number of exact significant digits of any computed result
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The CESTAC method

The CESTAC method (Contrôle et Estimation Stochastique des Arrondis de
Calculs) was proposed by M. La Porte and J. Vignes in 1974.

It consists in performing the same code several times with different round-off
error propagations. Then, different results are obtained.

Briefly, the part that is common to all the different results is assumed to be in
common also with the mathematical results and the part that is different in the
results is affected by the round-off errors.
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The random rounding mode

Let r be the result of an arithmetic operation: R− < r < R+.

The random rounding mode consists in rounding r to minus infinity or plus
infinity with the probability 0.5.

If round-off errors affect the result, even slightly, one obtains for N different
runs, N different results on which a statistical test may be applied.
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By running N times the code with the random arithmetic, one obtains a
N-sample of the random variable modeled by

R ≈ r +
n∑

i=1

gi (d).2−p.αi

where the αi ’s are modeled by independent identically distributed random
variables. The common distribution of the αi is uniform on [−1,+1].

⇒ the mathematical expectation of R is the mathematical result r ,

⇒ the distribution of R is a quasi-Gaussian distribution.
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Implementation of the CESTAC method

The implementation of the CESTAC method in a code providing a result R
consists in:

performing N times this code with the random rounding mode to obtain N
samples Ri of R,
choosing as the computed result the mean value R of Ri , i = 1, ...,N,
estimating the number of exact significant decimal digits of R with

CR = log10

(√
N
∣∣R∣∣

στβ

)

where

R =
1
N

N∑
i=1

Ri and σ2 =
1

N − 1

N∑
i=1

(
Ri − R

)2
.

τβ is the value of Student’s distribution for N − 1 degrees of freedom and
a probability level β.
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On the number of runs

2 or 3 runs are enough. To increase the number of runs is not necessary.

From the model, to increase by 1 the number of exact significant digits given
by CR , we need to multiply the size of the sample by 100.

Such an increase of N will only point out the limit of the model and its error
without really improving the quality of the estimation.

It has been shown that N = 3 is the optimal value.
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On the probability of the confidence interval

With β = 0.95 and N = 3,

the probability of overestimating the number of exact significant digits of
at least 1 is 0.00054
the probability of underestimating the number of exact significant digits of
at least 1 is 0.29.

By choosing a confidence interval at 95%, we prefer to guarantee a minimal
number of exact significant digits with high probability (0.99946), even if we
are often pessimistic by 1 digit.
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Self-validation of the CESTAC method

The CESTAC method is based on a 1st order model.

A multiplication of two insignificant results
or a division by an insignificant result

may invalidate the 1st order approximation.

Therefore the CESTAC method requires a dynamical control of multiplications
and divisions, during the execution of the code.
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The problem of stopping criteria

Let a general iterative algorithm be: Un+1 = F (Un), U0 being a data.

WHILE (ABS(X-Y) > EPSILON) DO
X = Y
Y = F(X)

ENDDO
ε too low =⇒ a risk of infinite loop
ε too high =⇒ a too early termination.

The optimal choice from the computer point of view:
X − Y an insignificant value.

New methods for numerical algorithms may be developed.
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The concept of computed zero

J. Vignes, 1986

Definition
Using the CESTAC method, a result R is a computed zero, denoted by @.0, if

∀i ,Ri = 0 or CR ≤ 0.

This means that 0 belongs to the confidence interval.

It means that R is a computed result which, because of round-off errors,
cannot be distinguished from 0.
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The stochastic definitions

Definition
Let X and Y be two computed results using the CESTAC method (N-sample),
X is stochastically equal to Y , noted X s= Y , if and only if

X − Y = @.0.

Definition
Let X and Y be two results computed using the CESTAC method (N-sample).

X is stochastically strictly greater than Y , noted X s> Y , if and only if

X > Y and X s=/ Y

X is stochastically greater than or equal to Y , noted X s≥ Y , if and only if

X ≥ Y or X s= Y

DSA Discrete Stochastic Arithmetic is defined as the joint use of the
CESTAC method, the computed zero and the relation definitions.
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A few properties

x = 0 =⇒ X = @.0 .
X s=/ Y =⇒ x =/ y .
X s> Y =⇒ x > y .
x ≥ y =⇒ X s≥ Y .

The relation s> is transitive.
The relation s= is reflexive, symmetric but not transitive.
The relation s≥ is reflexive, antisymmetric but not transitive.
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The CADNA library

The CADNA library implements Discrete Stochastic Arithmetic.

CADNA allows to estimate round-off error propagation in any scientific
program.

More precisely, CADNA enables one to:
estimate the numerical quality of any result
control branching statements
perform a dynamic numerical debugging
take into account uncertainty on data.

CADNA is a library which can be used with Fortran or C++ programs and
also with MPI parallel programs.

CADNA can be downloaded from http://www.lip6.fr/cadna
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The stochastic types

CADNA provides two new numerical types, the stochastic types (3 floating
point variables x,y,z and a hidden variable acc):

type (single_st) for stochastic variables in single precision
stochastic type associated with real.
type (double_st) for stochastic variables in double precision
stochastic type associated with double precision.

All the operators and mathematical functions are overloaded for these types.

The cost of CADNA is about:
4 for memory
10 for run time.
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How to implement CADNA

The use of the CADNA library involves six steps:
declaration of the CADNA library for the compiler,
initialization of the CADNA library,
substitution of the type REAL or DOUBLE PRECISION by stochastic
types in variable declarations,
possible changes in the input data if perturbation is desired, to take into
account uncertainty in initial values,
change of output statements to print stochastic results with their ac-
curacy,
termination of the CADNA library.
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An example proposed by S. Rump (1)
Computation of f (10864,18817) and f ( 1

3 ,
2
3 ) with f (x , y) = 9x4 − y4 + 2y2

program ex1
i m p l i c i t double p r e c i s i o n ( a−h , o−z )
x = 10864.d0
y = 18817.d0
w r i t e ( ∗ , ∗ ) ’P(10864 ,18817) = ’ , rump ( x , y )
x = 1 . d0 / 3 . d0
y = 2. d0 / 3 . d0
w r i t e (6 ,100) rump ( x , y )

100 format ( ’P( 1 / 3 , 2 / 3 ) = ’ , e24 .15 )
end

f u n c t i o n rump ( x , y )
i m p l i c i t double p r e c i s i o n ( a−h , o−z )
a=9.d0∗x∗x∗x∗x
b=y∗y∗y∗y
c =2.d0∗y∗y
rump = a−b+c
r e t u r n
end
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An example proposed by S. Rump (2)

The results:

P(10864,18817) = 2.00000000000000
P(1/3,2/3) = 0.802469135802469E+00
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program ex1

use cadna

implicit double precision (a-h,o-z)

implicit type(double_st) (a-h,o-z)
call cadna_init(-1)

x = 10864.d0
y = 18817.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))

x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))
call cadna_end()

end

function rump(x,y)

use cadna

implicit double precision (a-h,o-z)

implicit type(double_st) (a-h,o-z)

a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end
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The run with CADNA

—————————————————–
CADNA software — University P. et M. Curie — LIP6
Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
—————————————————–
P(10864,18817) = @.0
P(1/3,2/3) = 0.802469135802469E+000
—————————————————–
CADNA software — University P. et M. Curie — LIP6
There are 2 numerical instabilities
0 UNSTABLE DIVISION(S)
0 UNSTABLE POWER FUNCTION(S)
0 UNSTABLE MULTIPLICATION(S)
0 UNSTABLE BRANCHING(S)
0 UNSTABLE MATHEMATICAL FUNCTION(S)
0 UNSTABLE INTRINSIC FUNCTION(S)
2 UNSTABLE CANCELLATION(S)
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Explanation

The run without CADNA:

9*x*x*x*x→ 1.25372283822342144E+017
y*y*y*y→ 1.25372284530501120E+017
9*x*x*x*x - y*y*y*y→ -708158976.00000000
2*y*y→ 708158978.00000000
9*x*x*x*x - y*y*y*y +2y*y→ 2.0000000000000000

The run with CADNA:

9*x*x*x*x→ 0.125372283822342E+018
y*y*y*y→ 0.125372284530501E+018
9*x*x*x*x - y*y*y*y→ -0.7081589E+009
2*y*y→ 0.708158977999999E+009
9*x*x*x*x - y*y*y*y +2y*y→ @.0
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Several versions of the program

without CADNA with CADNA
a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c 2 @.0
a = 9.d0*x**4
b = y**4
c = 2.d0*y**2
rump = a-b+c 2 2
rump = 9.d0*x*x*x*x- y*y*y*y + 2.d0*y*y 1 @.0
rump = 9.d0*x**4- y**4 + 2.d0*y**2 1 2

CADNA requires a correct rounding toward +∞ and −∞.
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Correct rounding for mathematical functions?

Different mathematical libraries may provide different results: the last bit in the
results may differ.

Correct rounding for mathematical functions: an open problem
Extra bits are sometimes required to obtain a correct rounding.

The gnu mathematical library on 64-bit processors:
provides correct results with rounding to the nearest
severe bugs may occur with the other rounding modes.

A specific implementation of CADNA exists for 64-bit processors.
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Contributions of CADNA

In direct methods:
estimate the numerical quality of the results
control branching statements

In iterative methods:
optimize the number of iterations
check if the computed solution is satisfactory

In approximation methods:
optimize the integration step
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In direct methods - Example

0.3x2 − 2.1x + 3.675 = 0

Without CADNA, in single precision with rounding to the nearest:
d = -3.8146972E-06
Two complex roots
z1 = 0.3499999E+01 + i * 0.9765625E-03
z2 = 0.3499999E+01 + i * -.9765625E-03

With CADNA:
d = @.0
The discriminant is null
The double real root is 0.3500000E+01
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Iterative methods: which strategy to adopt?

problems with a solution that cannot be controlled (sequence
computation):
The following stopping criterion should be used

IF (x(k).eq.x(k + 1)) THEN

problems with a solution that can be controlled:
the solution xs satisfies Ψ(xs) = 0.
The optimal stopping criterion should be used

IF (Ψ(x(k)).eq.0) THEN
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Iterative methods: the solution cannot be controlled

Sn(x) =
n∑

i=1

x i

i!

Stopping criterion
IEEE: |Sn − Sn−1| < 10−15|Sn|
CADNA: Sn == Sn−1

IEEE CADNA
x iter Sn(x) iter Sn(x)

-5. 37 6.737946999084039E-003 38 0.673794699909E-002
-10. 57 4.539992962303130E-005 58 0.45399929E-004
-15. 76 3.059094197302006E-007 77 0.306E-006
-20. 94 5.621884472130416E-009 95 @.0
-25. 105 -7.129780403672074E-007 106 @.0
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Iterative methods: the solution can be controlled

The linear system AX = B is solved using Jacobi method.

x (k+1)
i = − 1

aii

n∑
j=1,j 6=i

aijx
(k)
j +

bi

aii

Without CADNA

Stop when maxn
i=1 |xk

i − xk−1
i | < ε

Compute R = B − AX k .
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eps=1.E-3

niter = 35
x( 1)= 0.1699924E+01 (exact: 0.1700000E+01), r( 1)= 0.3051758E-03
x( 2)=-0.4746889E+04 (exact:-0.4746890E+04), r( 2)= 0.1953125E-02
x( 3)= 0.5023049E+02 (exact: 0.5023000E+02), r( 3)= 0.1464844E-02
x( 4)=-0.2453197E+03 (exact:-0.2453200E+03), r( 4)=-0.7324219E-03
x( 5)= 0.4778290E+04 (exact: 0.4778290E+04), r( 5)=-0.4882812E-03
x( 6)=-0.7572980E+02 (exact:-0.7573000E+02), r( 6)= 0.9765625E-03
x( 7)= 0.3495430E+04 (exact: 0.3495430E+04), r( 7)= 0.3173828E-02
x( 8)= 0.4350277E+01 (exact: 0.4350000E+01), r( 8)= 0.0000000E+00
x( 9)= 0.4529804E+03 (exact: 0.4529800E+03), r( 9)= 0.9765625E-03
x(10)=-0.2759901E+01 (exact:-0.2760000E+01), r(10)= 0.9765625E-03
x(11)= 0.8239241E+04 (exact: 0.8239240E+04), r(11)= 0.7568359E-02
x(12)= 0.3459919E+01 (exact: 0.3460000E+01), r(12)=-0.4882812E-03
x(13)= 0.1000000E+04 (exact: 0.1000000E+04), r(13)= 0.9765625E-03
x(14)=-0.4999743E+01 (exact:-0.5000000E+01), r(14)= 0.1464844E-02
x(15)= 0.3642400E+04 (exact: 0.3642400E+04), r(15)=-0.1953125E-02
x(16)= 0.7353594E+03 (exact: 0.7353600E+03), r(16)=-0.3662109E-03
x(17)= 0.1700038E+01 (exact: 0.1700000E+01), r(17)= 0.1464844E-02
x(18)=-0.2349171E+04 (exact:-0.2349170E+04), r(18)= 0.1953125E-02
x(19)=-0.8247521E+04 (exact:-0.8247520E+04), r(19)=-0.8728027E-02
x(20)= 0.9843570E+04 (exact: 0.9843570E+04), r(20)= 0.0000000E+00
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eps=1.E-4

niter = 1000
x( 1)= 0.1699924E+01 (exact: 0.1700000E+01), r( 1)= 0.1831055E-03
x( 2)=-0.4746890E+04 (exact:-0.4746890E+04), r( 2)=-0.4882812E-03
x( 3)= 0.5022963E+02 (exact: 0.5023000E+02), r( 3)=-0.9765625E-03
x( 4)=-0.2453193E+03 (exact:-0.2453200E+03), r( 4)= 0.1464844E-02
x( 5)= 0.4778290E+04 (exact: 0.4778290E+04), r( 5)=-0.1464844E-02
x( 6)=-0.7573022E+02 (exact:-0.7573000E+02), r( 6)=-0.1953125E-02
x( 7)= 0.3495430E+04 (exact: 0.3495430E+04), r( 7)= 0.5126953E-02
x( 8)= 0.4350277E+01 (exact: 0.4350000E+01), r( 8)=-0.4882812E-03
x( 9)= 0.4529798E+03 (exact: 0.4529800E+03), r( 9)=-0.9765625E-03
x(10)=-0.2760255E+01 (exact:-0.2760000E+01), r(10)=-0.1953125E-02
x(11)= 0.8239240E+04 (exact: 0.8239240E+04), r(11)= 0.3173828E-02
x(12)= 0.3459731E+01 (exact: 0.3460000E+01), r(12)=-0.1464844E-02
x(13)= 0.1000000E+04 (exact: 0.1000000E+04), r(13)=-0.1953125E-02
x(14)=-0.4999743E+01 (exact:-0.5000000E+01), r(14)= 0.1953125E-02
x(15)= 0.3642400E+04 (exact: 0.3642400E+04), r(15)= 0.0000000E+00
x(16)= 0.7353599E+03 (exact: 0.7353600E+03), r(16)=-0.7324219E-03
x(17)= 0.1699763E+01 (exact: 0.1700000E+01), r(17)=-0.4882812E-03
x(18)=-0.2349171E+04 (exact:-0.2349170E+04), r(18)= 0.0000000E+00
x(19)=-0.8247520E+04 (exact:-0.8247520E+04), r(19)=-0.9155273E-03
x(20)= 0.9843570E+04 (exact: 0.9843570E+04), r(20)=-0.3906250E-02
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With CADNA

niter = 29
x( 1)= 0.170E+01 (exact: 0.1699999E+01), r( 1)=@.0
x( 2)=-0.4746888E+04 (exact:-0.4746888E+04), r( 2)=@.0
x( 3)= 0.5023E+02 (exact: 0.5022998E+02), r( 3)=@.0
x( 4)=-0.24532E+03 (exact:-0.2453199E+03), r( 4)=@.0
x( 5)= 0.4778287E+04 (exact: 0.4778287E+04), r( 5)=@.0
x( 6)=-0.75729E+02 (exact:-0.7572999E+02), r( 6)=@.0
x( 7)= 0.349543E+04 (exact: 0.3495428E+04), r( 7)=@.0
x( 8)= 0.435E+01 (exact: 0.4349999E+01), r( 8)=@.0
x( 9)= 0.45298E+03 (exact: 0.4529798E+03), r( 9)=@.0
x(10)=-0.276E+01 (exact:-0.2759999E+01), r(10)=@.0
x(11)= 0.823923E+04 (exact: 0.8239236E+04), r(11)=@.0
x(12)= 0.346E+01 (exact: 0.3459999E+01), r(12)=@.0
x(13)= 0.10000E+04 (exact: 0.9999996E+03), r(13)=@.0
x(14)=-0.5001E+01 (exact:-0.4999999E+01), r(14)=@.0
x(15)= 0.364239E+04 (exact: 0.3642398E+04), r(15)=@.0
x(16)= 0.73536E+03 (exact: 0.7353597E+03), r(16)=@.0
x(17)= 0.170E+01 (exact: 0.1699999E+01), r(17)=@.0
x(18)=-0.234917E+04 (exact:-0.2349169E+04), r(18)=@.0
x(19)=-0.8247515E+04 (exact:-0.8247515E+04), r(19)=@.0
x(20)= 0.984356E+04 (exact: 0.9843565E+04), r(20)=@.0
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Approximation methods

How to estimate the optimal step?

em(h) −→
If h decreases, X (h): s exponent mantissa

←− ec(h)

If ec(h) < em(h), decreasing h brings reliable information.

Computation should stop when ec(h) ≈ em(h)
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Approximation of integrals

I =
∫ b

a f (x)dx is computed using a quadrature method (trapezoidal rule,
Simpson’s rule, ...)

Let In be the approximation computed with step h = b−a
2n .

The computation stops when In − In+1 = @.0.

DO WHILE (integold .NE. integ)
integold = integ
h=h/2
...
integ = h * ( ... )

ENDDO

Using this strategy, the significant digits of the result which are not affected by
round-off errors are in common with I, up to one.
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Approximation methods with the CADNA library
Approximation of

∫ 1
−1 20cos(20x) ((2.7x − 3.3)x + 1.2) dx using Simpson’s

method.

n= 1 In= 0.532202672142964E+002 err= 0.459035794670113E+002
n= 2 In=-0.233434428466744E+002 err= 0.306601305939595E+002
n= 3 In=-0.235451792663099E+002 err= 0.308618670135950E+002
n= 4 In= 0.106117380632568E+002 err= 0.329505031597175E+001
n= 5 In= 0.742028156692706E+001 err= 0.1035938196419E+000
n= 6 In= 0.732233719854278E+001 err= 0.564945125770E-002
n= 7 In= 0.731702967403266E+001 err= 0.34192674758E-003
n= 8 In= 0.731670894914430E+001 err= 0.2120185922E-004
n= 9 In= 0.731668906978969E+001 err= 0.13225046E-005
n=10 In= 0.731668782990089E+001 err= 0.8261581E-007
n=11 In= 0.731668775244794E+001 err= 0.516286E-008
n=12 In= 0.73166877476078E+001 err= 0.3227E-009
n=13 In= 0.73166877473053E+001 err= 0.202E-010
n=14 In= 0.73166877472864E+001 err= 0.1E-011
n=15 In= 0.73166877472852E+001 err= 0.1E-012
n=16 In= 0.73166877472851E+001 err=@.0

The exact solution is: 7.316687747285081429939.
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Overview

I - Stochastic arithmetic and the CADNA software

II - Recent developments related to stochastic arithmetic

SAM
CADNA for parallel programs

MPI
need to define new MPI types for the stochastic types
work as for sequential codes

OpenMP
management of the rounding mode with the threads
instability detection

GPU

Parallelization of CADNA
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The SAM library - I

The SAM library implements in arbitrary precision the features of DSA:
the stochastic types
the concept of computational zero
the stochastic operators.

Arithmetic and relational operators in SAM take into account round-off error
propagation.

The particularity of SAM (compared to CADNA) is the arbitrary precision of
stochastic variables.

SAM with 24-bit or 53-bit mantissa length is similar to CADNA.
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The SAM library - II

The SAM library is written in C++ and is based on MPFR.

All operators are overloaded
Z⇒ for a program in C++ to be used with SAM, only a few modifications
are needed.

Classical variables→ stochastic variables (of mp_st type) consisting of
three variables of MPFR type
one integer variable to store the accuracy.
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Example of SAM code

f (x , y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 +
x

2y
is computed with x = 77617, y = 33096.
S. Rump, 1988

#include "sam.h"
#include <stdio.h>
int main() {

sam_init(-1,122);
mp_st x = 77617; mp_st y = 33096; mp_st res;
res=333.75*y*y*y*y*y*y+x*x*(11*x*x*y*y-y*y*y*y*y*y

-121*y*y*y*y-2.0)+5.5*y*y*y*y*y*y*y*y+x/(2*y);
printf("res=%s\n",strp(res));
sam_end();

}
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Output of the SAM code

Using SAM with 122-bit mantissa length, one obtains:

SAM software -- University P. et M. Curie -- LIP6
Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
----------------------------
res=-0.827396059946821368141165095479816292
----------------------------
SAM software -- University P. et M. Curie -- LIP6

No instability detected
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Computation of f (77617,33096)

single precision 1.172603
double precision 1.1726039400531
extended precision 1.172603940053178
Variable precision [−0.827396059946821368141165095479816292005,
interval arithmetic −0.827396059946821368141165095479816291986]
SAM, 121 bits @.0
SAM, 122 bits −0.827396059946821368141165095479816292
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Performance test

Run time (in seconds) of SAM and MPFI for the matrix multiplication M ∗M,
with Mi,j = i + j + 1.

Matrix Size: N = 100

# bits 24 53 100 500 1000 5000
MPFI 0.292 0.320 0.432 0.504 0.648 2.216

SAM no detection 0.892 0.936 1.076 1.120 1.372 2.616
SAM self-validation 0.896 0.940 1.092 1.160 1.380 2.624
SAM all detections 7.168 8.357 10.461 27.254 69.588 903.528

SAM self-validation/MPFI 3.07 2.94 2.53 2.30 2.13 1.18

The ratio SAM/MPFI is independent of N.
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GPU and CADNA

C++: enough functionalities from CUDA 3.0 for operator and function
overloading
Random functions and the random rounding mode
Instability detection
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The random rounding mode

CPU

if (RANDOM) rnd_switch();
res.x=a.x*b.x; +∞

if (RANDOM) rnd_switch();
res.y=a.y*b.y; −∞
rnd_switch();
res.z=a.z*b.z; +∞

GPU
if (RANDOMGPU())
res.x=__fmul_ru(a.x,b.x);

else
res.x=__fmul_rd(a.x,b.x);

if (RANDOMGPU()) {
res.y=__fmul_rd(a.y,b.y);
res.z=__fmul_ru(a.z,b.z);

}
else {
res.y=__fmul_ru(a.y,b.y);
res.z=__fmul_rd(a.z,b.z);

}

2 types: float_st for CPU computation and float_gpu_st for GPU
computation.
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Implemented solutions

No counter for the numerical instabilities
need more memory (shared)
need a lot of atomic operations
instabilities are associated to a result.

CPU +GPU
class float_st {
protected:
float x,y,z;
private:
mutable unsigned int accuracy;
unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}

GPU
class float_gpu_st {
public:
float x,y,z;
public:
mutable unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2; }
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# inc lude " cadna . h "
# inc lude " cadna_gpu . cu "

__global__ vo id matMulKernelNormal (
f l oa t_gpu_s t∗ mat1 ,
f l oa t_gpu_s t∗ mat2 ,
f l oa t_gpu_s t∗ matRes ,
i n t dim ) {

unsigned i n t x = blockDim . x∗b lock Idx . x+ th read Idx . x ;
unsigned i n t y = blockDim . y∗b lock Idx . y+ th read Idx . y ;

cadna_in i t_gpu ( ) ;

i f ( x < dim && y < dim ) {
f l oa t_gpu_s t temp ;
temp=0;
f o r ( i n t i =0; i <dim ; i ++){

temp = temp + mat1 [ y ∗ dim + i ] ∗ mat2 [ i ∗ dim + x ] ;
}

matRes [ y ∗ dim + x ] = temp ;
}

}
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. . .
f l o a t _ s t mat1 [DIMMAT ] [ DIMMAT] , mat2 [DIMMAT ] [ DIMMAT] ,

res [DIMMAT ] [ DIMMAT ] ;
. . .

cadna_ in i t (−1);
i n t s i ze = DIMMAT ∗ DIMMAT ∗ s i z e o f ( f l o a t _ s t ) ;
cudaMalloc ( ( vo id ∗∗) &d_mat1 , s ize ) ;
cudaMalloc ( ( vo id ∗∗) &d_mat2 , s ize ) ;
cudaMalloc ( ( vo id ∗∗) &d_res , s ize ) ;
cudaMemcpy ( d_mat1 , mat1 , s ize , cudaMemcpyHostToDevice ) ;
cudaMemcpy ( d_mat2 , mat2 , s ize , cudaMemcpyHostToDevice ) ;

dim3 threadsPerBlock (16 ,16 ) ;
i n t nbbx = ( i n t ) c e i l ( ( f l o a t )DIMMAT / ( f l o a t ) 1 6 ) ;
i n t nbby = ( i n t ) c e i l ( ( f l o a t )DIMMAT / ( f l o a t ) 1 6 ) ;
dim3 numBlocks ( nbbx , nbby ) ;
matMulKernelNormal <<< numBlocks , threadsPerBlock >>>
( d_mat1 , d_mat2 , d_res , DIMMAT ) ;
cudaMemcpy ( res , d_res , s ize , cudaMemcpyDeviceToHost ) ;
. . .
cadna_end ( ) ;
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Scan of the results

f o r ( i =0; i <DIMMAT; i ++){
f o r ( j =0; j <DIMMAT; j ++)

p r i n t f ("%s " , s t r p ( res [ i ] [ j ] ) ) ;
p r i n t f ( " \ n " ) ;

}
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mat1=
0.0000000E+000 0.1000000E+001 0.2000000E+001 0.3000000E+001
0.4000000E+001 0.5000000E+001 0.6000000E+001 0.6999999E+001
0.8000000E+001 @.0 0.1000000E+002 0.1099999E+002
0.1199999E+002 0.1299999E+002 0.1400000E+002 0.1500000E+002

mat2=
0.1000000E+001 0.1000000E+001 0.1000000E+001 0.1000000E+001
0.1000000E+001 @.0 0.1000000E+001 0.1000000E+001
0.1000000E+001 0.1000000E+001 0.1000000E+001 0.1000000E+001
0.1000000E+001 0.1000000E+001 0.1000000E+001 0.1000000E+001

res=
0.5999999E+001 @.0 0.5999999E+001 0.5999999E+001
0.2199999E+002 @.0 0.2199999E+002 0.2199999E+002
@.0 @.0 MUL @.0 @.0
0.5399999E+002 @.0 0.5399999E+002 0.5399999E+002
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CADNA GPU sof tware −−− U n i v e r s i t y P . e t M. Cur ie −−− LIP6
No i n s t a b i l i t y detected on CPU
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Computation of 2D Slater integrals

2DRMP is a suite of 2D R-matrix propagation programs simulating electron
scattering from H-like atoms and ions at intermediate energies. We focus on
the NEWRD program which involves the computation of a large number of
Slater integrals:

Iλ = J1,λ + J2,λ

with

J1,λ =

∫ b

a

∫ y

a
fλ(x , y)dxdy ,

fλ(x , y) =
Pn1,l1 (y)Pn3,l3 (y)

yλ+1
xλPn2,l2 (x)Pn4,l4 (x), x ∈ [a, y ],

J2,λ =

∫ b

a

∫ b

y
φλ(x , y)dxdy ,

φλ(x , y) = Pn1,l1 (y)Pn3,l3 (y)y
λ Pn2,l2 (x)Pn4,l4 (x)

xλ+1
, x ∈ [y , b]

Pni ,li : eigenfunctions of the Schrödinger equation
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Performance

Intel Core 2 Quad Processor Q8200 (4M Cache, 2.33 GHz, 1333 MHz
FSB)
NVIDIA C1060
NVIDIA C2050 FERMI, CUDA Core 448, Mem 3GB GDDR5

Architecture time without time with ratio
CADNA CADNA

CPU 501 sec
C1060 GPU without texture 26 sec 7 min 22 17

C1060 GPU with texture 21 sec 7 min 15 20.7
C2050 GPU without texture 22 sec 3 min 20 9

C2050 GPU with texture 22 sec 3 min 20 9

All the results are correct with 7 significant digits.
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Conclusion

Efficient method but time and memory consuming
Can be used on real life applications
Difficulties to understand the numerical instabilities in large codes
solution for parallel programs (MPI and GPU)
difficult to use with the libraries (BLAS, LAPACK ...)
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