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What Will You Learn? 

 An iterative method to optimize your GPU code 

 

 

 A way to conduct that method with Nvidia Tools 
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What Does the Application Do ? 

 It does not matter !!! 

 We care about memory accesses, instructions, latency, … 

 

 

 

 Companion code: 
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https://github.com/jdemouth/nsight-gtc2013 
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Our Method 

 Trace the application 

 Identify the hot spot and profile it 

 Identify the performance limiter 

— Memory Bandwidth 

— Instruction Throughput 

— Latency 

 Optimize the code 

 Iterate 
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Our Environment 

 We use 

— Nvidia Tesla K20c (GK110, SM 3.5), ECC OFF, 

— Microsoft Windows 7 x64, 

— Microsoft Visual Studio 2012, 

— CUDA 5.5, 

— Nvidia Nsight 3.1. 
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ITERATION 1 
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Trace the Application (Nsight VSE) 



CUDA Launch Summary (Nsight VSE) 

 spmv_kernel_v0 is a hot spot, let’s start here!!! 
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Kernel Time Speedup 

Original version 104.72ms 



Trace the Application (NVVP) 



Trace the Application (nvprof) 



Profile the Most Expensive Kernel (Nsight VSE) 



CUDA Launches (Nsight VSE) 
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Profile the Most Expensive Kernel (NVVP) 



Profile the Most Expensive Kernel (nvprof) 



Identify the Main Limiter 

 Is it limited by the memory bandwidth ? 

 

 

 Is it limited by the instruction throughput ? 

 

 

 Is it limited by latency ? 
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Memory Bandwidth 

SMEM/L1$ 

Registers 

SM 

SMEM/L1$ 

Registers 

SM 

DRAM (Global Memory) 

L2$ 



Memory Bandwidth 

 Utilization of DRAM Bandwidth: 29.14% 

 

 

 

 

 

 

 

 We are not limited by the memory bandwidth (< 70-80%) 
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Memory Bandwidth (nvprof) 

 Utilization of DRAM Bandwidth: 31.86% 

 

 

 

 

 

 

 We are not limited by the memory bandwidth 
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Read Write Total 

Bandwidth (GB/s) 60.77 2.38 63.15 

Utilization (%) 29.22 1.14 30.36 

Peak BW (K20c): 208GB/s 



Instruction Throughput 

 Instructions go to the pipes 

 

 Issue 1 or 2 instructions every cycle 

 

 We cannot if a pipe is saturated 
SMEM/L1$ 

Registers 

SM 

Load 

Store 

Control 

Flow 
ALU Texture 



Instruction Throughput 

 All pipes are underutilized: <70-75% 

 

 

 

 

 

 

 

 We are not limited by instruction throughput 
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Instruction Throughput 

 All pipes have Low/Mid utilization 

 

 

 

 

 

 

 We are not limited by instruction throughput 

 

Load/Store Control Flow ALU Texture 

Utilization Mid Low Low Idle 



Guided Analysis (Nvvp) 



Latency 

 First two things to check: 

— Occupancy 

— Memory accesses (coalesced/uncoalesced accesses) 

 

 

 Other things to check (if needed): 

— Control flow efficiency (branching, idle threads) 

— Divergence 

— Bank conflicts in shared memory 
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Latency (Occupancy) 

 Occupancy: 55.98% Achieved / 62.50% Theoretical 

 

 

 

 

 

 

 It’s not too high but not too low: Hard to say 

 

 

 



Latency (Occupancy) 

 Guided Analysis (Nvvp): 

 

 

 

 

 

 “Theoretical occupancy is less than 100% but is large enough 

that increasing occupancy may not improve performance” 



Latency (Occupancy) 

 Eligible Warps per Active Cycle: 10.43 

 

 

 

 

 

 

 

 

 Occupancy is not an issue (> 4) 
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Registers 
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Memory Transactions 

 Warps of threads (32 threads) 

 

 

 L1 transaction: 128B – Alignment: 128B (0, 128, 256, …) 

 

 

 L2 transaction: 32B – Alignment: 32B (0, 32, 64, 96, …) 



Memory Transactions (fp32) 

 Ideal case: 32 aligned and consecutive fp32 numbers 

 

 

 1x L1 transaction: 128B needed / 128B transferred 

 

 

 4x L2 transactions: 128B needed / 128B transferred 

 

 



Memory Transactions (fp64) 

 Ideal case: 32 aligned and consecutive fp64 numbers 

 

 

 

 

 2x L1 transactions: 256B needed / 256B transferred 

 

 8x L2 transactions: 256B needed / 256B transferred 

 



Memory Transactions (fp64) 

 Worst case: 32 fp64 with a stride of 128B (16x fp64) 

 

 

 

 

 

 

 32x L1 transactions: 256B needed / 32x128B transferred 

 32x L2 transactions: 256B needed / 32x32B transferred 

… 



Memory Transactions (fp64) 

 Misaligned: 32 fp64 

 

 

 

 

 

 3x L1 transactions: 256B needed / 384B transferred 

 9x L2 transactions: 256B needed / 288B transferred  



Memory Transactions 

 Broadcast: 1 fp64 

 

 

 

 1 L1 transaction: 8B needed / 128B transferred 

 1 L2 transaction: 8B needed / 32B transferred 

32 threads 



Replays 

 A Memory Request: LD/ST instruction 

 

 The 1st transaction is issued 

 

 Other transactions induce replays 

 

 Note: For each fp64 request, we have at least 1 replay 



Latency (Memory Accesses) 

 Transactions per Request: 19.92 loads / 8 stores 

 

 

 

 

 

 

 

 We have too many uncoalesced accesses!!! 
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Where Do Those Accesses Happen? (Nsight VSE) 

 CUDA Source Profiler (Nsight VSE):  

— Where are uncoalesced requests (need to compile with –lineinfo) 

 

 

 

 

 

 

 Tip: Sort “L2 Global Transactions Executed” 
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Where Do Those Accesses Happen? (Nvvp) 

1/ Select a run 

2/ Click on Unguided Analysis 

3/ Run Memory Access Pattern 

4/ Something goes wrong at 

those lines 



Access Pattern 

 Double precision numbers: 64-bit 

 

 

 

 

 

 Per Warp:  

— Up to 32 L1 Transactions / Ideal case: 2 Transactions  

— Up to 32 L2 Transactions / Ideal case: 8 Transactions 
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L2 Transaction 
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Access Pattern 

 Next iteration: 

 

 

 

 

 

 

 Idea: Use the Read-only cache (LDG load) 

— On Fermi: Use a texture or Use 48KB for L1 
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Thread 0 Thread 1 Thread 2 
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First Modification: Use __ldg 
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First Modification: Use __ldg 

 We change the source code: 

 

 

 

 

 It is slower: 625.8ms 
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Kernel Time Speedup 

Original version 104.72ms 

LDG to load A 125.67ms 0.83x 



First Modification: Use __ldg 

 No benefit from the read-only cache: Hit rate at 3.3% 

 

 

 

 

 

 

 

 Worse hit rate in L2$: 15.8% compared to 36.7% 
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First Modification: Use __ldg 

 Eligible Warps per Active Cycle has dropped to 0.54 
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First Modification: Use __ldg 

 Warps cannot issue because they have to wait 
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First Modification: Use __ldg 

 The loads compete for the cache too much 

— Low hit rate: 3.3% 

 Texture requests introduce too much latency (in that case) 

 

 Things to check in those cases: 

— Texture Hit Rate: Low means no reuse 

— Issue Efficiency and Stall Reasons 

 

 It was actually expected: GPU caches are not CPU caches!!! 
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First Modification: Use __ldg 

 Other accesses may benefit from LDGs 

 

 Memory blocks accessed several times by several threads 

 

 How can we detect it? 

— Source code analysis 

— There is no way to detect it from Nsight 
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First Modification: Use __ldg 

 We change the source code 

— In y = Ax, we use __ldg when loading x 

 

 It’s faster: 98.30ms 
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Kernel Time Speedup 

Original version 104.72ms 

LDG to load A 125.67ms 0.83x 

LDG to load X 98.30ms 1.07x 



First Modification: Use __ldg 

 Good hit rate in Texture Cache: 82% 

 

 

 

 

 

 

 Slightly less data transferred from L2 (94MB vs 110MB)  
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ITERATION 2 
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CUDA Launch Summary 

 spmv_kernel_v2 is still a hot spot, so we profile it 
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Identify the Main Limiter 

 Is it limited by the memory bandwidth ? 

 

 

 Is it limited by the instruction throughput ? 

 

 

 Is it limited by latency ? 
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Identify the Main Limiter 

 We are still limited by latency 

— Low DRAM utilization: 29.95% 

— Pipe utilization is Low/Mid: <70-75% 
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Identify the Main Limiter 

 We are not limited by the Occupancy 

— We have > 4 Eligible Warps per Active Cycle (8.16) 

 

 

 

 

 

 

 Too many uncoalesced accesses: 40.79% of Replay Overhead 
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Second Strategy: Change Memory Accesses 

 4 consecutive threads load 4 consecutive elements 

 

 

 

 

 

 Per Warp:  

— Up to 8 L1 Transactions / Ideal case: 2 Transactions 

— Up to 8 L2 Transactions / Ideal case: 8 Transactions 
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Threads 0, 1, 2, 3 Threads 4, 5, 6, 7 

L2 Transaction 

(32B) 

L2 Transaction 

(32B) 

L1 Transaction (128B) 
L2 Transaction 

(32B) 

Threads 8, 9, 10, 11 



Second Strategy: Change Memory Accesses 

 It’s much faster: 45.61ms 
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Kernel Time Speedup 

Original version 104.72ms 

LDG to load A 125.67ms 0.83x 

LDG to load X 98.30ms 1.07x 

Coalescing with 4 Threads 45.61ms 2.30x 



Second Strategy: Change Memory Accesses 

 We have much fewer Transactions per Request: 5.16 (LD) 
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Second Strategy: Change Memory Accesses 

 Much less traffic from L2: 28.27MB (it was 109.83MB) 

 

 

 

 

 

 

 

 Much less DRAM traffic: 25.93MB (it was 69.59MB) 

 



ITERATION 3 
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CUDA Launch Summary 

 spmv_kernel_v3 is still a hot spot, so we profile it 
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Identify the Main Limiter 

 Is it limited by the memory bandwidth ? 

 

 

 Is it limited by the instruction throughput ? 

 

 

 Is it limited by latency ? 
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Identify the Main Limiter 

 We are still limited by latency 

— Low DRAM utilization: 36.01% 

— Pipe Utilization is still Low/Mid 
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Latency 

 Eligible Warps per Active Cycle: 6.70 on average 

 

 

 

 

 

 

 

 We are not limited by occupancy 
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Latency 

 Memory Accesses: 

— Load: 5.16 Transactions per Request 

— Store: 2 Transactions per Request 

 

 

 

 

 

 We still have too many uncoalesced accesses 
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Latency 

 We still have too many uncoalesced accesses 

— Nearly 68.44% of Instruction Serialization (Replays) 

— Stall Reasons: 43.14% due to Data Requests 
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Latency 

 Serialization: (Inst. Issued – Inst. Executed) / Inst. Issued 

 

 

 Inst. Replay Overhead: Avg. Number of replays per Inst. 

 

 Inst. Issued = 1 + Avg. Number of Replays 

Inst. Replay Overhead Inst. Replay Overhead / (1 + Inst. Replay Overhead ) 

2.17 68.45% 



Latency 

 Issue Stall Reasons 

 

Stall Reasons 

Instruction Fetch 0.58% 

Execution Dependency 32.51% 

Data Request 37.85% 

Texture 0.41% 

Sync 0.00% 

Other 15.13% 



Latency 



Where Do Those Accesses Happen? 

 Same lines of code as before 
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What Can We Do? 

 In our kernel: 4 threads per row of the matrix A 

 

 

 

 

 New approach: 1 warp of threads per row of the matrix A 
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Threads 0, 1, 2, 3 Threads 4, 5, 6, 7 

L2 Transaction 

(32B) 

L2 Transaction 

(32B) 

L1 Transaction (128B) L2 Transaction 

(32B) 

Threads 8, 9, 10, 11 

Threads 0, 1, 2, 3, …, 31 (some possibly idle) 

L2 Transaction 

(32B) 

L2 Transaction 

(32B) 
L2 Transaction 

(32B) 



One Warp Per Row 

 It’s faster: 37.50ms 
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Kernel Time Speedup 

Original version 104.72ms 

LDG to load A 125.67ms 0.83x 

LDG to load X 98.30ms 1.07x 

Coalescing with 4 Threads 45.61ms 2.30x 

1 Warp per Row 37.50ms 2.79x 



One Warp Per Row 

 Much fewer Transactions Per Request: 1.37 (LD) / 1 (ST) 
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ITERATION 4 
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One Warp Per Row 

 spmv_kernel_v4 is the hot spot 
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One Warp Per Row 

 DRAM utilization: 37.36% 

 Pipe Utilization is Low/Mid 

 

 

 

 

 

 

 We are still limited by latency 



One Warp Per Row 

 Occupancy and memory accesses are OK (not shown) 

 Control Flow Efficiency: 87.31% 
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Control Flow Efficiency 

 All threads work: 100% 

 

 

 

 Some threads do nothing: Less efficiency 

if( threadIdx.x % 32 < 24 ) { 
    … // do some long computation 
}  

Efficiency = 24/32 = 75% 



Control Flow Efficiency 

 Low efficiency in one the key loop: 69.9% 



One Half Warp Per Row 

 It is faster: 35.81ms 
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Kernel Time Speedup 

Original version 104.72ms 

LDG to load A 125.67ms 0.73x 

LDG to load X 98.30ms 1.07x 

Coalescing with 4 Threads 45.61ms 2.30x 

1 Warp per Row 37.50ms 2.79x 

½ Warp per Row 35.81ms 2.93x 



ITERATION 5 
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One Half Warp Per Row 

 DRAM utilization: 48.18% 

 Pipe Utilization is Low/Mid 

 

 

 

 

 

 

 We are still limited by latency 
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One Half Warp Per Row 

 Occupancy is not an issue 

 

 

 

 

 

 

 

 Memory accesses are good enough 
81 



One Half Warp Per Row 

 Branch divergence induce latency 

 We have 16.32% of divergent branches 
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Branch Divergence 



Branch Divergence 

 Execution Time = Time of If branch + Time of Else branch 

if( threadIdx.x % 32 < 24 ) { 
    … // do some long computation 
}  

else { 
    … // do some long computation 
}  



One Half Warp Per Row 

 We fix branch divergence  

 It is faster: 29.60ms 
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Kernel Time Speedup 

Original version 104.72ms 

LDG to load A 125.67ms 0.83x 

LDG to load X 98.30ms 1.07x 

Coalescing with 4 Threads 45.61ms 2.30x 

1 Warp per Row 37.50ms 2.79x 

½ Warp per Row 35.81ms 2.93x 

No divergence 29.60ms 3.54x 



One Half Warp Per Row 

 DRAM utilization: 60.80% 

 

 

 

 

 

 

 

 We are still far from the peak… 



So Far 

 We have consecutively: 

— Improved caching using __ldg (use with care) 

— Improved coalescing  

— Improved control flow efficiency 

— Improved branching 

 

 Our new kernel is 3.5x faster than our first implementation 

 

 Tools helped us a lot 
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ITERATION 6 
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Next Kernel 

 We are satisfied with the performance of spmv_kernel 

 We move to the next kernel: jacobi_smooth 
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What Have You Seen? 

 An iterative method to optimize your GPU code 

— Trace your application 

— Identify the hot spot and profile it 

— Identify the performance limiter 

— Optimize the code 

— Iterate 

 

 A way to conduct that method with Nvidia tools 
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