
CUDA Optimization with NVIDIA Tools

Julien Demouth, NVIDIA

What Will You Learn?

 An iterative method to optimize your GPU code

 A way to conduct that method with Nvidia Tools

2

What Does the Application Do ?

 It does not matter !!!

 We care about memory accesses, instructions, latency, …

 Companion code:

3

https://github.com/jdemouth/nsight-gtc2013

4

Our Method

 Trace the application

 Identify the hot spot and profile it

 Identify the performance limiter

— Memory Bandwidth

— Instruction Throughput

— Latency

 Optimize the code

 Iterate

5

Our Environment

 We use

— Nvidia Tesla K20c (GK110, SM 3.5), ECC OFF,

— Microsoft Windows 7 x64,

— Microsoft Visual Studio 2012,

— CUDA 5.5,

— Nvidia Nsight 3.1.

6

ITERATION 1

7

Trace the Application (Nsight VSE)

CUDA Launch Summary (Nsight VSE)

 spmv_kernel_v0 is a hot spot, let’s start here!!!

9

Kernel Time Speedup

Original version 104.72ms

Trace the Application (NVVP)

Trace the Application (nvprof)

Profile the Most Expensive Kernel (Nsight VSE)

CUDA Launches (Nsight VSE)

13

Profile the Most Expensive Kernel (NVVP)

Profile the Most Expensive Kernel (nvprof)

Identify the Main Limiter

 Is it limited by the memory bandwidth ?

 Is it limited by the instruction throughput ?

 Is it limited by latency ?

16

Memory Bandwidth

SMEM/L1$

Registers

SM

SMEM/L1$

Registers

SM

DRAM (Global Memory)

L2$

Memory Bandwidth

 Utilization of DRAM Bandwidth: 29.14%

 We are not limited by the memory bandwidth (< 70-80%)
18

Memory Bandwidth (nvprof)

 Utilization of DRAM Bandwidth: 31.86%

 We are not limited by the memory bandwidth

19

Read Write Total

Bandwidth (GB/s) 60.77 2.38 63.15

Utilization (%) 29.22 1.14 30.36

Peak BW (K20c): 208GB/s

Instruction Throughput

 Instructions go to the pipes

 Issue 1 or 2 instructions every cycle

 We cannot if a pipe is saturated
SMEM/L1$

Registers

SM

Load

Store

Control

Flow
ALU Texture

Instruction Throughput

 All pipes are underutilized: <70-75%

 We are not limited by instruction throughput
21

Instruction Throughput

 All pipes have Low/Mid utilization

 We are not limited by instruction throughput

Load/Store Control Flow ALU Texture

Utilization Mid Low Low Idle

Guided Analysis (Nvvp)

Latency

 First two things to check:

— Occupancy

— Memory accesses (coalesced/uncoalesced accesses)

 Other things to check (if needed):

— Control flow efficiency (branching, idle threads)

— Divergence

— Bank conflicts in shared memory

24

Latency (Occupancy)

 Occupancy: 55.98% Achieved / 62.50% Theoretical

 It’s not too high but not too low: Hard to say

Latency (Occupancy)

 Guided Analysis (Nvvp):

 “Theoretical occupancy is less than 100% but is large enough

that increasing occupancy may not improve performance”

Latency (Occupancy)

 Eligible Warps per Active Cycle: 10.43

 Occupancy is not an issue (> 4)

SMEM/L1$

Registers

SM

Units Units Units Units

Sched Sched Sched Sched

Memory Transactions

 Warps of threads (32 threads)

 L1 transaction: 128B – Alignment: 128B (0, 128, 256, …)

 L2 transaction: 32B – Alignment: 32B (0, 32, 64, 96, …)

Memory Transactions (fp32)

 Ideal case: 32 aligned and consecutive fp32 numbers

 1x L1 transaction: 128B needed / 128B transferred

 4x L2 transactions: 128B needed / 128B transferred

Memory Transactions (fp64)

 Ideal case: 32 aligned and consecutive fp64 numbers

 2x L1 transactions: 256B needed / 256B transferred

 8x L2 transactions: 256B needed / 256B transferred

Memory Transactions (fp64)

 Worst case: 32 fp64 with a stride of 128B (16x fp64)

 32x L1 transactions: 256B needed / 32x128B transferred

 32x L2 transactions: 256B needed / 32x32B transferred

…

Memory Transactions (fp64)

 Misaligned: 32 fp64

 3x L1 transactions: 256B needed / 384B transferred

 9x L2 transactions: 256B needed / 288B transferred

Memory Transactions

 Broadcast: 1 fp64

 1 L1 transaction: 8B needed / 128B transferred

 1 L2 transaction: 8B needed / 32B transferred

32 threads

Replays

 A Memory Request: LD/ST instruction

 The 1st transaction is issued

 Other transactions induce replays

 Note: For each fp64 request, we have at least 1 replay

Latency (Memory Accesses)

 Transactions per Request: 19.92 loads / 8 stores

 We have too many uncoalesced accesses!!!

35

Where Do Those Accesses Happen? (Nsight VSE)

 CUDA Source Profiler (Nsight VSE):

— Where are uncoalesced requests (need to compile with –lineinfo)

 Tip: Sort “L2 Global Transactions Executed”

36

Where Do Those Accesses Happen? (Nvvp)

1/ Select a run

2/ Click on Unguided Analysis

3/ Run Memory Access Pattern

4/ Something goes wrong at

those lines

Access Pattern

 Double precision numbers: 64-bit

 Per Warp:

— Up to 32 L1 Transactions / Ideal case: 2 Transactions

— Up to 32 L2 Transactions / Ideal case: 8 Transactions

38

L2 Transaction

(32B)

L2 Transaction

(32B)

L1 Transaction (128B)

Thread 0 Thread 1

L2 Transaction

(32B)

Thread 2

Access Pattern

 Next iteration:

 Idea: Use the Read-only cache (LDG load)

— On Fermi: Use a texture or Use 48KB for L1
39

Thread 0 Thread 1 Thread 2

L2 Transaction

(32B)

L2 Transaction

(32B)

L1 Transaction (128B)
L2 Transaction

(32B)

First Modification: Use __ldg

40

L1$

Registers

SM

LD/ST
Ctrl

Flow
ALU TEX

TEX$

L2$

L1$

Registers

SM

LD/ST
Ctrl

Flow
ALU TEX

TEX$

LD LDG

LDG (DRAM-L2$-TEX$-Reg) LD (DRAM-L2$-L1$-Reg)

First Modification: Use __ldg

 We change the source code:

 It is slower: 625.8ms

41

Kernel Time Speedup

Original version 104.72ms

LDG to load A 125.67ms 0.83x

First Modification: Use __ldg

 No benefit from the read-only cache: Hit rate at 3.3%

 Worse hit rate in L2$: 15.8% compared to 36.7%

42

First Modification: Use __ldg

 Eligible Warps per Active Cycle has dropped to 0.54

43

First Modification: Use __ldg

 Warps cannot issue because they have to wait

44

First Modification: Use __ldg

 The loads compete for the cache too much

— Low hit rate: 3.3%

 Texture requests introduce too much latency (in that case)

 Things to check in those cases:

— Texture Hit Rate: Low means no reuse

— Issue Efficiency and Stall Reasons

 It was actually expected: GPU caches are not CPU caches!!!

45

First Modification: Use __ldg

 Other accesses may benefit from LDGs

 Memory blocks accessed several times by several threads

 How can we detect it?

— Source code analysis

— There is no way to detect it from Nsight

46

First Modification: Use __ldg

 We change the source code

— In y = Ax, we use __ldg when loading x

 It’s faster: 98.30ms

47

Kernel Time Speedup

Original version 104.72ms

LDG to load A 125.67ms 0.83x

LDG to load X 98.30ms 1.07x

First Modification: Use __ldg

 Good hit rate in Texture Cache: 82%

 Slightly less data transferred from L2 (94MB vs 110MB)

48

ITERATION 2

49

CUDA Launch Summary

 spmv_kernel_v2 is still a hot spot, so we profile it
50

Identify the Main Limiter

 Is it limited by the memory bandwidth ?

 Is it limited by the instruction throughput ?

 Is it limited by latency ?

51

Identify the Main Limiter

 We are still limited by latency

— Low DRAM utilization: 29.95%

— Pipe utilization is Low/Mid: <70-75%

52

Identify the Main Limiter

 We are not limited by the Occupancy

— We have > 4 Eligible Warps per Active Cycle (8.16)

 Too many uncoalesced accesses: 40.79% of Replay Overhead

53

Second Strategy: Change Memory Accesses

 4 consecutive threads load 4 consecutive elements

 Per Warp:

— Up to 8 L1 Transactions / Ideal case: 2 Transactions

— Up to 8 L2 Transactions / Ideal case: 8 Transactions

54

Threads 0, 1, 2, 3 Threads 4, 5, 6, 7

L2 Transaction

(32B)

L2 Transaction

(32B)

L1 Transaction (128B)
L2 Transaction

(32B)

Threads 8, 9, 10, 11

Second Strategy: Change Memory Accesses

 It’s much faster: 45.61ms

55

Kernel Time Speedup

Original version 104.72ms

LDG to load A 125.67ms 0.83x

LDG to load X 98.30ms 1.07x

Coalescing with 4 Threads 45.61ms 2.30x

Second Strategy: Change Memory Accesses

 We have much fewer Transactions per Request: 5.16 (LD)

56

Second Strategy: Change Memory Accesses

 Much less traffic from L2: 28.27MB (it was 109.83MB)

 Much less DRAM traffic: 25.93MB (it was 69.59MB)

ITERATION 3

58

CUDA Launch Summary

 spmv_kernel_v3 is still a hot spot, so we profile it
59

Identify the Main Limiter

 Is it limited by the memory bandwidth ?

 Is it limited by the instruction throughput ?

 Is it limited by latency ?

60

Identify the Main Limiter

 We are still limited by latency

— Low DRAM utilization: 36.01%

— Pipe Utilization is still Low/Mid

61

Latency

 Eligible Warps per Active Cycle: 6.70 on average

 We are not limited by occupancy

62

Latency

 Memory Accesses:

— Load: 5.16 Transactions per Request

— Store: 2 Transactions per Request

 We still have too many uncoalesced accesses

63

Latency

 We still have too many uncoalesced accesses

— Nearly 68.44% of Instruction Serialization (Replays)

— Stall Reasons: 43.14% due to Data Requests

64

Latency

 Serialization: (Inst. Issued – Inst. Executed) / Inst. Issued

 Inst. Replay Overhead: Avg. Number of replays per Inst.

 Inst. Issued = 1 + Avg. Number of Replays

Inst. Replay Overhead Inst. Replay Overhead / (1 + Inst. Replay Overhead)

2.17 68.45%

Latency

 Issue Stall Reasons

Stall Reasons

Instruction Fetch 0.58%

Execution Dependency 32.51%

Data Request 37.85%

Texture 0.41%

Sync 0.00%

Other 15.13%

Latency

Where Do Those Accesses Happen?

 Same lines of code as before

68

What Can We Do?

 In our kernel: 4 threads per row of the matrix A

 New approach: 1 warp of threads per row of the matrix A

69

Threads 0, 1, 2, 3 Threads 4, 5, 6, 7

L2 Transaction

(32B)

L2 Transaction

(32B)

L1 Transaction (128B) L2 Transaction

(32B)

Threads 8, 9, 10, 11

Threads 0, 1, 2, 3, …, 31 (some possibly idle)

L2 Transaction

(32B)

L2 Transaction

(32B)
L2 Transaction

(32B)

One Warp Per Row

 It’s faster: 37.50ms

70

Kernel Time Speedup

Original version 104.72ms

LDG to load A 125.67ms 0.83x

LDG to load X 98.30ms 1.07x

Coalescing with 4 Threads 45.61ms 2.30x

1 Warp per Row 37.50ms 2.79x

One Warp Per Row

 Much fewer Transactions Per Request: 1.37 (LD) / 1 (ST)

71

ITERATION 4

72

One Warp Per Row

 spmv_kernel_v4 is the hot spot

73

One Warp Per Row

 DRAM utilization: 37.36%

 Pipe Utilization is Low/Mid

 We are still limited by latency

One Warp Per Row

 Occupancy and memory accesses are OK (not shown)

 Control Flow Efficiency: 87.31%

75

Control Flow Efficiency

 All threads work: 100%

 Some threads do nothing: Less efficiency

if(threadIdx.x % 32 < 24) {
 … // do some long computation
}

Efficiency = 24/32 = 75%

Control Flow Efficiency

 Low efficiency in one the key loop: 69.9%

One Half Warp Per Row

 It is faster: 35.81ms

78

Kernel Time Speedup

Original version 104.72ms

LDG to load A 125.67ms 0.73x

LDG to load X 98.30ms 1.07x

Coalescing with 4 Threads 45.61ms 2.30x

1 Warp per Row 37.50ms 2.79x

½ Warp per Row 35.81ms 2.93x

ITERATION 5

79

One Half Warp Per Row

 DRAM utilization: 48.18%

 Pipe Utilization is Low/Mid

 We are still limited by latency
80

One Half Warp Per Row

 Occupancy is not an issue

 Memory accesses are good enough
81

One Half Warp Per Row

 Branch divergence induce latency

 We have 16.32% of divergent branches

82

Branch Divergence

Branch Divergence

 Execution Time = Time of If branch + Time of Else branch

if(threadIdx.x % 32 < 24) {
 … // do some long computation
}

else {
 … // do some long computation
}

One Half Warp Per Row

 We fix branch divergence

 It is faster: 29.60ms

85

Kernel Time Speedup

Original version 104.72ms

LDG to load A 125.67ms 0.83x

LDG to load X 98.30ms 1.07x

Coalescing with 4 Threads 45.61ms 2.30x

1 Warp per Row 37.50ms 2.79x

½ Warp per Row 35.81ms 2.93x

No divergence 29.60ms 3.54x

One Half Warp Per Row

 DRAM utilization: 60.80%

 We are still far from the peak…

So Far

 We have consecutively:

— Improved caching using __ldg (use with care)

— Improved coalescing

— Improved control flow efficiency

— Improved branching

 Our new kernel is 3.5x faster than our first implementation

 Tools helped us a lot

87

88

ITERATION 6

89

Next Kernel

 We are satisfied with the performance of spmv_kernel

 We move to the next kernel: jacobi_smooth

90

91

What Have You Seen?

 An iterative method to optimize your GPU code

— Trace your application

— Identify the hot spot and profile it

— Identify the performance limiter

— Optimize the code

— Iterate

 A way to conduct that method with Nvidia tools

92

