CUDA Optimization with NVIDIA Tools

Julien Demouth, NVIDIA

What Will You Learn?

* An iterative method to optimize your GPU code

» A way to conduct that method with Nvidia Tools

What Does the Application Do ?

= [t does not matter !!!

= We care about memory accesses, instructions, latency, ...

= Companion code:

https://github.com/jdemouth/nsight-gtc2013

BICGSTAEB SO0OLVER

a*
*

DEVICE : Tesla K20c (ECC: OFF)

*
*

SYSTEM : res/matrix.inp

*
*

INIT. RESID.: [1.212971e-001 0.000000e+000 0.000000e+000 1.243311e-001]

=% ITERATION 0: [5.009870e-002 2.509095e-003 2.442529e-003 1.381766e-003]
=% ITERATION 1: [6.322283e-002 3.624363e-003 3.439345e-003 1.459566e-003]
== TTERATION 2: [1.944435e-002 3.175072e-004 3.108480e-004 4.101967e-004 |
=% ITERATION 3: [1.179491e-002 9.63312%9e-005 9.554327e-005 2.494020e-004]
=% TTERATION 4: [1.517741e-002 1.351845e-004 1.323939e-004 3.272856e-004]
=% ITERATION 5: [2.840113e-002 2.370584e-004 2.333890e-004 6.397188e-004]
=% ITERATION 6: [8.465301e-003 9.483242e-005 9.256901e-005 1.726512e-004]
=% ITERATION 7: [2.497275e-003 2.221739e-005 2.213925e-005 6.087546e-005]
== ITERATION 8: [3.931372e-003 3.762042e-005 3.804746e-005 9.449076e-005
== ITERATION 9: [1.004664e-003 7.813901e-006 7.722009e-006 2.470211e-005]
=% TTERATION 10: [1.348178e-003 1.450667e-005 1.451499e-005 3.084324e-005]
=% ITERATION 11: [3.147213e-004 3.016084e-006 2.968251e-006 7.588855e-006]
=% ITERATION 12: [2.560259%e-004 2.530426e-006 2.474577e-006 6.13897%e-006]
=% TTERATION 13: [1.941811e-004 2.010254e-006 1.992610e-006 4.670605e-006]
=% ITERATION 14: [1.344858e-004 1.313841e-006 1.286352e-006 3.325935e-006]
== TTERATION 15: [2.946048e-004 3.318294e-006 3.216173e-006 7.020198e-006]
=% ITERATION 16: [1.254350e-004 1.372731e-006 1.317983e-006 3.036414e-006]

a*
*

FINAL RESID.: [2.529559e-005 2.054403e-007 1.903810e-007 6.569666e-007]

*
*

ELAPSED TIME: 104.723ms

Press any key to continue . . . _

Our Method

* Trace the application
» [dentify the hot spot and profile it

» [dentify the performance limiter
— Memory Bandwidth
— Instruction Throughput
— Latency

= Optimize the code
" [terate

Our Environment

= We use
— Nvidia Tesla K20c (GK110, SM 3.5), ECC OFF,
— Microsoft Windows 7 x64,
— Microsoft Visual Studio 2012,
— CUDA 5.5,
— Nvidia Nsight 3.1.

ITERATION 1

race the Application (Nsight VSE)

ey e+ T

4 Application Settings

Connection Mame: Disconnect
Application: | D Hubl\nsight-gtc2013x64\Release\BiCGStab.exe

Application: DAGitHub\nsight-gtc201364Release\BICG5tab.exe)

~ Remaote Options

{* Trace Application

Collects events from the target application. The analysis session and data cellection are stopped when the launched applicaticn exits.

% Trace Application

Callects events from the target application. The analysis session and data collection are stopped «

n the launched application exits.
" Trace Process Tree

Collects events from the target application and all native child processes of the target application. The analysis session and data collection are not stopped when the launched application exits. The session and data collection must be stopped
manually.

" Profile CUDA Application
Collects counters, statistics and derived values for given CUDA kernel launches,

" Profile CUDA Process Tree

Collects counters, statistics and derived values for given CUDA kernel launches from the target application and all native child processes of the target application. The analysis session and data collection are not stopped when the launched
application exits. The session and data cellection must be stopped manually.

(4/4) Driver API Trace, Runtime API Trace, Software Counters, Kernel Launches and Memory Operations, Host Callback Trace

[Toals Extension

v CuDA (4/4) Driver API Trace, Runtime API Trace, Software Counters, Kernel Launches and Memory Operations, Host Callback Trace
" OpenCL (3/3

[Direct¥

(4/4) Markers, Push/Pop Ranges, Start/End Ranges, Resource Naming

) APl Trace, Resource Trace, Program Source Code, Program Build Callback Trace, Program Binary Code, Reference Counter, Command Trace
(7/19) API Trace, CPU Frames, GPU Frames, Push Buffers, Shader Compiles, Performance Markers, Performance Ranges
(5/5) API Trace, CPU Frames, GPU Frames, Draw Calls, Transfers

Application Control

Launch

Application Control

Launch

Available Devices: Available Devices:
. NVS 300 (GT 218) Summary Report
NVS 5':9 (5T 218) . Tesla K20c (GK 110) ! yrer
Tesla K20c (GK 110)

Tesla K20c (GK 110)
Tesla K20c (GK 110)

I Open Report on Stop

CUDA Launch Summary (Nsight VSE)

BICGStab131007_000. . apture_000.nvreport R 3
@ CUDA Launch Summary
Filter

Activity L.nvact™ config. twt

Drag a column header and drop it here to group by tha

Function Name

Uncoon <= L] ey revice Time —
ID D oy .
spmv_kernel_v0<int=256>

81,191.472

3,110.917

v_kernel<int=
reduce_kernel<int=2
reduce_|2_norm_kernel<int=2

jacobi_invert_diag_kernel_vD<int=2

= spmv_kernel_vO0 is a hot spot, let’s start here!!!

Original version 104.72ms

Trace the Application (NVVP)

Working direc

Arguments:

Environment:

Trace the Application (nvprof)

D:\Gi1tHub\ns1ght-gtcZUl3 |master 1=
D:\GitHub\nsight-gtc?013 [master 1= nvprof .\x64\Release\BiCGStab.exe

==8§104== Profiling application: .‘x64\Release\BiCGStab.exe
==8104== Profiling result:

Time (%) Time Calls Avg Min Max Name

85.03% B81.366ms 71 1.1460ms 1.0754ms 1.1917ms wvoid spmv_kernel_v0<int=256=(int, int, int const *, int const *, double const *,
double const #*, double const #*, double®)

7.49% 7.1668ms 4 1.7917ms 34.208us 6.7015ms [CUDA memcpy HtoD]

3.24% 3.099%ms 35 B88.554us B86.304us 97.376us void jacobi_smooth_kernel_v0<int=256>(int, double, double const *, doubhle const
, double const #*, double®)

1.13% 1.0819ms 70 15.455us 11.072us 17.504us vwvoid dot_kernel_wl<int=256=(int, double const *, double const *, double¥®)

0.86% 823.17us 36 22.865us 21.568us 25.024us void 1Z2_norm_kernel_wv0<int=256>(int, double const *, double¥)

0.74% 709.98us 34 20.881us 20.288us 21.600us void axpbypcz_kernel<int=256=(int, double, double const *, double, doubhle const
, double, double const *, double®)

Eiﬁi? 606.75us 37 16.398us 15.072us 17.184us wvoid axpby_kernel<int=256>(int, double, double const =, double, double const *,
ouble=

0.27% 262.88us 70 3.7550us 3.1040us 4.4480us wvoid reduce_kernel<int=256>(int, double const *, double*®)

0.26% 247.26us 106 2.3320us 2.1120us 3.7760us [CUDA memcpy DtoH]

0.18% 174.08us 36 4.8350us 4.28B80us 6.1440us void reduce_l12_norm_kernel<int=256=(int, double const *, double®)

0.12% 112.00us 1 112.00us 112.00us 112.00us vwvoid jacobi_invert_diag _kernel_v0<int=256>(int, double const *, double¥)

0.04% 34.880us 36 968ns 672ns 10.112us [CUDA memset]

0.00% 1.4400us 2 720ns 704ns 736ns [CUDA memcpy DtoD]

D:\GitHub\nsight-gtc2013 [master 1=

ke

ke

Profile the Most Expensive Kernel (Nsight VSE)

4 Activity Ty fi plication

 Trace Application
Collects events from the target application. The analysis session and data collection are stopped when the launched application exits.
(" Trace Process Tree

Collects events from the target application and all native child processes of the target application. The analysis session and data collection are not stopped when the launched application exits. The session and data cellection must be stopped manually.
= Profile CUDA Application

9 Profile CUDA Application

Collects counters, statistics and derived values for given CUDA kermnel launches,

==l e

Id processes of the target application. The analysis session and data collection are not stopped when the launched application exits. The session and data collection must

Kernel Selection

Kernel Selection

Kernels to Profile:

¥ After skippin ! 1 = kernels, .
v Alier=teping E Kernels to Profile: sprwv_kernel_

Profile Options
[Print Progress Qutput to Console

o ¢ - . .
I Non-Overlapping Input/Output Buffers S| After skipping Mo 5 kernels, profile 1

| :I k_ |
- =

i~ kernels,
= =
Experiment Configuration

Experiments to Run: Al

All Experiment

'pEri |'|'|e|"‘|t Cljﬂﬂgl_,]ratic n unch. Please note that mplate adds significant overhead to the target application. When this group is s , ng experiments will be run.

1 i D ipti
Experiments to Rum: | All e

Calculates the occupancy achieved at runtime of the kernel,

e —— Calculates the achieved single/double floating point operations per second.
Achieved IOPS Calculates the achieved integer operations per second.

Instruction Statistics Collects instructions per clack cycle (IPC), instructions per warp {IPW) and SM activity

Issue Efficiency lects efficiency metrics for issuing the kemel's instructions.

Branch Statistics Collects efficiency metrics for the kernel's usage of flew control

Memory Statistics - Glabal Provides information about the global memory requests, transactions, and bandwidth.

Memory Statistics - Local Provides information about the lacal memory requests, transactions, and bandwidth.

Memory Statistics - Atomics Provides information about atomic operations and the resulting memory transactions

Memory Statistics - Shared Provides infermation abeut the shared memary requests, transactions, and bandwidth.

Memeory Statistics - Texture Provides information about about texture memery usage, such as texture fetch rates and texture bandwidth.

Memary Statistics - Caches Provides information about the efficiency of the L1/12 caches

Application Control

® =

Available Devices: [¥ Open Report on Stop

NVS 300 (GT 218)
Tesla K20c (GK 110)
Tesla K20c (GK 110)

Summary Report

CUDA Launches (Nsight VS

W= gl BiCGStab131007_000.. apture_000.nvreport Activity 1.nvact™ config. bet

| CUDA Launches j| E Hierarchy E Hat

~ | Filter

= — . e Memory -

Function Name <= Grid w— | Block Start Time <z | Duration <= e + . = N - :] text == Stream <= | Proc Allocated

o Dimensions ' | Dimensions N b L= Sf= N Nam .
Exe: Per Block

1 spmv_kemel_v0<int=256> {102, 1, 1} {256, 1,1} 2,593,821.817 | 1,175.840 62.50 % 0 PREFER_SHARED 0 Tesla K20c 2 BiCGStab.exe

4 spmv_kernel_v0<int=256><<<102,256>>> [CUDA LaL Time Range

Device Launches Start 2593821817
End 2594997.657
Call Graph

A bre Duration 1,175.840 ps

spmv_kernel_v0<int=256> [CUDA Kernel]
CUDA Launch
Experiment Results -
Grid
Occupancy Device
Context
Stream
Instruction Statistics Driver API Call ID
Runtime API Call ID

Signature void spmv_kernel_vO<int=236>(int, int, int const *, int const *, double const *, double const *, double const *, double®)

All Counters

Branch Statistics

Issue Efficiency

Configuration

Grid Dimensions 1102, 1, 1} 102
Achieved I0PS Block Dimensions {256, 1, 1} 256
Occupancy 62.50 %
Registers per Thread 47
Memory Statistics Static Shared Mempry per Block 0 byt
Crynamic Shared Memary per Block 0 bytes
Shared Memory Configuration Executed FOUR_BYTE_BANK_SIZE
Instruction Count Local Memary per Thread ytes
Local Memory
Cache Configuration Requested
Memory Transactions Cache Configuration Executed

Cache Configuration Changed

Achieved FLOPS

Pipe Utilization

4 Source Profiler

Divergent Branch

Dynamic Parallelism

Mesting Level
Device Launches (S
Device Launches (Total)

Profile the Most Expensive Kernel (NVVP)

il Examine Kernel Performance

i=HI= Results

i Kernel Optimization Priorities
1. CUDA Application Analysis i
ing ki red by optimization importance

2. Performance-Critical Kernels

(]

[T S T S PR

Profile the Most Expensive Kernel (nvprof)

|> nvprof --kernels "::spmv_kernel_v0:" --metrics issue slot_utilization .\x64“Release\BiCG5tab.exe

= nvprof --query-metrics

= nvprot --kernels "::spmv_kernel_v0:" --events active cycles .\x64\Release\Bi1CGStab.exe

> nvprof --query-events,

ldentify the Main Limiter

= |s it limited by the memory bandwidth ?

= |s it limited by the instruction throughput ?

= |s it limited by latency ?

Memory Bandwidth

WA

T

Memory Bandwidth

= Utilization of DRAM Bandwidth: 29.14%

* We are not limited by the memory bandwidth (< 70-80%)

Memory Bandwidth (nvprof)

= Utilization of DRAM Bandwidth: 31.86%

> nvprof --kernels "::spmv_kernel_v0D:" --metrics "dram_read_throughput,dram_write_throughput" .\x64\Release\BiCGStab.exe

Bandwidth (GB/s)
Utilization (%)

Peak BW (K20c): 208GB/s

* We are not limited by the memory bandwidth

Instruction Throughput

» [nstructions go to the pipes

Load | | Control = |ssue 1 or 2 instructions every cycle
Store Flow ALU Texture

= We cannot if a pipe is saturated

Instruction Throughput

» All pipes are underutilized: <70-75%

= We are not limited by instruction throughput

Instruction Throughput

= All pipes have Low/Mid utilization

|= nvprof --kernels "::spmv_kernel_v0:" --metrics "ldst_fu_utilization,cf_fu_utilization" .‘\x64‘Release\BiCGStab.exe

= nvprot --kernels "::spmv_kernel_v0:" --metrics "alu_fu_utilization,tex_fu_utilization" .‘\x64"Release\BiCGStab.exe

Utilization

= We are not limited by instruction throughput

Guided Analysis (Nvvp)

i Kernel Performance Is Bound By Instruction And Memory Latency

compute throughput and memery bandwidth utilization relati
erations. Achieved compute throughput andjor memary ban

evels indicate that the performance of the kernel is most likely limited by the latency of

5
g
M
3

Latency

» First two things to check:
— Occupancy
— Memory accesses (coalesced/uncoalesced accesses)

= Other things to check (if needed):
— Control flow efficiency (branching, idle threads)
— Divergence
— Bank conflicts in shared memory

Latency (Occupancy)

= Occupancy: 55.98% Achieved / 62.50% Theoretical

~ Qccupancy Per SM

Active Blocks

Active Warps

Active Threads

Occupancy

> nvprot —-kernels "::spmv_kernel_v0:" --metrics "achieved_occupancy” .\x64‘Release\BiCGS5tab.exe

= [t’s not too high but not too low: Hard to say

Latency (Occupancy)
» Guided Analysis (Nvvp):

* GPU Utilization May Be Limited By Register Usage

Thearetical occupancy is less than 100%: but is large enough that increasing occupancy may not improve performance. You can attempt the following optimization to increase the number of warps on each
SM but it may not lead to increased performance,

" provides up to

The kernel uses 47 for each thread (for each blodk] usage is likely preventing the kernel from fully utilizing the GPLI, Device “Tes
i 1 bl e kerne fi ; limited to simultaneously executing 5 blocks (40 warps). Chart "arying Register Count”™ below show

v o decrease the number of regisiers used by each tread, This wil increase the number of Blodks that can execute on

Maore...

» “Theoretical occupancy is less than 100% but is large enough
that increasing occupancy may not improve performance”

Latency (Occupancy)

SM

Units Units Units Units

= Eligible Warps per Active Cycle: 10.43

= Occupancy is not an issue (> 4)

Memory Transactions

= Warps of threads (32 threads)
2R 2 2 222222222 2 2 22222222222

= |1 transaction: 128B - Alignment: 128B (0, 128, 256, ...)

» | 2 transaction: 32B - Alignment: 32B (0, 32, 64, 96, ...
[ITTTTTTT]

Memory Transactions (fp32)

» |deal case: 32 aligned and consecutive fp32 numbers

= 1x L1 transaction: 128B needed / 128B transferred

= 4x L2 transactions: 128B needed / 128B transferred

Memory Transactions (fp64)

» |deal case: 32 aligned and consecutive fp64 numbers

T T T T T T T T T T
T T T T T T T

= 2x L1 transactions: 256B needed / 256B transferred

= 8x L2 transactions: 256B needed / 256B transferred

Memory Transactions (fp64)

= Worst case: 32 fp64 with a stride of 128B (16x fp64)

= 32x L1 transactions: 256B needed / 32x128B transferred
= 32x L2 transactions: 256B needed / 32x32B transferred

Memory Transactions (fp64)

» Misaligned: 32 fp64

T T T T T T T T T T T
T T T T T T T
—

= 3X L1 transactions: 256B needed / 384B transferred
= Ox L2 transactions: 256B needed / 288B transferred

Memory Transactions

» Broadcast: 1 fp64
32 threads

k

= 1 L1 transaction: 8B needed / 128B transferred
= 1 L2 transaction: 8B needed / 32B transferred

Replays

* AMemory Request: LD/ST instruction
» The 1%t transaction is issued
= Other transactions induce replays

= Note: For each fp64 request, we have at least 1 replay

Latency (Memory Accesses)

» Transactions per Request: 19.92 loads / 8 stores

= We have too many uncoalesced accesses!!!

Where Do Those Accesses Happen? (Nsight VSE)

= CUDA Source Profiler (Nsight VSE):

— Where are uncoalesced requests (need to compile with -lineinfo)

» Tip: Sort “L2 Global Transactions Executed”

Where Do Those Accesses Happen? (Nvvp)

. NVIDIA Visual Profiler

Run Help

Duration

2/ Click on Unguided Analysis

void spmv_kernel_v0<i 56> (int,

Kernel Performance Limiter
ad L2 Transa:

3/ Run Memory Access Pattern [

Kernel Compute Load L.

Kernel Memory

: e 4/ Something goes wrong at

those lines

Divergent Execution il

Load L
Application ad L
Load L
Data Movement And Concurrency

Compute Utilization v

Kernel Performance

Access Pattern

* Double precision numbers: 64-bit

Thread 0] Thread 1 Thread 2

L2 Transaction) L1 Transaction (1288) L2 Transaction] L2 Transaction]
(32B) (32B) (32B)

* Per Warp:
— Up to 32 L1 Transactions / ldeal case: 2 Transactions
— Up to 32 L2 Transactions / ldeal case: 8 Transactions

Access Pattern

= Next iteration:

Thread 0] Thread 1 Thread 2

L2 Transaction) L1 Transaction (1288) L2 Transaction] L2 Transaction]
(32B) (32B) (32B)

» |[dea: Use the Read-only cache (LDG load)

— On Fermi: Use a texture or Use 48KB for L1

First Modification: Use __|ldg

LD (DRAM-L2$-L1$-Reg) LDG (DRAM-L2$-TEXS-Reg)

LD ST Ctrl ALU TEX LD/ST Ctrl ALU T X
Flow Flow

TEXS THXS

First Modification: Use __ldg

* We change the source code:

m
my
my
m

= |t is slower: 625.8ms

Original version 104.72ms
LDG to load A 125.67ms

First Modification: Use __ldg

* No benefit from the read-only cache: Hit rate at 3.3%

Global RO

Local

ATOMs

REDs

Shared

0.00B
Texture
Texture
Cache
0.0 9

Texture
Cache
32.00 B 18.28 MB
Global RO

System Memory

Global

5.06 MB
Local

65.59 MB ATOMs
s

>

0.00 Rey 0.00B
Shared Memory — _ Shared =——=—"— Shared Memory

= Worse hit rate in L2S: 15.8% compared to 36.7%

0.00 B o 93.93 MB

System Memory

e Memory

Devic

First Modification: Use __ldg

= Eligible Warps per Active Cycle has dropped to 0.54

First Modification: Use __ldg

= Warps cannot issue because they have to wait

Warp Issue Efficiency Issue Stall Reasons

Mo Eligible One or More Eligible nstruction Fetch Execution Dependency Data Requests

3.49%

First Modification: Use __ldg

* The loads compete for the cache too much
— Low hit rate: 3.3%

» Texture requests introduce too much latency (in that case)

» Things to check in those cases:
— Texture Hit Rate: Low means no reuse
— Issue Efficiency and Stall Reasons

= [t was actually expected: GPU caches are not CPU caches!!!

First Modification: Use __ldg

» Other accesses may benefit from LDGs
= Memory blocks accessed several times by several threads

» How can we detect it?
— Source code analysis
— There is no way to detect it from Nsight

First Modification: Use __ldg

» We change the source code
— Iny = Ax, we use __ldg when loading x

= |[t’s faster: 98.30ms

Original version 104.72ms

LDG to load A 125.67ms
LDG to load X 98.30ms

First Modification: Use __ldg

= Good hit rate in Texture Cache: 82%

= Slightly less data transferred from L2 (94MB vs 110MB)

ITERATION 2

CUDA Launch Summary

Function Name

spmv_kernel_v2<int=256=

jacobi_smooth_kemnel_wvD<int=256> 43 : 3 .14 86,792
dot_kernel_v0<int=256> -- - 1,104,842 11.041
[2_norm_kermnel_v0<int=2562 : 36 819.765

reduce_|2_norm_kernel<int:

jacobi_invert_diag_kernal_

» spmv_kernel_v2 is still a hot spot, so we profile it

ldentify the Main Limiter

= |s it limited by the memory bandwidth ?

= |s it limited by the instruction throughput ?

= |s it limited by latency ?

ldentify the Main Limiter

= We are still limited by latency
— Low DRAM utilization: 29.95%
— Pipe utilization is Low/Mid: <70-75%

Pipe Utilization

ldentify the Main Limiter

» We are not limited by the Occupancy
— We have > 4 Eligible Warps per Active Cycle (8.16)

MName

~ Total - 5M to L1{Tex/L2

* Too many uncoalesced accesses: 40.79% of Replay Overhead

Second Strategy: Change Memory Accesses

= 4 consecutive threads load 4 consecutive elements

Threads 0, 1, 2, 3 Threads 4, 5, 6, 7 Threads 8, 9, 10, 11

|44
IIIIIIIIIIIIIIIIIIIIIIII

L2 Transaction) L1 Transaction (1288) L2 Transaction] L2 Transaction]
(32B) (32B) (32B)

* Per Warp:

— Up to 8 L1 Transactions / Ideal case: 2 Transactions
— Up to 8 L2 Transactions / Ideal case: 8 Transactions

Second Strategy: Change Memory Accesses

= |[t’s much faster: 45.61ms

Original version 104.72ms

LDG to load A 125.67ms
LDG to load X 98.30ms
Coalescing with 4 Threads 45.61ms

Second Strategy: Change Memory Accesses

* We have much fewer Transactions per Request: 5.16 (LD)

Second Strategy: Change Memory Accesses

* Much less traffic from L2: 28.27MB (it was 109.83MB)

* Much less DRAM traffic: 25.93MB (it was 69.59MB)

ITERATION 3

CUDA Launch Summary

Functiom Name

spmv_kernel_v3<int=256> 46 12 ! 351.276

90.814

w_kernel<int=256

reduce_kernel<int

» spmv_kernel_v3 is still a hot spot, so we profile it

ldentify the Main Limiter

= |s it limited by the memory bandwidth ?

= |s it limited by the instruction throughput ?

= |s it limited by latency ?

ldentify the Main Limiter

= We are still limited by latency
— Low DRAM utilization: 36.01%
— Pipe Utilization is still Low/Mid

Pipe Utilization

Latency

= Eligible Warps per Active Cycle: 6.70 on average

= We are not limited by occupancy

Latency

= Memory Accesses:
— Load: 5.16 Transactions per Request
— Store: 2 Transactions per Request

= We still have too many uncoalesced accesses

Latency

= We still have too many uncoalesced accesses
— Nearly 68.44% of Instruction Serialization (Replays)
— Stall Reasons: 43.14% due to Data Requests

[ssue Stall Reasons
ruction Fetch Execution Dependency Data Requests

Instruction Serialization

Latency

= Serialization: (Inst. Issued - Inst. Executed) / Inst. Issued

= nvprof --kernels "::spmv_kernel_v3:" --metrics "inst_replay_overhead" .%x64\Release\Bi1CG5tab.exe

» [nst. Replay Overhead: Avg. Number of replays per Inst.

= |[nst. Issued = 1 + Avg. Number of Replays

Latency

= [ssue Stall Reasons

> nvprot —-kernels "::spmv_kernel_v3:" --metrics "stall_inst_fetch,stall_exec_dependency,stall_data_request” .\x64'Release\BiCG5tab.exe

> nvprof —-kernels "::spmv_kernel_v3:" --metrics "stall_texture,stall_sync,stall_other" .\x64‘\Release\Bi1CGStab.exe

Instruction Fetch

Execution Dependency

Data Request
Texture
Sync
Other

Latency

dition that prevents
er the enti = el ha e and a cupancy
mited

W Analysis
H B

1. CUDA Application Analysis

2. Performance-Critical Kernels

3. Compute, Bandwidth, or Latency Bound

Stall Reasons

Where Do Those Accesses Happen?

= Same lines of code as before

151606 4366176 85.0 B500 B3.8 Gen

140284 3764736 [B3.9 Gen

215980 5816000

64794 1744800

What Can We Do?

= |n our kernel: 4 threads per row of the matrix A

Threads 0, 1, 2, 3 Threads 4, 5, 6, 7 Threads 8, 9, 10, 11

Y4
llllllllllllllllllllllll

L2 Transactlon L1 Transaction (1 288) L2 Transactlon L2 Transactlon
(32B) (32B) (32B)

= New approach: 1 warp of threads per row of the matrix A

Threads 0, 1, 2, 3, ..., 31 (some possibly idle)

bl il
llllllllllllllllllllllll

L2 Transactlon L2 Transactlon L2 Transactlon
(32B) (32B) (32B)

One Warp Per Row

= |t’s faster: 37.50ms

Original version 104.72ms
LDG to load A 125.67ms
LDG to load X 98.30ms
Coalescing with 4 Threads 45.61ms

1 Warp per Row 37.50ms

One Warp Per Row

* Much fewer Transactions Per Request: 1.37 (LD) / 1 (ST)

Texture Cache

Global Read Only

Global L2 Cache

L1 Cache

ITERATION 4

One Warp Per Row

= spmv_kernel_v4 is the hot spot

Function Name
spmv_kernel_wv4<int=128=
jacobi_smooth_kernel_v0<int=2
dot_kernel_v0<int=256=
[2_norm_kernel_v0<int=2
xpbypcz_kernel<int=2563
wpby_kernel<int=2
reduce_kernel<int=256=

reduce_|2_mnorm_kernel<int=2

jacobi_invert_diag_kernal_v0<int=2

9.91
1.40
0.49
0.37
0.32
0.27
0.11
0.08

0.05

608.196
256.478
190.192

109.612

28
86.410
11.009
21.826

B]
20.578

109.612

109.612

6.177

109.612

One Warp Per Row

= DRAM utilization: 37.36%
» Pipe Utilization is Low/Mid

Pipe Utilization

» We are still limited by latency

One Warp Per Row

» Occupancy and memory accesses are OK (not shown)
= Control Flow Efficiency: 87.31%

Efficiency

= nvprof --kernels "::spmv_kernel_v4:" --metrics "warp_execution_efficiency"” .‘\x64\Release\BiCGStab.exe

Control Flow Efficiency

= All threads work: 100%

2R AR R R R R A R R A R R R R R R

» Some threads do nothing: Less efficiency

if(threadIdx.x % 32 < 24) {
.. // do some Tong computation Efficiency = 24/32 = 75%

R R R R A R A A R AR R R

}

Control Flow Efficiency

= Low efficiency in one the key loop: 69.9%

- nd ; it.. 429000 12476000

208000 4652800

One Half Warp Per Row

= |t is faster: 35.81ms

Original version 104.72ms

LDG to load A 125.67ms
LDG to load X 98.30ms
Coalescing with 4 Threads 45.61ms
1 Warp per Row 37.50ms

Y2 Warp per Row 35.81ms

ITERATION 5

One Half Warp Per Row

= DRAM utilization: 48.18%
» Pipe Utilization is Low/Mid

Pipe Utilization

» We are still limited by latency

One Half Warp Per Row

» Occupancy is not an issue

Warps Per SM

= Memory accesses are good enough

One Half Warp Per Row

» Branch divergence induce latency
= We have 16.32% of divergent branches

Branch Divergence

Details | El con

Di t B hes
void spmv_kernel_v5<int=128=>(int, int, int const *, int const *, double const *, double const *, double const *, double*) fvergent Branches

ed mi ently
Kernel Performance Limiter i e dive t. Divergent branch

Kernel Latency

Kernel Compute

Kernel Memory

Memory Access Pattern

Branch Divergence

= Execution Time = Time of If branch + Time of Else branch

if(threadIdx.x % 32 < 24) {
.. // do some long computation

}

R R A R A R A A R AR R AR

else {
.. // do some Tong computation

}

2R R R R R A R R R R R R R AR

One Half Warp Per Row

» We fix branch divergence
= |t is faster: 29.60ms

Original version 104.72ms
LDG to load A 125.67ms
LDG to load X 98.30ms
Coalescing with 4 Threads 45.61ms
1 Warp per Row 37.50ms

2 Warp per Row 35.81ms

No divergence 29.60ms

One Half Warp Per Row

= DRAM utilization: 60.80%

= We are still far from the peak...

So Far

= We have consecutively:
— Improved caching using __ldg (use with care)
— Improved coalescing
— Improved control flow efficiency
— Improved branching

» Qur new kernel is 3.5x faster than our first implementation

= Tools helped us a lot

[z C\Windows\system32\cmd.exe

i EICGSTAE SO0LVER wE

=% DEVICE : Tesla K20c (ECC: OFF) HE

** SYSTEM : res/matrix.inp w3

#% INIT. RESID.: [1.212971e-001 0.000000e+000 0.000000e+000 1.243311e-001] wH

=* TTERATION O: 5.009870e-002 2.509095e-003 2.442529e-003 1.381766e-003] ==
=* TTERATION 1: 6.322283e-002 3.624363e-003 3.439345e-003 1.459566e-003] ==
#* TTERATION 2: 1.944435e-002 3.175072e-004 3.108480e-004 4.101967e-004] wH
=* TTERATION 3: 1.179491e-002 9.633129e-005 9.554327e-005 2.494020e-004] =
=* TTERATION 4: 1.517741e-002 1.351845e-004 1.323939e-004 3.272856e-004] ==
=* TTERATION 5: 2.840113e-002 2.370584e-004 2.333890e-004 6.397188e-004] ==
=* TTERATION 6: 6.465301e-003 9.483242e-005 9.256901e-005 1.726512e-004] ==
=* TTERATION 7: 2.497275e-003 2.221739e-005 2.213925e-005 6.087546e-005] ==
#* TTERATION &: 3.931372e-003 3.762042e-005 3.804746e-005 9.449076e-005] wH
=% TTERATION 9: 1.004664e-003 7.813901e-006 7.72200%9e-006 2.470211e-005] =
=* TTERATION 10: 1.348178e-003 1.450667e-005 1.451499%e-005 3.084324e-005] ==
=* TTERATION 11: 3.147213e-004 3.016084e-006 2.968251e-006 7.588855e-006] ==
=* TTERATION 12: 2.560259%e-004 2.530426e-006 2.474577e-006 6.138979e-006] ==
=* TTERATION 13: 1.941811e-004 2.010254e-006 1.992610e-006 4.670605e-006] ==
#* TTERATION 14: 1.344858e-004 1.313841e-006 1.28635Z2e-006 3.325935e-006] wH
=% TTERATION 15: 2.946048e-004 3.318294e-006 3.216173e-006 7.020198e-006] =
= TTERATION 16: 1.254350e-004 1.372731e-006 1.317983e-006 3.036414e-006] ==
*% FINAL RESID.: [2.529559e-005 2.054403e-007 1.903810e-007 6.569666e-007] wH

=% ELAPSED TIME: 29.199%ms W

Press any key to continue . . . _

ITERATION 6

Next Kernel

* We are satisfied with the performance of spmv_kernel
= We move to the next kernel: jacobi_smooth

15.105
3.104

reduce_|2_norm_kernel<int=256> - 2 36 09 171.217 4416 4.756

jacobi_invert_diag_kernel_v e .06 09.068 109.068 109.068 109.068

BICGSTAEB SOLVER

DEVICE : Tesla K20c (ECC: OFF)

SYSTEM : res/matrix.inp

INIT. RESID.:

ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION

FINAL RESID.:

% ELAPSED TIME:

=
(=]

[Nl R ey W Y A WU N N

=
=

|l el el mel
Ll R

1.212971e-001

Pl = Pt L P 20 P L L TR N

.009870e-002
.322283e-002
.944435e-002
.179491e-002
.517741e-002
.840113e-002
.465301e-003
.A497275e-003
.931372e-003
.004664e-003
.348178e-003
.147213e-004
.560259e-004
.941811e-004
. 344858e-004
.946048e-004
. 254350e-004

.529559e-005

27 .189ms

Press any key to continue .

L = P Pt =L) i P WD R L LD L L

.000000e+000

.509095e-003
.624363e-003
17507 2e-004
.633129e-005
.351845e-004
.370584e-004
LA483242e-005
.221739e-005
.762042e-005
.813901e-006
.450667e-005
.016084e-006
.530426e-006
.010254e-006
.313841e-006
.318294e-006
.372731e-006

.054403e-007

L = Pl P L o o Pd WD R L LD L L

.000000e+000

.442529e-003
.439345e-003
.108480e-004
.554327e-005
.323939e-004
.333890e-004
. 256901e-005
.213925e-005
.804746e-005
. 722009e-006
.451499e-005
.968251e-006
.474577e-006
.992610e-006
.286352e-006
.216173e-006
.317983e-006

.903810e-007

L] bl o 6] P D R T L B e L

.243311e-001]

.381766e-003]
.459566e-003]
.101967e-004]
.494020e-004]
.272856e-004]
.397188e-004]
.726512e-004]
.087546e-005]
.449076e-005]
.470211e-005]
.084324e-005]
.588855e-006]
.138979e-006]
.670605e-006]
.325935e-006]
.020198e-006]
.036414e-006]

.5696662-007]

W ok ok Ak 2k o3k b

"

FI LT I T R LR T 1]
I L R T I T

a*

What Have You Seen?

* An iterative method to optimize your GPU code
— Trace your application
— Identify the hot spot and profile it
— Identify the performance limiter
— Optimize the code
— lterate

= A way to conduct that method with Nvidia tools

