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What Will You Learn? 

 An iterative method to optimize your GPU code 

 

 

 A way to conduct that method with Nvidia Tools 
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What Does the Application Do ? 

 It does not matter !!! 

 We care about memory accesses, instructions, latency, … 

 

 

 

 Companion code: 
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https://github.com/jdemouth/nsight-gtc2013 
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Our Method 

 Trace the application 

 Identify the hot spot and profile it 

 Identify the performance limiter 

— Memory Bandwidth 

— Instruction Throughput 

— Latency 

 Optimize the code 

 Iterate 
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Our Environment 

 We use 

— Nvidia Tesla K20c (GK110, SM 3.5), ECC OFF, 

— Microsoft Windows 7 x64, 

— Microsoft Visual Studio 2012, 

— CUDA 5.5, 

— Nvidia Nsight 3.1. 
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ITERATION 1 
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Trace the Application (Nsight VSE) 



CUDA Launch Summary (Nsight VSE) 

 spmv_kernel_v0 is a hot spot, let’s start here!!! 
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Kernel Time Speedup 

Original version 104.72ms 



Trace the Application (NVVP) 



Trace the Application (nvprof) 



Profile the Most Expensive Kernel (Nsight VSE) 



CUDA Launches (Nsight VSE) 
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Profile the Most Expensive Kernel (NVVP) 



Profile the Most Expensive Kernel (nvprof) 



Identify the Main Limiter 

 Is it limited by the memory bandwidth ? 

 

 

 Is it limited by the instruction throughput ? 

 

 

 Is it limited by latency ? 
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Memory Bandwidth 

SMEM/L1$ 
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Memory Bandwidth 

 Utilization of DRAM Bandwidth: 29.14% 

 

 

 

 

 

 

 

 We are not limited by the memory bandwidth (< 70-80%) 
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Memory Bandwidth (nvprof) 

 Utilization of DRAM Bandwidth: 31.86% 

 

 

 

 

 

 

 We are not limited by the memory bandwidth 
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Read Write Total 

Bandwidth (GB/s) 60.77 2.38 63.15 

Utilization (%) 29.22 1.14 30.36 

Peak BW (K20c): 208GB/s 



Instruction Throughput 

 Instructions go to the pipes 

 

 Issue 1 or 2 instructions every cycle 

 

 We cannot if a pipe is saturated 
SMEM/L1$ 

Registers 

SM 

Load 

Store 

Control 

Flow 
ALU Texture 



Instruction Throughput 

 All pipes are underutilized: <70-75% 

 

 

 

 

 

 

 

 We are not limited by instruction throughput 
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Instruction Throughput 

 All pipes have Low/Mid utilization 

 

 

 

 

 

 

 We are not limited by instruction throughput 

 

Load/Store Control Flow ALU Texture 

Utilization Mid Low Low Idle 



Guided Analysis (Nvvp) 



Latency 

 First two things to check: 

— Occupancy 

— Memory accesses (coalesced/uncoalesced accesses) 

 

 

 Other things to check (if needed): 

— Control flow efficiency (branching, idle threads) 

— Divergence 

— Bank conflicts in shared memory 
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Latency (Occupancy) 

 Occupancy: 55.98% Achieved / 62.50% Theoretical 

 

 

 

 

 

 

 It’s not too high but not too low: Hard to say 

 

 

 



Latency (Occupancy) 

 Guided Analysis (Nvvp): 

 

 

 

 

 

 “Theoretical occupancy is less than 100% but is large enough 

that increasing occupancy may not improve performance” 



Latency (Occupancy) 

 Eligible Warps per Active Cycle: 10.43 

 

 

 

 

 

 

 

 

 Occupancy is not an issue (> 4) 

SMEM/L1$ 

Registers 

SM 

Units Units Units Units 

Sched Sched Sched Sched 



Memory Transactions 

 Warps of threads (32 threads) 

 

 

 L1 transaction: 128B – Alignment: 128B (0, 128, 256, …) 

 

 

 L2 transaction: 32B – Alignment: 32B (0, 32, 64, 96, …) 



Memory Transactions (fp32) 

 Ideal case: 32 aligned and consecutive fp32 numbers 

 

 

 1x L1 transaction: 128B needed / 128B transferred 

 

 

 4x L2 transactions: 128B needed / 128B transferred 

 

 



Memory Transactions (fp64) 

 Ideal case: 32 aligned and consecutive fp64 numbers 

 

 

 

 

 2x L1 transactions: 256B needed / 256B transferred 

 

 8x L2 transactions: 256B needed / 256B transferred 

 



Memory Transactions (fp64) 

 Worst case: 32 fp64 with a stride of 128B (16x fp64) 

 

 

 

 

 

 

 32x L1 transactions: 256B needed / 32x128B transferred 

 32x L2 transactions: 256B needed / 32x32B transferred 

… 



Memory Transactions (fp64) 

 Misaligned: 32 fp64 

 

 

 

 

 

 3x L1 transactions: 256B needed / 384B transferred 

 9x L2 transactions: 256B needed / 288B transferred  



Memory Transactions 

 Broadcast: 1 fp64 

 

 

 

 1 L1 transaction: 8B needed / 128B transferred 

 1 L2 transaction: 8B needed / 32B transferred 

32 threads 



Replays 

 A Memory Request: LD/ST instruction 

 

 The 1st transaction is issued 

 

 Other transactions induce replays 

 

 Note: For each fp64 request, we have at least 1 replay 



Latency (Memory Accesses) 

 Transactions per Request: 19.92 loads / 8 stores 

 

 

 

 

 

 

 

 We have too many uncoalesced accesses!!! 
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Where Do Those Accesses Happen? (Nsight VSE) 

 CUDA Source Profiler (Nsight VSE):  

— Where are uncoalesced requests (need to compile with –lineinfo) 

 

 

 

 

 

 

 Tip: Sort “L2 Global Transactions Executed” 
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Where Do Those Accesses Happen? (Nvvp) 

1/ Select a run 

2/ Click on Unguided Analysis 

3/ Run Memory Access Pattern 

4/ Something goes wrong at 

those lines 



Access Pattern 

 Double precision numbers: 64-bit 

 

 

 

 

 

 Per Warp:  

— Up to 32 L1 Transactions / Ideal case: 2 Transactions  

— Up to 32 L2 Transactions / Ideal case: 8 Transactions 
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L2 Transaction 
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Access Pattern 

 Next iteration: 

 

 

 

 

 

 

 Idea: Use the Read-only cache (LDG load) 

— On Fermi: Use a texture or Use 48KB for L1 
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Thread 0 Thread 1 Thread 2 
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First Modification: Use __ldg 
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First Modification: Use __ldg 

 We change the source code: 

 

 

 

 

 It is slower: 625.8ms 
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Kernel Time Speedup 

Original version 104.72ms 

LDG to load A 125.67ms 0.83x 



First Modification: Use __ldg 

 No benefit from the read-only cache: Hit rate at 3.3% 

 

 

 

 

 

 

 

 Worse hit rate in L2$: 15.8% compared to 36.7% 
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First Modification: Use __ldg 

 Eligible Warps per Active Cycle has dropped to 0.54 
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First Modification: Use __ldg 

 Warps cannot issue because they have to wait 

 

 

 

 

 

 

 

 

 

 

 

44 



First Modification: Use __ldg 

 The loads compete for the cache too much 

— Low hit rate: 3.3% 

 Texture requests introduce too much latency (in that case) 

 

 Things to check in those cases: 

— Texture Hit Rate: Low means no reuse 

— Issue Efficiency and Stall Reasons 

 

 It was actually expected: GPU caches are not CPU caches!!! 
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First Modification: Use __ldg 

 Other accesses may benefit from LDGs 

 

 Memory blocks accessed several times by several threads 

 

 How can we detect it? 

— Source code analysis 

— There is no way to detect it from Nsight 
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First Modification: Use __ldg 

 We change the source code 

— In y = Ax, we use __ldg when loading x 

 

 It’s faster: 98.30ms 
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Kernel Time Speedup 

Original version 104.72ms 

LDG to load A 125.67ms 0.83x 

LDG to load X 98.30ms 1.07x 



First Modification: Use __ldg 

 Good hit rate in Texture Cache: 82% 

 

 

 

 

 

 

 Slightly less data transferred from L2 (94MB vs 110MB)  
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ITERATION 2 
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CUDA Launch Summary 

 spmv_kernel_v2 is still a hot spot, so we profile it 
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Identify the Main Limiter 

 Is it limited by the memory bandwidth ? 

 

 

 Is it limited by the instruction throughput ? 

 

 

 Is it limited by latency ? 
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Identify the Main Limiter 

 We are still limited by latency 

— Low DRAM utilization: 29.95% 

— Pipe utilization is Low/Mid: <70-75% 
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Identify the Main Limiter 

 We are not limited by the Occupancy 

— We have > 4 Eligible Warps per Active Cycle (8.16) 

 

 

 

 

 

 

 Too many uncoalesced accesses: 40.79% of Replay Overhead 
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Second Strategy: Change Memory Accesses 

 4 consecutive threads load 4 consecutive elements 

 

 

 

 

 

 Per Warp:  

— Up to 8 L1 Transactions / Ideal case: 2 Transactions 

— Up to 8 L2 Transactions / Ideal case: 8 Transactions 
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Threads 0, 1, 2, 3 Threads 4, 5, 6, 7 

L2 Transaction 

(32B) 

L2 Transaction 

(32B) 

L1 Transaction (128B) 
L2 Transaction 

(32B) 

Threads 8, 9, 10, 11 



Second Strategy: Change Memory Accesses 

 It’s much faster: 45.61ms 
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Kernel Time Speedup 

Original version 104.72ms 

LDG to load A 125.67ms 0.83x 

LDG to load X 98.30ms 1.07x 

Coalescing with 4 Threads 45.61ms 2.30x 



Second Strategy: Change Memory Accesses 

 We have much fewer Transactions per Request: 5.16 (LD) 
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Second Strategy: Change Memory Accesses 

 Much less traffic from L2: 28.27MB (it was 109.83MB) 

 

 

 

 

 

 

 

 Much less DRAM traffic: 25.93MB (it was 69.59MB) 

 



ITERATION 3 
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CUDA Launch Summary 

 spmv_kernel_v3 is still a hot spot, so we profile it 
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Identify the Main Limiter 

 Is it limited by the memory bandwidth ? 

 

 

 Is it limited by the instruction throughput ? 

 

 

 Is it limited by latency ? 

60 



Identify the Main Limiter 

 We are still limited by latency 

— Low DRAM utilization: 36.01% 

— Pipe Utilization is still Low/Mid 
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Latency 

 Eligible Warps per Active Cycle: 6.70 on average 

 

 

 

 

 

 

 

 We are not limited by occupancy 
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Latency 

 Memory Accesses: 

— Load: 5.16 Transactions per Request 

— Store: 2 Transactions per Request 

 

 

 

 

 

 We still have too many uncoalesced accesses 
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Latency 

 We still have too many uncoalesced accesses 

— Nearly 68.44% of Instruction Serialization (Replays) 

— Stall Reasons: 43.14% due to Data Requests 
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Latency 

 Serialization: (Inst. Issued – Inst. Executed) / Inst. Issued 

 

 

 Inst. Replay Overhead: Avg. Number of replays per Inst. 

 

 Inst. Issued = 1 + Avg. Number of Replays 

Inst. Replay Overhead Inst. Replay Overhead / (1 + Inst. Replay Overhead ) 

2.17 68.45% 



Latency 

 Issue Stall Reasons 

 

Stall Reasons 

Instruction Fetch 0.58% 

Execution Dependency 32.51% 

Data Request 37.85% 

Texture 0.41% 

Sync 0.00% 

Other 15.13% 



Latency 



Where Do Those Accesses Happen? 

 Same lines of code as before 
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What Can We Do? 

 In our kernel: 4 threads per row of the matrix A 

 

 

 

 

 New approach: 1 warp of threads per row of the matrix A 
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Threads 0, 1, 2, 3 Threads 4, 5, 6, 7 

L2 Transaction 

(32B) 

L2 Transaction 

(32B) 

L1 Transaction (128B) L2 Transaction 

(32B) 

Threads 8, 9, 10, 11 

Threads 0, 1, 2, 3, …, 31 (some possibly idle) 

L2 Transaction 

(32B) 

L2 Transaction 

(32B) 
L2 Transaction 

(32B) 



One Warp Per Row 

 It’s faster: 37.50ms 

 

70 

Kernel Time Speedup 

Original version 104.72ms 

LDG to load A 125.67ms 0.83x 

LDG to load X 98.30ms 1.07x 

Coalescing with 4 Threads 45.61ms 2.30x 

1 Warp per Row 37.50ms 2.79x 



One Warp Per Row 

 Much fewer Transactions Per Request: 1.37 (LD) / 1 (ST) 
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ITERATION 4 
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One Warp Per Row 

 spmv_kernel_v4 is the hot spot 
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One Warp Per Row 

 DRAM utilization: 37.36% 

 Pipe Utilization is Low/Mid 

 

 

 

 

 

 

 We are still limited by latency 



One Warp Per Row 

 Occupancy and memory accesses are OK (not shown) 

 Control Flow Efficiency: 87.31% 
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Control Flow Efficiency 

 All threads work: 100% 

 

 

 

 Some threads do nothing: Less efficiency 

if( threadIdx.x % 32 < 24 ) { 
    … // do some long computation 
}  

Efficiency = 24/32 = 75% 



Control Flow Efficiency 

 Low efficiency in one the key loop: 69.9% 



One Half Warp Per Row 

 It is faster: 35.81ms 
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Kernel Time Speedup 

Original version 104.72ms 

LDG to load A 125.67ms 0.73x 

LDG to load X 98.30ms 1.07x 

Coalescing with 4 Threads 45.61ms 2.30x 

1 Warp per Row 37.50ms 2.79x 

½ Warp per Row 35.81ms 2.93x 



ITERATION 5 
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One Half Warp Per Row 

 DRAM utilization: 48.18% 

 Pipe Utilization is Low/Mid 

 

 

 

 

 

 

 We are still limited by latency 
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One Half Warp Per Row 

 Occupancy is not an issue 

 

 

 

 

 

 

 

 Memory accesses are good enough 
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One Half Warp Per Row 

 Branch divergence induce latency 

 We have 16.32% of divergent branches 
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Branch Divergence 



Branch Divergence 

 Execution Time = Time of If branch + Time of Else branch 

if( threadIdx.x % 32 < 24 ) { 
    … // do some long computation 
}  

else { 
    … // do some long computation 
}  



One Half Warp Per Row 

 We fix branch divergence  

 It is faster: 29.60ms 
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Kernel Time Speedup 

Original version 104.72ms 

LDG to load A 125.67ms 0.83x 

LDG to load X 98.30ms 1.07x 

Coalescing with 4 Threads 45.61ms 2.30x 

1 Warp per Row 37.50ms 2.79x 

½ Warp per Row 35.81ms 2.93x 

No divergence 29.60ms 3.54x 



One Half Warp Per Row 

 DRAM utilization: 60.80% 

 

 

 

 

 

 

 

 We are still far from the peak… 



So Far 

 We have consecutively: 

— Improved caching using __ldg (use with care) 

— Improved coalescing  

— Improved control flow efficiency 

— Improved branching 

 

 Our new kernel is 3.5x faster than our first implementation 

 

 Tools helped us a lot 
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ITERATION 6 
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Next Kernel 

 We are satisfied with the performance of spmv_kernel 

 We move to the next kernel: jacobi_smooth 
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What Have You Seen? 

 An iterative method to optimize your GPU code 

— Trace your application 

— Identify the hot spot and profile it 

— Identify the performance limiter 

— Optimize the code 

— Iterate 

 

 A way to conduct that method with Nvidia tools 
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