CUDA Optimization with NVIDIA Tools

Julien Demouth, NVIDIA

What Will You Learn?

An iterative method to optimize your GPU code

• A way to conduct that method with Nvidia Tools

What Does the Application Do?

- It does not matter !!!
- We care about memory accesses, instructions, latency, ...

Companion code:

https://github.com/jdemouth/nsight-gtc2013

C:\Windows\system32\cmd.exe			_	
######################################		*###################	******	## 🔺
	BICGSTAB SOL	VER ####################################		
	()			
** DEVICE : Tesla K200	c (ECC: OFF)			* *
****	*###############################	****	****	##
** ====================================				
** SYSTEM : res/matrix	(, inp			
****	**********************	*##################	****	##
	2971e-001 0.000000e+000	0.000000e+000 1	1.243311e-001]	**
** INIT. RESID.: [1.212	0.0000000000000000000000000000000000000	0.00000e+000 1	L.243311e-001]	
****	*##############################	*#################	****	##
		2 442520- 002 1	1 201766- 002]	**
	0870e-002 2.509095e-003 2283e-002 3.624363e-003		T. JOT/ ODE 003]	**
	435e-002 3.175072e-004		T'4111006 001]	**
	9491e-002 9.633129e-005			**
	741e-002 1.351845e-004		2.434020E 004]	**
	0113e-002 2.370584e-004		J.2/2030E 004]	**
	5301e-003 9.483242e-005			**
	7275e-003 2.221739e-005			**
	1372e-003 3.762042e-005		0.00/1406 001]	**
	4664e-003 7.813901e-006			**
	3178e-003 1.450667e-005			**
	7213e-004 3.016084e-006			**
	259e-004 2.530426e-006			**
	1811e-004 2.010254e-006			**
	4858e-004 1.313841e-006			**
	5048e-004 3.318294e-006			**
	4350e-004 1.372731e-006			**
		1.51,5050 000 3		
*****	*##############################	***************	<i>`````````````````````````````````````</i>	##
** FINAL RESID.: [2.529	9559e-005 2.054403e-007	1.903810e-007 6	5.569666e-007]	**
*****	*****	*****	*****	##
** ELAPSED TIME: 104.723m	ns			**
#######################################	*****	*****	*****	##
Press any key to continue .	· · · •			
•				

Our Method

- Trace the application
- Identify the hot spot and profile it
- Identify the performance limiter
 - Memory Bandwidth
 - Instruction Throughput
 - Latency
- Optimize the code
- Iterate

Our Environment

- We use
 - Nvidia Tesla K20c (GK110, SM 3.5), ECC OFF,
 - Microsoft Windows 7 x64,
 - Microsoft Visual Studio 2012,
 - CUDA 5.5,
 - Nvidia Nsight 3.1.

Trace the Application (Nsight VSE)

Connection Status

Available Devices: NVS 300 (GT 218) Tesla K20c (GK 110) Tesla K20c (GK 110)

Activity1.nv	vact* 🕫 🗙 config.txt	jacobi.cu 🛎 🗙
⊿ Appli	cation Settings Conn: localhost App: BiCGStab.exe Args: Sync: True	Import From Project
Connect	tion Name: localhost	Disconnect
Applicat	tion: D:\GitHub\nsight-gtc2013\x64\Release\BiCGStab.exe	
Application: D:	\GitHub\nsight-gtc2013\x64\Release\BiCGStab.exe	
✓ Ren	mote Options	
• Trace Application		
Collects events from	the target application. The analysis session and data collection are stopped when the launched application exits.	
Col Col ma CProfi Col Col Col app	e Application lects events from the target application. The analysis session and data collection are stopped when the launched application exits. e Process Tree lects events from the target application and all native child processes of the target application. The analysis session and data collection are not stopped when the launched application exits. The session and data collection nually. lectDDA Application lects counters, statistics and derived values for given CUDA kernel launches. lects counters, statistics and derived values for given CUDA kernel launches from the target application and all native child processes of the target application and all native child processes of the target application are not stopped when analysis session and data collection are not stopped when analysis session and data collection are not stopped when the launches and derived values for given CUDA kernel launches. lects counters, statistics and derived values for given CUDA kernel launches from the target application and all native child processes of the target application. The analysis session and data collection are not stopped when any lication exits. The session and data collection must be stopped manually. (4/4) Driver API Trace, Runtime API Trace, Software Counters, Kernel Launches and Memory Operations, Host Callback Trace	the launched
	(4/4) Driver API Trace, Runtime API Trace, Software Counters, Remei Launches and Memory Operations, Host Caliback Trace	E
▶ <u></u> ⊂ cu	DA (4/4) Driver API Trace, Runtime API Trace, Software Counters, Kernel Launches and Memory Operations, Host Callback Trace	
▷ □ Ope		
▷ [] Opt		
Application Control		
Launch Kill Availabl NVS 30 Tesla K	Application Control Capture Control Image: Devices: D0 (GT 218) 20c (GK 110) Image: D	

CUDA Launch Summary (Nsight VSE)

BiCO	SStab131007_000apture_000.nvreport + X Activity1.nvact* config.txt									
Œ	CUDA Launch Summary									
~	- Filter									
Dr	ag a column header and drop it here to group by that column									
	Function Name	V	Module V ID	Function V ID	Count 🍸	Device 🕎	Device Time V (µs)			
1	spmv_kernel_v0 <int=256></int=256>		43	4	71	9.70	81,191.472			
2	jacobi_smooth_kernel_v0 <int=256></int=256>		46	4	35	0.37	3,110.917			
3	dot_kernel_v0 <int=256></int=256>		45	1	70	0.13	1,088.736			
4	l2_norm_kernel_v0 <int=256></int=256>		44	1	36	0.10	824.494			
5	axpbypcz_kernel <int=256></int=256>		45	5	34	0.09	719.845			
6	axpby_kernel <int=256></int=256>		45	4	37	0.07	597.463			
7	reduce_kernel <int=256></int=256>		45	3	70	0.03	256.633			
8	reduce_l2_norm_kernel <int=256></int=256>		44	2	36	0.02	179.251			
9	jacobi_invert_diag_kernel_v0 <int=256></int=256>		46	1	1	0.01	108.554			

spmv_kernel_v0 is a hot spot, let's start here!!!

Kernel	Time	Speedup
Original version	104.72ms	

Trace the Application (NVVP)

N Create New Session										
Executable Prope Set executable prop										
File:	D:\GitH	ub (nsigh	nt-gtc201	3\x64\Re	elease \B	iCGSta	ab.exe		Bro	owse
Working directory:	D:\GitH	ub (nsigh	nt-gtc201	3					Bro	owse
Arguments:	Enter o	ommand	-line argu	iments						
Environment:	Name	Value								Add
	<u> </u>								-1	Delete
									_ `	
		<	: Back	Nex	(t >		Finish		Can	icel

- [0] Tesla K20c
Context 1 (CUDA)
└────────────────────────────────────
L T MemCpy (DtoH)
└────────────────────────────────────
Compute
└ 🍸 92.1% void spmv_kernel_v0 <int=256>(int, int, int const</int=256>
└ 🍸 3.6% void jacobi_smooth_kernel_v0 <int=256>(int, doubl</int=256>
└ 🍸 1.3% void dot_kernel_v0 <int=256>(int, double const *,</int=256>
└ \ 0.9% void l2_norm_kernel_v0 <int=256>(int, double cons</int=256>
└ 🍸 0.8% void axpbypcz_kernel <int=256>(int, double, double</int=256>
${}^{\rm L}$ ${\ensuremath{\mathbb T}}$ 0.7% void axpby_kernel <int=256>(int, double, double co</int=256>
└ 🍸 0.3% void reduce_kernel <int=256>(int, double const *, d</int=256>
${}^{\rm L}$ ${\ensuremath{\mathbb{T}}}$ 0.2% void reduce_l2_norm_kernel <int=256>(int, double c</int=256>
└ 🍸 0.1% void jacobi_invert_diag_kernel_v0 <int=256>(int, d</int=256>
└ 🍸 0.0% memset (0)
 Streams
L Default
L Stream 8

Trace the Application (nvprof)

D:\GitHub\nsight-gtc2013 [master +8 ~2 -0 !]> D:\GitHub\nsight-gtc2013 [master +8 ~2 -0 !]> nvprof .\x64\Release\BiCGStab.exe

==8104== Profiling application: .\x64\Release\BiCGStab.exe ==8104== Profiling result: Time(%) Time Calls Min Avq Max Name 85.03% 81.366ms 71 1.1460ms 1.0754ms 1.1917ms void spmv_kernel_v0<int=256>(int, int, int const *, int const *, double const *, double const *, double const *, double*) 7.49% 7.1668ms 4 1.7917ms 34.208us 6.7015ms [CUDA memcpy HtoD] 35 88.554us 86.304us 97.376us void jacobi_smooth_kernel_v0<int=256>(int, double, double const *, double const * 3.24% 3.0994ms double const *, double*) 15.455us 11.072us 17.504us void dot_kernel_v0<int=256>(int, double const *, double const *, double*) 1.13% 1.0819ms 70 0.86% 823.17us 36 22.865us 21.568us 25.024us void l2_norm_kernel_v0<int=256>(int, double const *, double*) void axpbypcz_kernel<int=256>(int, double, double const *, double, double const * 0.74% 709.98us 34 20.881us 20.288us 21.600us double, double const *, double*) 37 16.398us 15.072us 17.184us void axpby_kernel<int=256>(int, double, double const *, double, double const *, d 0.63% 606.75us ouble*) 0.27% 262.88us 3.1040us 4.4480us void reduce_kernel<int=256>(int, double const *, double*) 3.7550us 70 0.26% 247.26us 2.3320us 2.1120us 3.7760us [CUDA memcpy DtoH] 1060.18% 174.08us 36 4.8350us 4.2880us 6.1440us void reduce_l2_norm_kernel<int=256>(int, double const *, double*) void jacobi_invert_diag_kernel_v0<int=256>(int, double const *, double*) 112.00us 112.00us 112.00us 0.12% 112.00us 1 0.04% 34.880us 36 968ns 672ns 10.112us [CUDA memset] 0.00% 1.4400us 720ns 704ns 736ns [CUDA memcpy DtoD] 2 D:\GitHub\nsight-gtc2013 [master 1>

Profile the Most Expensive Kernel (Nsight VSE)

Activity Type Profile CUDA Application

C Trace Application

Collects events from the target application. The analysis session and data collection are stopped when the launched application exits.

C Trace Process Tree

Collects events from the target application and all native child processes of the target application. The analysis session and data collection are not stopped when the launched application exits. The session and data collection must be stopped manually.

Profile CUDA Application

d processes of the target application. The analysis session and data collection are not stopped when the launched application exits. The session and data collection must

Collects counters, statistics and derived values for given CUDA kernel launches.

- expen	intent settings experiments. Air		
Kerne IF Aft Profile IF Pri IF No IF No IF Co Experin	Selection Is to Profile: spmv_kernel_v0 ter skipping No kernels, profile 1 kerne Options nt Progress Output to Console no-Overlapping Input/Output Buffers Illect Information for CUDA Source View nent Configuration immets to Run: All v	Kernel Selection mels. Kernels to Profile: spmv_kernel_v0 Image: After skipping No image: kernels, profile 1 image: kernels.	
xperiment Configur	ation	unch. Please note that this template adds significant overhead to the target application. When this group is selected, the following experiments will be run.	
Experiments to Run:	All	Description Calculates the occupancy achieved at runtime of the kernel.	
In Is Bi M M M M M M M M M	chieved IOPS sstruction Statistics sue Efficiency ranch Statistics fermory Statistics - Global lemory Statistics - Local lemory Statistics - Atomics fermory Statistics - Shared lemory Statistics - Texture fermory Statistics - Caches	Calculates the achieved single/double floating point operations per second. Calculates the achieved integer operations per second. Collects instructions per clock cycle (IPC), instructions per warp (IPW) and SM activity. Collects efficiency metrics for issuing the kernel's instructions. Collects efficiency metrics for the kernel's usage of flow control. Provides information about the global memory requests, transactions, and bandwidth. Provides information about the local memory requests, transactions, and bandwidth. Provides information about the shared memory requests, transactions, and bandwidth. Provides information about the shared memory requests, transactions, and bandwidth. Provides information about the shared memory requests, transactions, and bandwidth. Provides information about texture memory usage, such as texture fetch rates and texture bandwidth. Provides information about texture memory usage, such as texture fetch rates and texture bandwidth.	
Availabl NVS 30 Tesla K2	tion Status Application Control	Capture Control	

CUDA Launches (Nsight VSE)

BiCGSta	b131007_001apture_000.nvreport 😔 🛪 BiCGStab	0131007_000apture_000.nvreport Act	ictivity1.nvact* config.txt jacobi.cu	Έ×
$\mathbf{\Theta}$	CUDA Launches 🔻 🔛 Hier	rarchy 🔛 Flat		1
- Fil	ter		Viewii	ng: 1 /
	Function Name V Grid Dimensions V Block	sions ∇ Start Time ∇ Duration ∇ Occu	rupancy ∇ Registers ∇ Static Shared Memory per ∇ Memory per ∇ Cache Configuration ∇ per Thread ∇ Device ∇ Context ∇ Stream ∇ Process ∇ Allocated Warps ∇ Allocated Registers ∇ Allocated Registers ∇	Occup Alloca
1		256, 1, 1} 2,593,821.817 1,175.840	bit Hilder Block (bytes) Block (bytes) Executed (bytes) Haller Bit Haller Per Block Per Block Per Block 62.50 % 47 0 0 PREFER SHARED 0 Tesla K20c 1 2 BiCGStab.exe 8 12288	Per B
				I
•				
🔺 spi	nv_kernel_v0 <int=256><<<102,256>>> [CUDA Lau</int=256>	Time Range		
	Device Launches	Start	2593821.817	
-	Call Graph	End Duration	2594997.657 1,175.840 μs	l
	spmv_kernel_v0 <int=256> [CUDA Kernel]</int=256>		1,1,3040 hz	
	Experiment Results	CUDA Launch		
	Occupancy	Grid Device	H:154 [0]	ł
	- All Counters	Context	1	ł
	 Instruction Statistics 	Stream Driver API Call ID	2 218	ł
	Branch Statistics	Runtime API Call ID	54	ł
	- Issue Efficiency	Signature	void spmv_kernel_v0 <int=256>(int, int, int const *, int const *, double const *, double const *, double const *, double*)</int=256>	
	Achieved FLOPS	Configuration		
	Achieved IOPS	Grid Dimensions	{102, 1, 1} 102	
		Block Dimensions Occupancy	{256, 1, 1} 256 62.50 %	ł
	Pipe Utilization	Registers per Thread	47	ł
	Memory Statistics	Static Shared Mempry per Block Dynamic Shared Memory per Block	0 bytes 0 bytes	ł
	- Source Profiler	Shared Memory Configuration Executed	I FOUR_BYTE_BANK_SIZE	ł
	 Instruction Count 	Local Memory per Thread Local Memory	0 bytes 59,637,760 bytes	ł
	 Divergent Branch 	Cache Configuration Requested	PREFER_NONE	ł
	Memory Transactions	Cache Configuration Executed Cache Configuration Changed	PREFER_SHARED False	I
		Dynamic Parallelism		
		Nesting Level	0	
		# Device Launches (Self)	0	ļ
		# Device Launches (Total)	0	

Profile the Most Expensive Kernel (NVVP)

Ta Analysis 🕱 🗔 Details 📮 Console Ta Settings
1. CUDA Application Analysis
The guided analysis system walks you through the various analysis stages to help you understand the optimization opportunities in your application. Once you become familiar with the optimization process, you can explore the individual analysis stages in an unguided mode. When optimizing your application it is important to fully utilize the compute and data movement capabilities of the GPU. To do this you should look at your application's overall GPU usage as well as the performance of individual kernels.
🛄 Examine GPU Utilization
Determine your application's overall GPU utilization. This analysis requires an application timeline, so your application will be run once to collect it if it is not already available.

🕕 Examine Kernel Performance

	Resu	ults —			
1. CUDA Application Analysis	i	Ker	nel Optimization Priorities	Ī	
	The	e follo	wing kernels are ordered by optimization importance based on execution time and achieved occupancy. Optimization of higher ranked kernels (those	se	
2. Performance-Critical Kernels	Ri	Rank	Description	Γ	
The results on the right show your application's kernels ordered by potential for performance improvement.	10	100	[71 kernel instances] void spmv_kernel_v0 <int=256>(int, int, int const *, int const *, double const</int=256>	Γ	
Starting with the kernels with the highest ranking, you should select an entry from the table and then perform kernel analysis to discover additional optimization opportunities.	3	3	[35 kernel instances] void jacobi_smooth_kernel_v0 <int=256>(int, double, double const *, double const *, double const *, double*)</int=256>	*)	
	1	1	[1 kernel instances] void jacobi_invert_diag_kernel_v0 <int=256>(int, double const *, double*)</int=256>		
H Perform Kernel Analysis	1	1	[17 kernel instances] void dot_kernel_v0 <int=256>(int, double const *, double const *, double*)</int=256>		
Select a kernel from the table at right or from the timeline to enable kernel analysis. This analysis requires detailed profiling data,	1	1	[34 kernel instances] void axpbypcz_kernel <int=256>(int, double, double const *, double, double const *, double, double const *, double*)</int=256>	≘*)	
so your application will be run once to collect that data for the kernel if it is not already available.	1	1	[36 kernel instances] void l2_norm_kernel_v0 <int=256>(int, double const *, double*)</int=256>		
	1		[36 kernel instances] void reduce_l2_norm_kernel <int=256>(int, double const *, double*)</int=256>		
	1		[37 kernel instances] void axpby_kernel <int=256>(int, double, double const *, double, double const *, double*)</int=256>		
	1		[53 kernel instances] void dot_kernel_v0 <int=256>(int, double const *, double const *, double*)</int=256>	1	
	1	1	[70 kernel instances] void reduce_kernel <int=256>(int, double const *, double*)</int=256>		

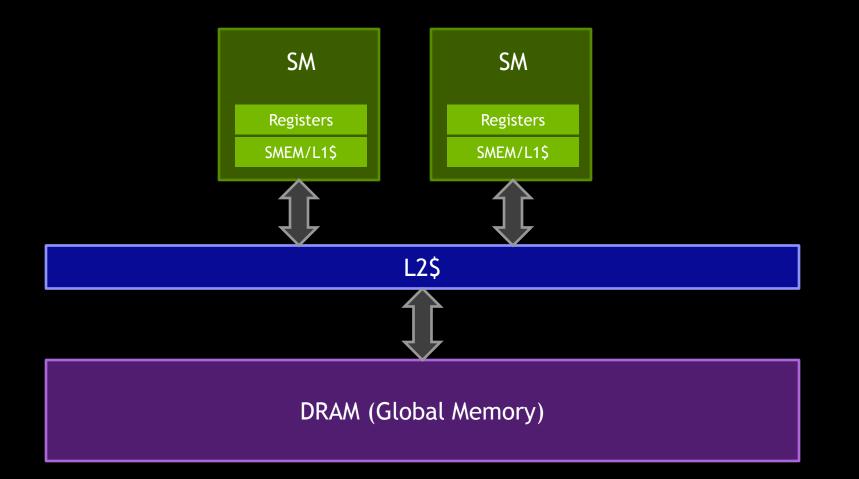
Profile the Most Expensive Kernel (nvprof)

> nvprof --kernels "::spmv_kernel_v0:" --metrics issue_slot_utilization .\x64\Release\BiCGStab.exe

> nvprof --query-metrics

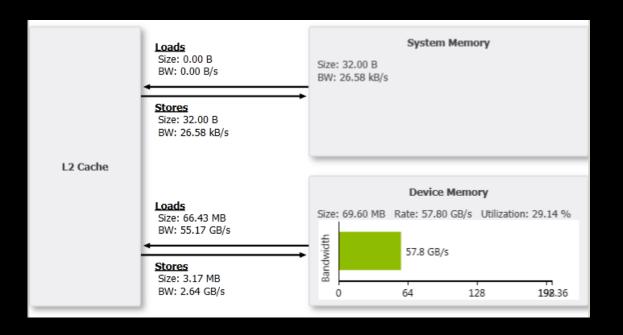
> nvprof --kernels "::spmv_kernel_v0:" --events active_cycles .\x64\Release\BiCGStab.exe

> nvprof --query-events_


Identify the Main Limiter

Is it limited by the memory bandwidth ?

Is it limited by the instruction throughput ?


Is it limited by latency ?

Memory Bandwidth

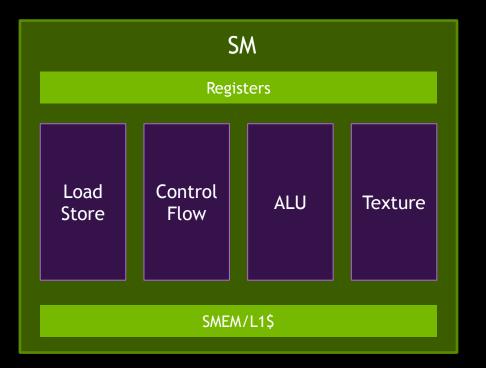
Memory Bandwidth

Utilization of DRAM Bandwidth: 29.14%

We are not limited by the memory bandwidth (< 70-80%)</p>

Memory Bandwidth (nvprof)

Utilization of DRAM Bandwidth: 31.86%

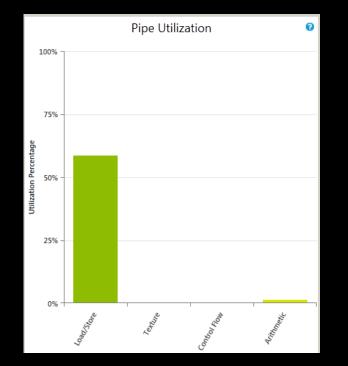

> nvprof --kernels "::spmv_kernel_v0:" --metrics "dram_read_throughput,dram_write_throughput" .\x64\Release\BiCGStab.exe

	Read	Write	Total
Bandwidth (GB/s)	60.77	2.38	63.15
Utilization (%)	29.22	1.14	30.36

Peak BW (K20c): 208GB/s

We are not limited by the memory bandwidth

Instruction Throughput


Instructions go to the pipes

Issue 1 or 2 instructions every cycle

We cannot if a pipe is saturated

Instruction Throughput

All pipes are underutilized: <70-75%</p>

We are not limited by instruction throughput

Instruction Throughput

All pipes have Low/Mid utilization

> nvprof --kernels "::spmv_kernel_v0:" --metrics "ldst_fu_utilization,cf_fu_utilization" .\x64\Release\BiCGStab.exe
> nvprof --kernels "::spmv_kernel_v0:" --metrics "alu_fu_utilization,tex_fu_utilization" .\x64\Release\BiCGStab.exe

	Load/Store	Control Flow	ALU	Texture	
Utilization	Mid	Low	Low	Idle	

We are not limited by instruction throughput

Guided Analysis (Nvvp)

i Kernel Performance Is Bound By Instruction And Memory Latency

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Tesla K20c". These utilization levels indicate that the performance of the kernel is most likely limited by the latency of arithmetic or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates latency issues.

Latency

- First two things to check:
 - Occupancy
 - Memory accesses (coalesced/uncoalesced accesses)

Other things to check (if needed):

- Control flow efficiency (branching, idle threads)
- Divergence
- Bank conflicts in shared memory

Latency (Occupancy)

Occupancy: 55.98% Achieved / 62.50% Theoretical

^	Occupancy Per SM														
	Active Blocks		5	16	0	5	10	15							
	Active Warps	35.83	40	64	0	20	40	60							
	Active Threads		1280	2048	0	10	000	2000							
	Occupancy	55.98 %	62.50 %	100.00 %	0 %	5	0 %	100 %							

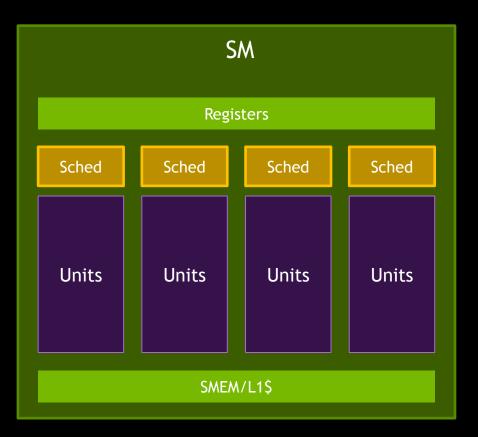
> nvprof --kernels "::spmv_kernel_v0:" --metrics "achieved_occupancy" .\x64\Release\BiCGStab.exe

It's not too high but not too low: Hard to say

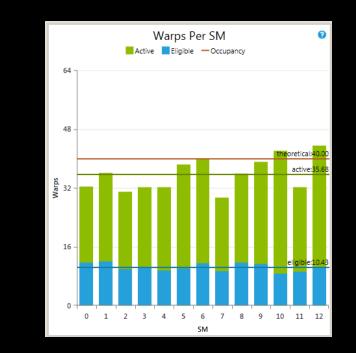
Latency (Occupancy)

Guided Analysis (Nvvp):

💧 GPU Utilization May Be Limited By Register Usage


Theoretical occupancy is less than 100% but is large enough that increasing occupancy may not improve performance. You can attempt the following optimization to increase the number of warps on each SM but it may not lead to increased performance.

The kernel uses 47 registers for each thread (12032 registers for each block). This register usage is likely preventing the kernel from fully utilizing the GPU. Device "Tesla K20c" provides up to 65536 registers for each block. Because the kernel uses 12032 registers for each block each SM is limited to simultaneously executing 5 blocks (40 warps). Chart "Varying Register Count" below shows how changing register usage will change the number of blocks that can execute on each SM.


Optimization: Use the -maxrregcount flag or the __launch_bounds__ qualifier to decrease the number of registers used by each thread. This will increase the number of blocks that can execute on each SM.

 "Theoretical occupancy is less than 100% but is large enough that increasing occupancy may not improve performance"

Latency (Occupancy)

Eligible Warps per Active Cycle: 10.43

Occupancy is not an issue (> 4)

Memory Transactions

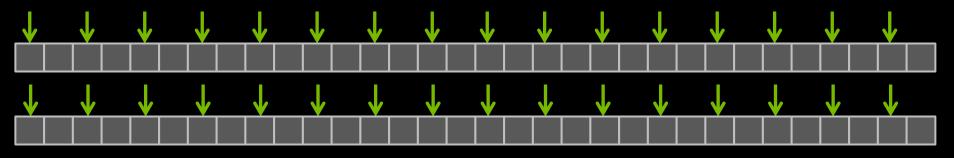
Warps of threads (32 threads)

L1 transaction: 128B - Alignment: 128B (0, 128, 256, ...)

L2 transaction: 32B - Alignment: 32B (0, 32, 64, 96, ...)

Memory Transactions (fp32)

Ideal case: 32 aligned and consecutive fp32 numbers



Ix L1 transaction: 128B needed / 128B transferred

• 4x L2 transactions: 128B needed / 128B transferred

Memory Transactions (fp64)

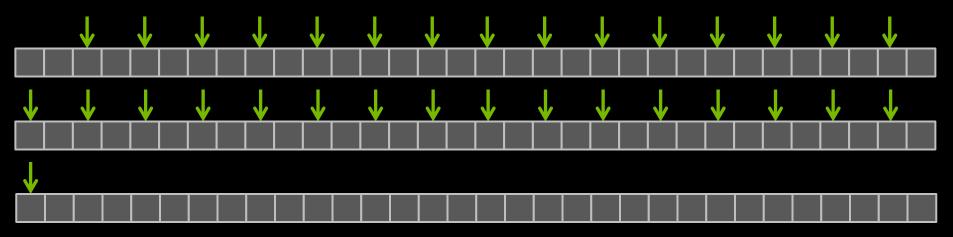
Ideal case: 32 aligned and consecutive fp64 numbers



• 2x L1 transactions: 256B needed / 256B transferred

8x L2 transactions: 256B needed / 256B transferred

Memory Transactions (fp64)


• Worst case: 32 fp64 with a stride of 128B (16x fp64)

- 32x L1 transactions: 256B needed / 32x128B transferred
- 32x L2 transactions: 256B needed / 32x32B transferred

Memory Transactions (fp64)

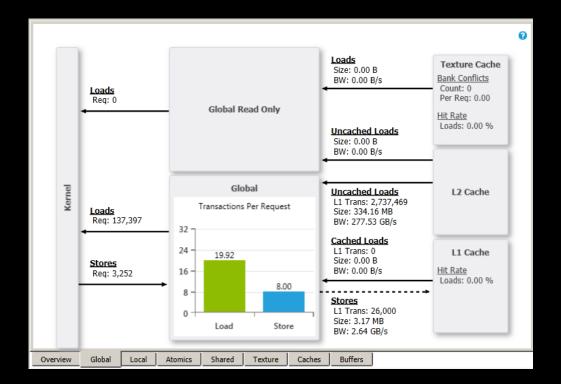

Misaligned: 32 fp64

- 3x L1 transactions: 256B needed / 384B transferred
- 9x L2 transactions: 256B needed / 288B transferred

Memory Transactions

- 1 L1 transaction: 8B needed / 128B transferred
- 1 L2 transaction: 8B needed / 32B transferred

A Memory Request: LD/ST instruction


The 1st transaction is *issued*

Other transactions induce replays

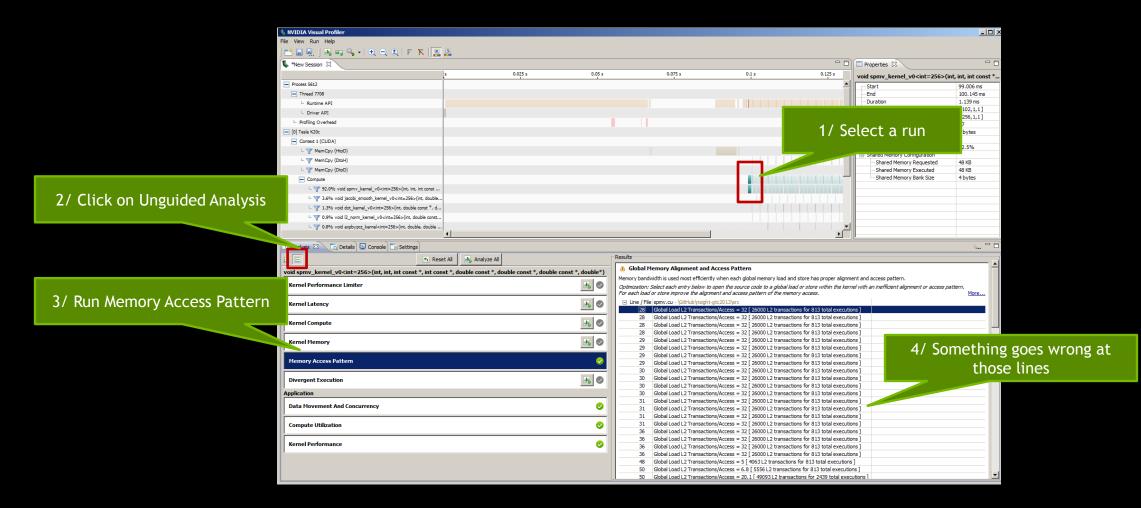
Note: For each fp64 request, we have at least 1 replay

Latency (Memory Accesses)

Transactions per Request: 19.92 loads / 8 stores

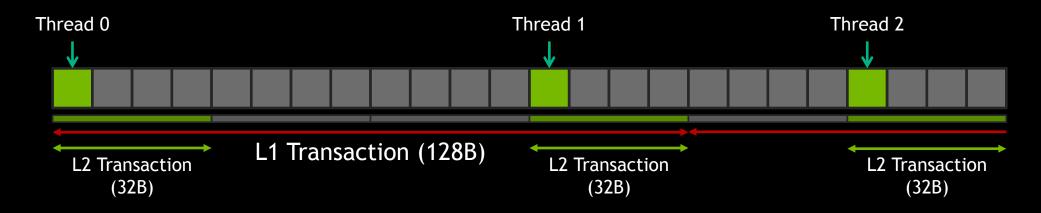
We have too many uncoalesced accesses!!!

Where Do Those Accesses Happen? (Nsight VSE)


CUDA Source Profiler (Nsight VSE):

- Where are uncoalesced requests (need to compile with -lineinfo)

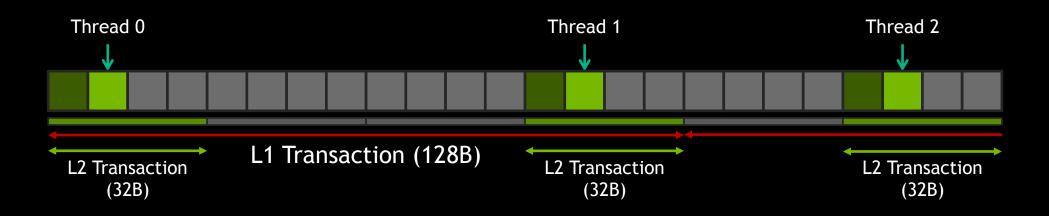
Line	Source 1						L1 Transactio Per Requi	ons O	. Transfer verhead		L2 Transactions Per Request		! Transfer verhead									
51	// Load the matrix block.																					
52	for(int $k = 0$; $k < 4$; ++k)																					
53	{	{																				
54	<pre>my_A[4*k+0] = A_vals[4*k*A_num_vals + 4*it + 0];</pre>							29.0		16.0	29	9.0	4.0)								
55	<pre>my_A[4*k+1] = A_vals[4*k*A_num_vals + 4*it + 1];</pre>							29.0		16.0	29	9.0	4.0	0								
56	<pre>my_A[4*k+2] = A_vals[4*k*A_num_vals + 4*it + 2];</pre>							29.0		16.0	29	9.0	4.0	0								
57	<pre>my_A[4*k+3] = A_vals[4*k*A_num_vals + 4*it + 3];</pre>							29.0		16.0	29	9.0	4.0	0								
58	}																					
spmv_kernel_v0 <int=256><<<813,256>>> [CUDA Laun, Drag a column header and drop it here to group by that column</int=256>																						
	Device Launches		-			· · · · ·							•			11		11	12	L	2	
	— Call Graph		File 🍸	Line # 🍸	SASS Line # 🍸	Memory Typ		lemory ccess Typ		lemory ize	Access 7	11	Bytes Transfere	d 🍸	L2 Global Transactions Executed $$		Y	Transfer V Overhead	Transactions Per Request	Т		7
	spmv_kernel_v0 <int=256> [CUDA Kernel]</int=256>	1	spmv.cu	<u>54</u> 🖁	<u>180</u>	Generic, Glo	bal L	oad	s	ize64			747	29472	583824		29.9	16.0	2	29.9		4.0
	Experiment Results	2	spmv.cu	55 *	183	Generic, Glo	bal L	oad	S	ize64			747	29472	583824		29.9	16.0	2	29.9		4.0
	- CUDA Occupancy	3	spmv.cu	56	189	Generic, Glo	bal L	oad	s	ize64			747	29472	583824		29.9	16.0	2	29.9		4.0
		4	spmv.cu	56	<u>194</u>	Generic, Glo	bal L	oad	s	ize64			747	29472	583824		29.9	16.0	2	29.9		4.0
	- All Counters		spmv.cu	<u>54</u>	<u>196</u>	Generic, Glo	bal L	oad	s	ize64			747	29472	583824		29.9	16.0	2	29.9		4.0


Tip: Sort "L2 Global Transactions Executed"

Where Do Those Accesses Happen? (Nvvp)

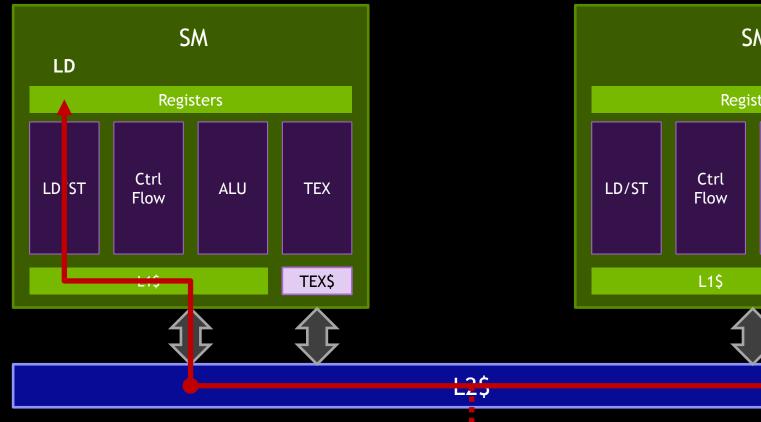
Access Pattern

Double precision numbers: 64-bit

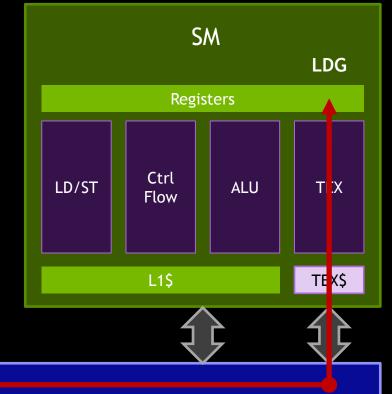

Per Warp:

- Up to 32 L1 Transactions / Ideal case: 2 Transactions

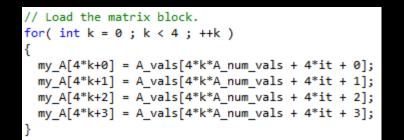
- Up to 32 L2 Transactions / Ideal case: 8 Transactions


Access Pattern

Next iteration:

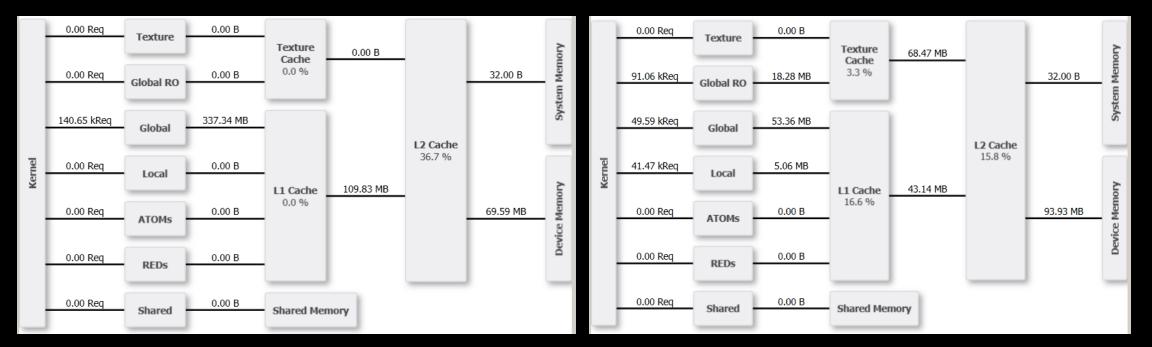


Idea: Use the Read-only cache (LDG load)
 On Fermi: Use a texture or Use 48KB for L1


LD (DRAM-L2\$-L1\$-Reg)

LDG (DRAM-L2\$-TEX\$-Reg)

We change the source code:

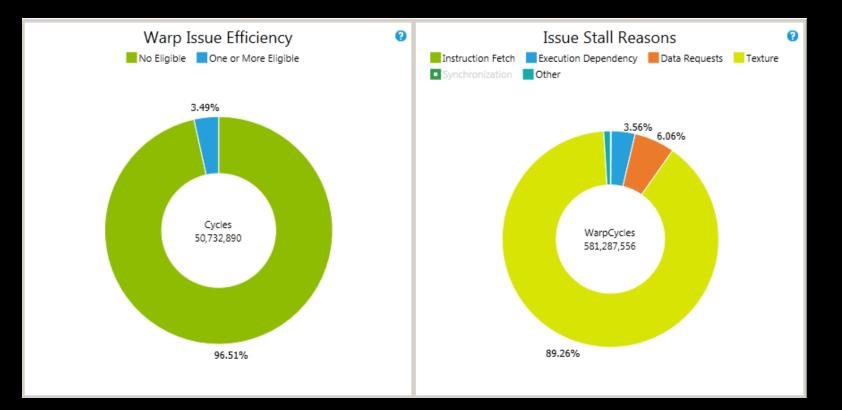


// Load the matrix block.
for(int k = 0 ; k < 4 ; ++k)
{
 my_A[4*k+0] = __ldg(&A_vals[4*k*A_num_vals + 4*it + 0]);
 my_A[4*k+1] = __ldg(&A_vals[4*k*A_num_vals + 4*it + 1]);
 my_A[4*k+2] = __ldg(&A_vals[4*k*A_num_vals + 4*it + 2]);
 my_A[4*k+3] = __ldg(&A_vals[4*k*A_num_vals + 4*it + 3]);
}</pre>

It is slower: 625.8ms

Kernel	Time	Speedup
Original version	104.72ms	
LDG to load A	125.67ms	0.83x

No benefit from the read-only cache: Hit rate at 3.3%



Worse hit rate in L2\$: 15.8% compared to 36.7%

Eligible Warps per Active Cycle has dropped to 0.54

Warps cannot issue because they have to wait

The loads compete for the cache too much

- Low hit rate: 3.3%

Texture requests introduce too much latency (in that case)

Things to check in those cases:

- Texture Hit Rate: Low means no reuse
- Issue Efficiency and Stall Reasons

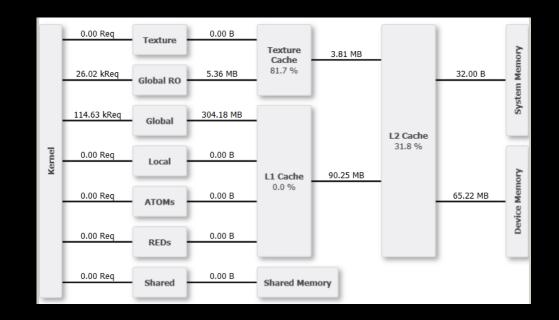
It was actually expected: GPU caches are not CPU caches!!!

Other accesses may benefit from LDGs

Memory blocks accessed several times by several threads

• How can we detect it?

- Source code analysis
- There is no way to detect it from Nsight


We change the source code

-In y = Ax, we use <u>ldg</u> when loading x

It's faster: 98.30ms

Kernel	Time	Speedup
Original version	104.72ms	
LDG to load A	125.67ms	0.83x
LDG to load X	98.30ms	1.07x

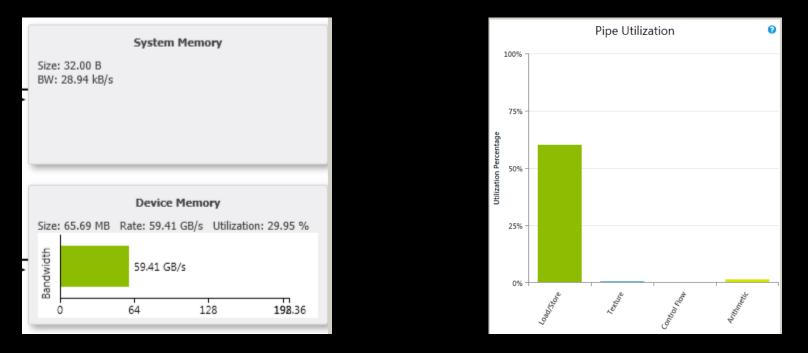
Good hit rate in Texture Cache: 82%

Slightly less data transferred from L2 (94MB vs 110MB)

CUDA Launch Summary

	Function Name	^{Module} ▼ ID	Function V ID	Count 🍸	Device V	Device Time (µs)	Min (µs) ▼	Avg 🗸	Max V (µs)
1	spmv_kernel_v2 <int=256></int=256>	46	2	71	28.62	77,976.969	1,036.168	1,098.267	1,168.022
2	jacobi_smooth_kernel_v0 <int=256></int=256>	43	4	35	1.14	3,119.735	86.792	89.135	103.723
3	dot_kernel_v0 <int=256></int=256>	44	1	70	0.41	1,104.842	11.041	15.783	18.434
4	l2_norm_kernel_v0 <int=256></int=256>	45	1	36	0.30	819.765	21.667	22.771	24.227
5	axpbypcz_kernel <int=256></int=256>	44	5	34	0.26	721.191	20.674	21.212	21.858
6	axpby_kernel <int=256></int=256>	44	4	37	0.23	619.803	16.065	16.751	17.473
7	reduce_kernel <int=256></int=256>	44	3	70	0.10	261.758	3.136	3.739	4.289
8	reduce_l2_norm_kernel <int=256></int=256>	45	2	36	0.07	180.501	4.737	5.014	6.337
9	jacobi_invert_diag_kernel_v0 <int=256></int=256>	43	1	1	0.04	109.932	109.932	109.932	109.932

spmv_kernel_v2 is still a hot spot, so we profile it


Is it limited by the memory bandwidth ?

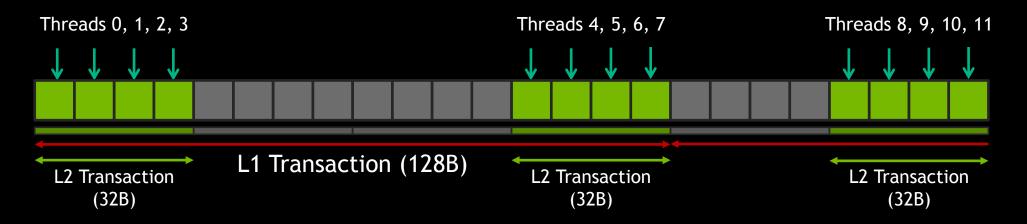
Is it limited by the instruction throughput ?

Is it limited by latency ?


We are still limited by latency

- Low DRAM utilization: 29.95%
- Pipe utilization is Low/Mid: <70-75%</p>

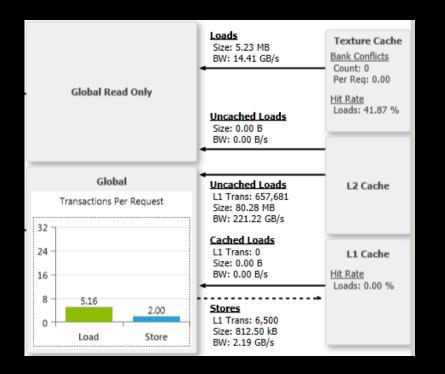
We are not limited by the Occupancy


- We have > 4 Eligible Warps per Active Cycle (8.16)

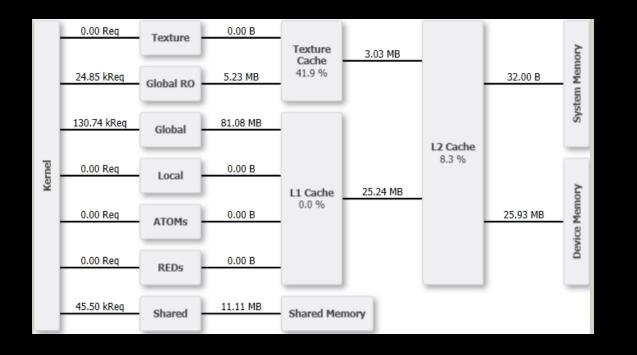
	Name	Total	Per Warp	Per Second
~	Total - SM to L1/Tex/L2			
	Requests	140,649.00	172.36	130,273,000.00
	Transactions	2,491,833.00	3,053.72	2,308,005,000.00
	Size	309.54 MB	388.45 kB	279.99 GB/s
	Replay Overhead	40.79 %		

Too many uncoalesced accesses: 40.79% of Replay Overhead

• 4 consecutive threads load 4 consecutive elements



- Per Warp:
 - Up to 8 L1 Transactions / Ideal case: 2 Transactions
 - Up to 8 L2 Transactions / Ideal case: 8 Transactions


It's much faster: 45.61ms

Kernel	Time	Speedup
Original version	104.72ms	
LDG to load A	125.67ms	0.83x
LDG to load X	98.30ms	1.07x
Coalescing with 4 Threads	45.61ms	2.30x

We have much fewer Transactions per Request: 5.16 (LD)

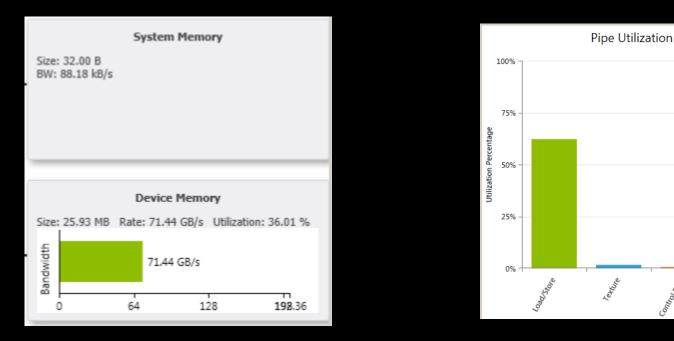
Much less traffic from L2: 28.27MB (it was 109.83MB)

Much less DRAM traffic: 25.93MB (it was 69.59MB)

CUDA Launch Summary

	Function Name	V	$_{\rm ID}^{\rm Module}$ ∇	Function V ID	Count 🍸	Device	Device Time (µs)	Min (µs) ▼	Avg	Max (µs) ▼
1	spmv_kernel_v3 <int=256></int=256>		46	1	71	11.12	24,940.624	348.100	351.276	354.884
2	jacobi_smooth_kernel_v0 <int=256></int=256>		44	4	35	1.42	3,178.500	86.729	90.814	102.666
3	dot_kernel_v0 <int=256></int=256>		45	1	70	0.49	1,090.577	10.977	15.580	18.434
4	l2_norm_kernel_v0 <int=256></int=256>		43	1	36	0.36	806.421	21.378	22.401	23.171
5	axpbypcz_kernel <int=256></int=256>		45	5	34	0.32	718.986	20.642	21.147	21.795
6	axpby_kernel <int=256></int=256>		45	4	37	0.27	610.141	15.746	16.490	17.122
7	reduce_kernel <int=256></int=256>		45	3	70	0.11	255.583	3.104	3.651	4.033
8	reduce_l2_norm_kernel <int=256></int=256>		43	2	36	0.08	190.223	5.057	5.284	6.241
9	jacobi_invert_diag_kernel_v0 <int=256></int=256>		44	1	1	0.05	109.931	109.931	109.931	109.931

spmv_kernel_v3 is still a hot spot, so we profile it

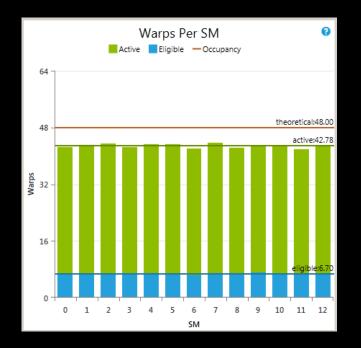

Is it limited by the memory bandwidth ?

Is it limited by the instruction throughput ?

Is it limited by latency ?

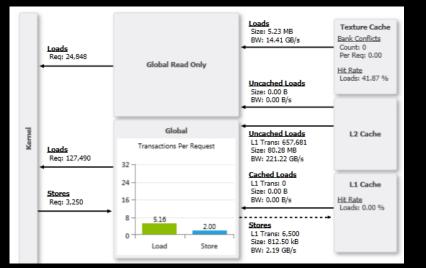
We are still limited by latency

- Low DRAM utilization: 36.01%
- Pipe Utilization is still Low/Mid



0

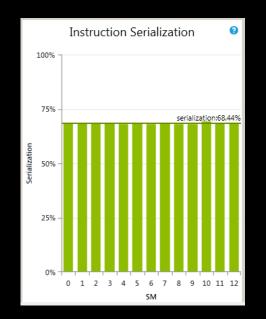
OI FIOW

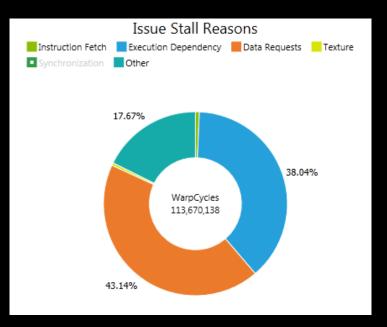

Eligible Warps per Active Cycle: 6.70 on average

We are not limited by occupancy

Latency

- Memory Accesses:
 - Load: 5.16 Transactions per Request
 - Store: 2 Transactions per Request




We still have too many uncoalesced accesses

Latency

We still have too many uncoalesced accesses

- Nearly 68.44% of Instruction Serialization (Replays)
- Stall Reasons: 43.14% due to Data Requests

Serialization: (Inst. Issued - Inst. Executed) / Inst. Issued

> nvprof --kernels "::spmv_kernel_v3:" --metrics "inst_replay_overhead" .\x64\Release\BiCGStab.exe

Inst. Replay Overhead: Avg. Number of replays per Inst.

Inst. Issued = 1 + Avg. Number of Replays

Inst. Replay Overhead	Inst. Replay Overhead / (1 + Inst. Replay Overhead)
2.17	68.45%

Issue Stall Reasons

> nvprof --kernels "::spmv_kernel_v3:" --metrics "stall_inst_fetch,stall_exec_dependency,stall_data_request" .\x64\Release\BiCGStab.exe

> nvprof --kernels "::spmv_kernel_v3:" --metrics "stall_texture,stall_sync,stall_other" .\x64\Release\BiCGStab.exe

Stall Reasons	
Instruction Fetch	0.58%
Execution Dependency	32.51%
Data Request	37.85%
Texture	0.41%
Sync	0.00%
Other	15.13%

Latency

🔚 Analysis 🛛 🔽 🔄 Details 🚍 Console 🔚 Settings

1. CUDA Application Analysis

2. Performance-Critical Kernels

3. Compute, Bandwidth, or Latency Bound

The first step in analyzing an individual kernel is to determine if the performance of the kernel is bounded by computation, memory bandwidth, or instruction/memory latency. The results at right indicate that the performance of kernel "void spmv_kernel_v3<int=256>" is most likely limited by compute.

🕕 Perform Compute Analysis

The most likely bottleneck to performance for this kernel is compute so you should first perform compute analysis to determine how it is limiting performance.

🕕 Perform Latency Analysis

🕕 Perform Memory Bandwidth Analysis

Instruction and memory latency and memory bandwidth are likely not the primary performance bottlenecks for this kernel, but you may still want to perform those analyses.

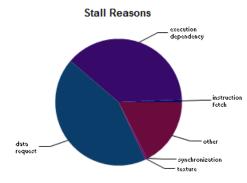
🕕 Rerun Analysis

If you modify the kernel you need to rerun your application to update this analysis.

Results

A Instruction Latencies May Be Limiting Performance

Instruction stall reasons indicate the condition that prevents warps from executing on any given cycle. The following chart shows the break-down of stalls reasons averaged over the entire execution of the kernel. The kernel has good theoretical and achieved occupancy indicating that there are likely sufficient warps executing on each SM. Since occupancy is not an issue it is likely that performance is limited by the instruction stall reasons described below.

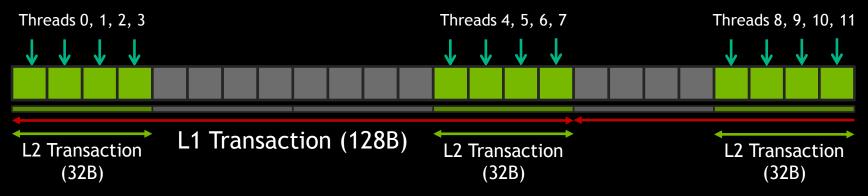

Instruction Fetch - The next assembly instruction has not yet been fetched.

Execution Dependency - An input required by the instruction is not yet available. Execution dependency stalls can potentially be reduced by increasing instruction-level parallelism.

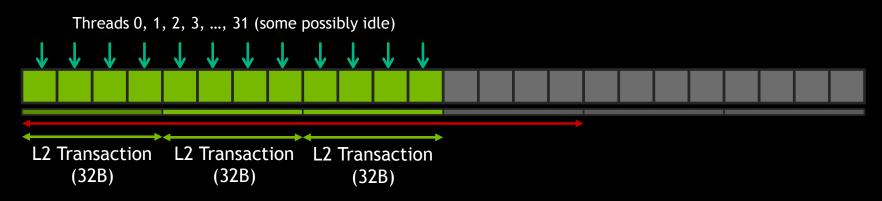
Data Request - A load/store cannot be made because the required resources are not available or are fully utilized, or too many requests of a given type are outstanding. Data request stalls can potentially be reduced by optimizing memory alignment and access patterns.

Texture - The texture sub-system is fully utilized or has too many outstanding requests. Synchronization - The warp is blocked at a __syncthreads() call.

Optimization: Resolve the primary stall issue; data request.


Where Do Those Accesses Happen?

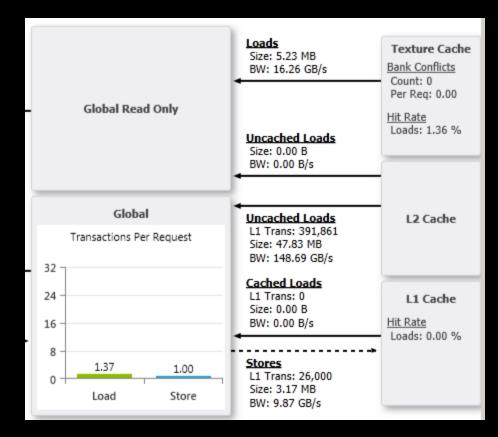
Same lines of code as before


276	<pre>// Each thread iterates over its row.</pre>						
277	<pre>for(int it = A_rows[row], end = A_rows[row+1] ; it < end ; ++it)</pre>	151606	4366176	85.0	6500	83.8	Gen
278	{						
279	<pre>const int col = A_cols[it];</pre>	140284	3764736	83.9			Gen
280							
281	// Load the matrix block.						
282	for (int $k = 0$; $k < 4$; ++k)						
283	<pre>my_A[k] = A_vals[4*k*A_num_vals + 4*it + lane_id_mod_4];</pre>	215980	5816000	84.2			Gen
284							
285	// Load the x block.						
286	$my_x = _ldg(\&x[4*col + lane_id_mod_4]);$	64794	1744800	84.2			

What Can We Do?

In our kernel: 4 threads per row of the matrix A

New approach: 1 warp of threads per row of the matrix A

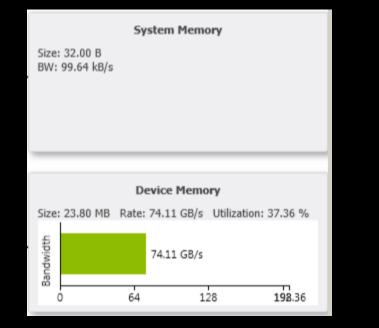

One Warp Per Row

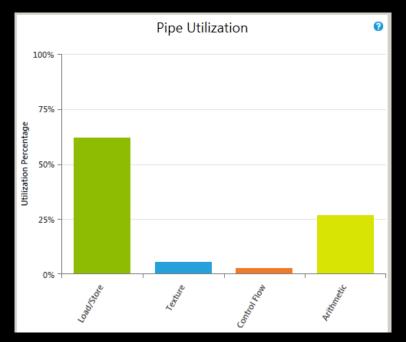
It's faster: 37.50ms

Kernel	Time	Speedup
Original version	104.72ms	
LDG to load A	125.67ms	0.83x
LDG to load X	98.30ms	1.07x
Coalescing with 4 Threads	45.61ms	2.30x
1 Warp per Row	37.50ms	2.79x

One Warp Per Row

Much fewer Transactions Per Request: 1.37 (LD) / 1 (ST)


One Warp Per Row


spmv_kernel_v4 is the hot spot

	Function Name	V	^{Module} ▼ ID	Function V ID	Count	r 11	Device 🕎	Device Time V (µs)	Min (µs) ▼	Avg	Max V
1	spmv_kernel_v4 <int=128></int=128>		45	6		71	9.91	22,168.706	310.528	312.235	314.496
2	jacobi_smooth_kernel_v0 <int=256></int=256>		47	4	i	35	1.40	3,124.255	86.410	89.264	97.258
3	dot_kernel_v0 <int=256></int=256>		46	1		70	0.49	1,092.756	11.009	15.611	17.986
4	l2_norm_kernel_v0 <int=256></int=256>		44	1	. /	36	0.37	822.549	21.826	22.849	24.643
5	axpbypcz_kernel <int=256></int=256>		46	5	i 👘	34	0.32	719.882	20.578	21.173	21.666
6	axpby_kernel <int=256></int=256>		46	4	1	37	0.27	608.196	15.778	16.438	17.282
7	reduce_kernel <int=256></int=256>		46	3	1	70	0.11	256.478	3.072	3.664	4.033
8	reduce_l2_norm_kernel <int=256></int=256>		44	2	2 1	36	0.08	190.192	5.056	5.283	6.177
9	jacobi_invert_diag_kernel_v0 <int=256></int=256>		47	1	-	1	0.05	109.612	109.612	109.612	109.612

One Warp Per Row

- DRAM utilization: 37.36%
- Pipe Utilization is Low/Mid

We are still limited by latency

One Warp Per Row

- Occupancy and memory accesses are OK (not shown)
- Control Flow Efficiency: 87.31%

> nvprof --kernels "::spmv_kernel_v4:" --metrics "warp_execution_efficiency" .\x64\Release\BiCGStab.exe

Control Flow Efficiency

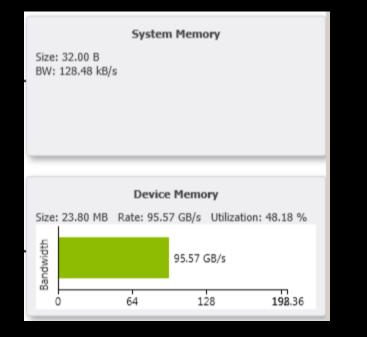
All threads work: 100%

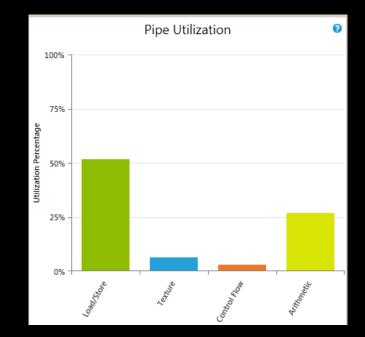
Some threads do nothing: Less efficiency

if(threadIdx.x % 32 < 24) {
 ... // do some long computation
 Efficiency = 24/32 = 75%
}</pre>

Control Flow Efficiency

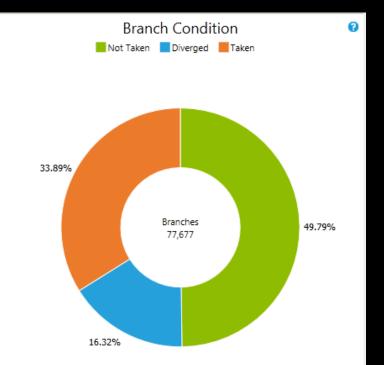
Low efficiency in one the key loop: 69.9%


Line	Source	Instruct Execute	Thread Instruction Executed	Thread Execution Efficiency
363	<pre>for(int it = A_rows[row]+lane_id/4, end = A_rows[row+1] ; it < end ; it</pre>	429000	12476000	90.9
364	{			
365	// Load the column.			
366	<pre>int col = A_cols[it];</pre>	208000	4652800	69.9
367				
368	// Load the matrix block and x.			
369	<pre>#pragma unroll</pre>			
370	for (int $k = 0$; $k < 4$; ++k)			
371	<pre>my_A[k] = A_vals[4*k*A_num_vals + 4*it + lane_id_mod_4];</pre>	260000	5816000	69.9
372	<pre>my_x =ldg(&x[4*col+lane_id_mod_4]);</pre>	78000	1744800	69.9


It is faster: 35.81ms

Kernel	Time	Speedup
Original version	104.72ms	
LDG to load A	125.67ms	0.73x
LDG to load X	98.30ms	1.07x
Coalescing with 4 Threads	45.61ms	2.30x
1 Warp per Row	37.50ms	2.79x
1/2 Warp per Row	35.81ms	2.93x

- DRAM utilization: 48.18%
- Pipe Utilization is Low/Mid


We are still limited by latency

Occupancy is not an issue

Memory accesses are good enough

- Branch divergence induce latency
- We have 16.32% of divergent branches

Branch Divergence

🔚 Analysis 🛿 🔁 Details 📮 Console 🔚 Settings	□	
🗄 🔚 🖪 🖪 Reset All		Results
void spmv_kernel_v5 <int=128>(int, int, int const *, int const *, double const *, double const *, double const *, double*)</int=128>	Divergent Branches	
Kernel Performance Limiter	₽ 🖉	Compute resource are used most efficiently when all threads in a warp have the same branching behavior. When this does not occur the branch is said to be divergent. Divergent branches lower warp execution efficiency which leads to inefficient use of the GPU's compute resources.
		Optimization: Select each entry below to open the source code to a divergent branch within the kernel. For each branch reduce the amount of intra-warp divergence.
Kernel Latency	₫, 🥥	amount of intra-warp divergence. More
		483 Divergence = 97.5% [12677 divergent executions out of 13000 total executions]
Kernel Compute	Щ 📀	
Kernel Memory	II 💿	
Memory Access Pattern	₫, 📀	
Divergent Execution		

Branch Divergence

Execution Time = Time of If branch + Time of Else branch

- We fix branch divergence
- It is faster: 29.60ms

Kernel	Time	Speedup
Original version	104.72ms	
LDG to load A	125.67ms	0.83x
LDG to load X	98.30ms	1.07x
Coalescing with 4 Threads	45.61ms	2.30x
1 Warp per Row	37.50ms	2.79x
1/2 Warp per Row	35.81ms	2.93x
No divergence	29.60ms	3.54x

DRAM utilization: 60.80%

-	Size: 32.00 B BW: 162.17 kB/s	System Mei	mory	
	Size: 23.80 MB Ra	Device Mer ate: 120.61 Gi	-	60.80 % 198.36

• We are still far from the peak...

So Far

- We have consecutively:
 - Improved caching using __ldg (use with care)
 - Improved coalescing
 - Improved control flow efficiency
 - Improved branching

Our new kernel is 3.5x faster than our first implementation

Tools helped us a lot

C\Windows\system32\cmd.exe									

** BICGSTAB SOLVER **									

** DEVICE : Tesla K20c (ECC: OFF) **									

** SYSTEM : res/matrix.inp **									

** INIT. RESID.: [1.212971e-001 0.000000e+000 0.000000e+000 1.243311e-001] **									

** ITERATION 0: [5.009870e-002 2.509095e-003 2.442529e-003 1.381766e-003] **									
** ITERATION 1: 6.322283e-002 3.624363e-003 3.439345e-003 1.459566e-003 1 **									
** ITERATION 2: 1.944435e-002 3.175072e-004 3.108480e-004 4.101967e-004 1 **									
** ITERATION 3: [1.179491e-002 9.633129e-005 9.554327e-005 2.494020e-004] **									
** ITERATION 4: 1.517741e-002 1.351845e-004 1.323939e-004 3.272856e-004 1 **									
** ITERATION 5: 2.840113e-002 2.370584e-004 2.333890e-004 6.397188e-004 1 **									
** ITERATION 6: 8.465301e-003 9.483242e-005 9.256901e-005 1.726512e-004 **									
** ITERATION 7: [2.497275e-003 2.221739e-005 2.213925e-005 6.087546e-005] **									
** ITERATION 8: [3.931372e-003 3.762042e-005 3.804746e-005 9.449076e-005] **									
** ITERATION 9: 1.004664e-003 7.813901e-006 7.722009e-006 2.470211e-005 1 **									
** ITERATION 10: 1.348178e-003 1.450667e-005 1.451499e-005 3.084324e-005 1 **									
** ITERATION 11: 3.147213e-004 3.016084e-006 2.968251e-006 7.588855e-006] **									
** ITERATION 12: [2.560259e-004 2.530426e-006 2.474577e-006 6.138979e-006] **									
** ITERATION 13: 1.941811e-004 2.010254e-006 1.992610e-006 4.670605e-006 1 **									
** ITERATION 14: [1.344858e-004 1.313841e-006 1.286352e-006 3.325935e-006] **									
** ITERATION 15: [2.946048e-004 3.318294e-006 3.216173e-006 7.020198e-006] **									
** ITERATION 16: [1.254350e-004 1.372731e-006 1.317983e-006 3.036414e-006] **									

** FINAL RESID.: [2.529559e-005 2.054403e-007 1.903810e-007 6.569666e-007] **									

** ELAPSED TIME: 29.199ms **									

Press any key to continue	_								

Next Kernel

We are satisfied with the performance of spmv_kernelWe move to the next kernel: jacobi_smooth

	Function Name	7	$_{\rm ID}^{\rm Module}$ ∇	Function V	Count 🍸	Device	Device Time (µs)	Min (µs) ▼	Avg	Max √ (µs) √
1	spmv_kernel_v6 <int=128></int=128>		46	7	71	6.82	13,264.048	183.924	186.818	189.972
2	jacobi_smooth_kernel_v0 <int=256></int=256>		47	4	35	1.59	3,088.802	86.441	88.251	96.746
3	dot_kernel_v0 <int=256></int=256>		44	1	70	0.56	1,091.926	11.041	15.599	17.986
4	l2_norm_kernel_v0 <int=256></int=256>		45	1	36	0.43	830.548	21.858	23.071	23.842
5	axpbypcz_kernel <int=256></int=256>		44	5	34	0.37	719.280	20.579	21.155	21.635
6	axpby_kernel <int=256></int=256>		44	4	37	0.31	593.790	15.105	16.048	16.833
7	reduce_kernel <int=256></int=256>		44	3	70	0.13	261.372	3.104	3.734	4.353
8	reduce_l2_norm_kernel <int=256></int=256>		45	2	36	0.09	171.217	4.416	4.756	6.208
9	jacobi_invert_diag_kernel_v0 <int=256></int=256>		47	1	1	0.06	109.068	109.068	109.068	109.068

C:\Windows\system32\cmd.exe									
#######################################									
** BICG				**					

** DEVICE : Tesla K20c (ECC: OFF)			**					

** SYSTEM : res/matrix.inp				**					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****	****	*#####################	#####					
** INIT. RESID.: [1.212971e-001	0.000000e+000	0.000000e+000	1.243311e-001]	**					
** INIT. RESID.: [1.212971e-001	0.000000e+000	0.000000e+000	1.243311e-001]	0.0					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****	******	*******	#####					
** ITERATION 0: [5.009870e-002	2.509095e-003	2.442529e-003	1.381766e-003]	**					
** ITERATION 1: 6.322283e-002	3.624363e-003	3.439345e-003	1.459566e-003 1	**					
** ITERATION 2: [1.944435e-002	3.175072e-004	3.108480e-004	4.101967e-004	**					
** ITERATION 3: [1.179491e-002	9.633129e-005	9.554327e-005	2.494020e-004 1	**					
** ITERATION 4: [1.517741e-002	1.351845e-004	1.323939e-004	3.272856e-004]	**					
** ITERATION 5: [2.840113e-002	2.370584e-004	2.333890e-004	6.397188e-004]	**					
	9.483242e-005	9.256901e-005	1.726512e-004	**					
				**					
** ITERATION 7: [2.497275e-003	2.221739e-005	2.213925e-005	6.087546e-005]	**					
** ITERATION 8: [3.931372e-003	3.762042e-005	3.804746e-005	9.449076e-005]	**					
** ITERATION 9: [1.004664e-003	7.813901e-006	7.722009e-006	2.470211e-005]	**					
** ITERATION 10: [1.348178e-003	1.450667e-005	1.451499e-005	3.084324e-005]						
** ITERATION 11: [3.147213e-004	3.016084e-006	2.968251e-006	7.588855e-006]	**					
** ITERATION 12: [2.560259e-004	2.530426e-006	2.474577e-006	6.138979e-006]	**					
** ITERATION 13: [1.941811e-004	2.010254e-006	1.992610e-006	4.670605e-006]	**					
** ITERATION 14: [1.344858e-004	1.313841e-006	1.286352e-006	3.325935e-006]	**					
** ITERATION 15: [2.946048e-004	3.318294e-006	3.216173e-006	7.020198e-006]	**					
** ITERATION 16: [1.254350e-004	1.372731e-006	1.317983e-006	3.036414e-006]	**					
*****	#################	*#################	*######################	#####					
** FINAL RESID.: [2.529559e-005	2.054403e-007	1.903810e-007	6.569666e-007]	**					
	***			#####					
	~~~~~~	~~~~~~~~~~~~~	~~~~~						
** ELAPSED TIME: 27.189ms				**					
*****	****	***	******	#####					
Press any key to continue 🛓									
				▼ ▶ /					

# What Have You Seen?

- An iterative method to optimize your GPU code
  - Trace your application
  - Identify the hot spot and profile it
  - Identify the performance limiter
  - Optimize the code
  - Iterate
- A way to conduct that method with Nvidia tools