
1

A Decremental Analysis Tool
for

Fine-Grained Bottleneck Detection

Souad Koliaï1,2 Sébastien Valat1,2 Tipp Moseley3

Jean-Thomas Acquaviva1,2 William Jalby1,2

1University of Versailles Saint-Quentin-en-Yvelines, France

2Exatec-Lab, France

3Google, Mountain View, CA

Exascale-Lab
CEA GENCI INTEL UVSQ

2

Outline

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Introduction: my personal view on hardware
performance counters

• DECAN: what?

• DECAN: how?

• Case studies

• Future work

Exatec-
Lab

3

How to deal with performance issues (1)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• First (well known) technique: profiling
 Down to a few hot routines
 Then analyze loop behavior
 Four key issues: source code, compiler, OS, hardware

• Second analyze loops statically (source code, compiler
 Static analysis (MAQAO)
 Allows to detect compiler inefficiencies

 Provides performance estimates and bottleneck analysis

Exatec-
Lab

• In general discrepancy between static estimates and
measurements
 What is the next step ??
 Use performance counters to get an idea of hardware performance

behavior

4

How to deal with performance issues (2)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Once you know the performance issues, analyze/evaluate
them
 Sort them out by performance impact importance (ROI)
 Trade off between cost and potential performance gains

Exatec-
Lab

• After performance problem analysis, fix performance issues
 The main “performance knob” at our disposal are instructions

 Change the source code or assembly to remove performance issues

• Importance of ROI (Return On Investment)
 Routine A consumes 40% of execution time and performance gains are

estimated on routine A at 10%: overall gain 4%
 Routine B consumes 20% of execution time and performance gains are

estimated on routine B at 50%: overall gain 10%

5

Hardware performance counters/events

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

In general, performance events give an aggregate view of
the routine/loop behavior:

 Number of cache misses
 All of the instructions are “lumped” together: no individual

view/report of an instruction
 REMEMBER: our main knob is at instruction level

Exatec-
Lab

6

Conflict on address disambiguation

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

Consider the C kernel :

If we have addresses such as :

With offset = 1, there is a conflict between :
The store a[(i)] from iteration i
The load b[(i+1) - 1] from iteration i+1

THIS IS KNOWN AS THE 4 KB ALIASING PROBLEM

This can be detected with hardware counter :
LOAD_BLOCK.OVERLAP_STORE

for (int i = 0 ; i < SIZE ; ++i)
a[i] = b[i – offset]

a % 4kB = b % 4kB (same low order 12 bits)

7

Performance on Intel CORE 2 duo

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

8

Results Analysis

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

Sensible impact up to :

• Offset = 10 in terms of counter
• Offset = 4 in terms of time cost

The counter DETECTS the issue, but not the
cost.

WHAT WE CARE ABOUT IS PERFORMANCE
IMPACT

9

Hardware performance counters/events issues (1)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Detects the source of the problem not the performance
impact
 Counts the number of 4 KB alias conflicts but not the cost
 Counts the number of cache misses not the latency (except EAR on IA64

and mem lat counter on I7) and in fact you want the exposed latency

• Sampling bias and threshold
 Quantum measurement: every 100 000 cache misses, update counters
 In general unable to assign the cost to the right/offending instruction
 Delays between the counter overflow and the interrupt handler
 Too many instructions in flight
 Several instructions retiring at the same time
 IN CONCLUSION BAD ACCOUNTING: NO GOOD CORRELATION WITH

SOURCE CODE

Exatec-
Lab

10

Hardware performance counters/events issues (2)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Other Key issues with performance counters/events:
 TOO MANY OF PERFORMANCE EVENTS: Over 1200 on core I7
 TOO FEW COUNTERS: typically 4, getting values for all events would

require 400 runs
 Deals with low level hardware and gives you a fragmented picture: counts

the number of times prefetch are launched including the aborted cases
 Documentation is usually poor
 Needs to know very well micro architecture and in general corresponding

info is not available
 Not consistent across architectures even on successive X86 generations

Exatec-
Lab

• An interesting OLD idea: Profile me (DEC)
 Sample instructions

 Reports all stalls occurring to an instruction

11

Introduction to DECAN (1)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Be a physicist:
 Consider the machine as a black box
 Send signals in: code fragments
 Observe/measure signals out: time and maybe other metrics

• Signals in/Signals out
 Slightly modify incoming signals and observe difference/variations in

signals out

 Tight control on incoming signal

Exatec-
Lab

• In coming signal: code
 Modify source code: easy but dangerous: the compiler is in the

way
 Modify assembly/binary: much finer control but cautious about

correlation with source code

12

Introduction to DECAN (2)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• GOAL 1: detect the offending/delinquent
operations

• GOAL 2: get an idea of potential performance
gain

Exatec-
Lab

13

DECAN: What?

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• A tool for fine grained detection of the bottleneck (ie.
assembly instruction level)

• Focus on the hottest region of an application using
automatic kernel extraction (AKE)

• DECAN performs on a binary and on loop level

• DECAN uses MAQAO/MADRAS disassembler tool chain

Exatec-
Lab

14

DECAN: General Concept

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• DECAN’s concept is simple:

 Measure the original binary

 Patch the memory access instructions in the original
binary

 New binary is generated for each patch

 Measure new binaries

 Measurements are represented in a CSV file: analysis
and comparison

Exatec-
Lab

15

DECAN: Automatic Kernel Extraction 1/2

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• Strategy for performance measurements: Automatic
driver to extract a kernel from a given application

• Goal:

 focus on only a small part of the application (the
hottest subroutine = the kernel)

 Extract the kernel and its memory context

 Build a driver to run the kernel in its original execution

environment

16

DECAN: Automatic Kernel Extraction 2/2

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• Kernel extraction methodology

 Dump the memory context of the kernel using GDB

 Dump the parameters addresses of the kernel using GDB

 Map the memory context dumped

 Pass the parameters addresses dumped to the correct
registers/stack location generates a caller to the kernel

 Original memory context + correct calling convention

operational loader

 Bypass the main of the original application to branch to the
loader run the kernel in its original execution environment

17

DECAN: Instruction Removal

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• DECAN focuses on SSE memory access instructions (ie.
SSE loads and stores)

• Memory access instruction patching:
 Replace the memory access instruction by a nop
operation or a pxor to avoid extra dependencies
 Example:

movaps (%rsi),%xmm1 nop r/m or pxor %xmm1, %xmm1
movaps %xmm2,(%rsi) nop r/m

• Each patched instruction generates a new binary

Exatec-
Lab

18

DECAN: Instruction Patching

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• If n SSE instructions then n+3 different binaries +
grouping version of binaries are generated:
 One_Load binary
 One_Store binary
 All_Loads binary
 All_Stores binary
 All_Loads_Stores binary
 Grouping

• Each new binary has the following file name format:
<func_name>_loopID_OPT

OPT = loads|stores|loads_stores|(ld|st)_@inst_lineSRC

Example:
rbgauss_loop3_ld_0x402f4c_line97 in loop 3 of rbgauss

function, the load instruction at 0x402f4c address has

been modified (source line: 97)

Exatec-
Lab

19

DECAN: Performance Measurement

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• The original binary and the new binaries are measured
using the automatic kernel extraction

• Performance measurements are gathered in a CSV file

• The CSV format allows to make easy the comparison
between the original binary and the modified binaries
and to pinpoint the delinquent memory access instruction

Exatec-
Lab

20

DECAN: Case Studies - MAGMA

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• MAGMA is an application for the
simulation of casting processes

• The hottest subroutine in MAGMA
application is CGSolv

• The target loop in CGSolv is Matvec
shown in Fig.3

• Applying DECAN on Matvec
generates a set of binaries (when
modifying memory access
instructions)

• Performance measurements are
gathered in MATVEC.csv file

Fig. 3. Target Loop in CGSolv

do k = anf3, end3
do j = anf2, end2

do i = anf1, end1
vhilf(i,j,k) = temp(i,j,k) - (

& (acx(i-1,j ,k) * temp(i-1 ,j ,k)
& + acx(i ,j ,k) * temp(i+1,j ,k)
& + acy(i ,j-1,k) * temp(i ,j-1,k)
& + acy(i ,j ,k) * temp(i ,j+1,k)
& + acz(i ,j ,k-1) * temp(i ,j ,k-1)
& + acz(i ,j ,k) * temp(i ,j ,k+1))
&) / coeffd(i,j,k)

end do
end do

end do

21

22

DECAN: Case Studies - MAGMA

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• When replacing one load at the same time, there is some
performance impact of the replaced load : however some loads
have a larger impact than others

• When replacing all loads, performance is improved by a factor
of 2.5

• When replacing A SINGLE store, performance is improved by a
factor of 2.5 this store seems to be the bottleneck.

• Conclusion: the conflict between the loads and a store seems to
be the bottleneck !

• A 4K-aliasing load-store conflict between vhilf (the array being
stored), temp and acx (the arrays being loaded).

23

DECAN: Case Studies - RECOM

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• RECOM application builds a 3D-
model of industrial-scale furnaces.

• The hottest subroutine in Recom
application is RBgauss

Fig. 1. Target Loop in RBgauss

• The target loop in RBgauss is
shown in Fig.1

• 3D structures (arrays, loops) are
linearized

• Regular geometry but with
holes: use of indirect access to
jump over holes

• RB stands for Red Black: many
access are stride 2

24

25

DECAN refinement: instruction grouping

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• An example:
 B(i) = A(I) + A(I+1)
 Let us assume A coming from memory: 1 miss followed by a hit
 Nopping A(I) generates one miss A(I+1)
 Nopping A(I+1) generates one miss on A(I)

• Basic idea of grouping
 Group together loads which are dependant upon each other

 Group loads accessing the same array

Exatec-
Lab

• How to implement grouping
 Analyze start array address
 Group together loads which corresponds to “close” start array

address

26

27

DECAN: Case Studies - RECOM

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• When nooping one load at the same time, there is limited effect
of the nopped load.

• When replacing all loads, performance is improved by a factor
of 1.75

• Grouping shows that most of the performance loss is associated
with access to a 1D array : AM

• Conclusion: AM access seems to be the bottleneck !

• A memory trace tool is used to detect how AM is accessed

• AM is accessed with a STRIDE 2 !: solution: restructure splitting
AM into two distinct arrays: one for the RED, one for the BLACK

28

DECAN: Case Studies - RECOM

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

Fig. 1. Target Loop in RBgauss

• Limiting array restructuring
to AM is much simpler: read
only structure

• Restructuring PHI is much
harder: complex access and
read/write operations

29

30

DECAN: Case Studies - DASSAULT

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• DASSAULT application solves
the Navier-Stokes equation
using computational fluid
dynamics based on an iterative
solver

• The hottest subroutine in
Dassault application is Eufluxm

• The target loop in Eufluxm is
shown in Fig.2

• Bad access (strides) to arrays
Fig. 2. Target Loop in Eufluxm

31

32

33

DECAN: Case Studies - DASSAULT

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• When replacing one load at the same time, there is no effect of
the replaced load.

• When replacing all loads, performance is improved by a factor
of 3 some “dependent” loads seem to be the bottleneck.

• Grouping shows that most of the performance loss is due to
access to two 3D arrays : ompu & ompl

• Conclusion: ompu & ompl access seems to be the bottleneck !

• A memory trace tool is used to detect how these arrays are
accessed: Ompl & ompu are accessed with a LARGE STRIDE !
(iterating on the wrong dimension)

• Only ompu and ompl need to be restructured

34

35

Increasing DECAN functionalities (1)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Go beyond nopping:
 Instead of a NOP use a register move (pay attention to

dependencies)
 Instead of a NOP, perform an access to a given (invariant

memory location on the stack (keep cache access latency impact)

• NOP other instructions than memory operations
 Arithmetic complex instructions: divide, square root

 Analyze impact of out of order

Exatec-
Lab

• Compare performance impact with microbenchmark
results
 Use to detect/guess operand location: L1, L2, L3, RAM

 Use to evaluate prefetch efficiency

36

Increasing DECAN functionalities (2)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Detection of multicore issues:
 Detection of false sharing
 Detection of contention

Exatec-
Lab

• NOP branches
 Two variants: force fall through or taken branch

 Analyze impact of branch misprediction

37

DECAN limitations (1)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Dealing with side effects:
 “Nopping” instructions is not exactly neutral
 Large set of experiments allows to “recoup”

• Dealing with If within loop bodies
 Typical case: if (A(I)) > 0) THEN …. ELSE
 Nopping A(I) is equivalent to Nopping the branch

 DECAN provides info but care has to be taken

Exatec-
Lab

• SEMANTICS is lost
 From a performance point of view, limited importance

but pay attention to some corner cases
 Some experiments in the DECAN series can crash: for

example NOP the access to indirection vectors

38

DECAN limitations (2)

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• DECAN is a microscope: applicable to loops only
 Needs to be coupled with good profiling

Exatec-
Lab

• Measurement accuracy
 Let us think of a loop with 200 vector loads,
 Some experiments in the DECAN series can crash: for

example NOP the access to indirection vectors

39

DECAN Vs VTune

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• VTune is an event-based sampling tool that uses hardware
counters

• VTune collects data from processor using timer interrupts

• RBgauss and EUFLUXm routines are profiled with VTune
(Fig. 1 & Fig. 2)

• VTune detect a large set of instructions that are not all
delinquent

• This inaccuracy is inherent to any sampling scheme

• Sampling is useful for a broad diagnostic when DECAN
gives a more precise bottleneck detection

40

Fig. 1. RBgauss profiled with VTune

41

Fig. 2. EUFLUXm profiled with VTune

42

Conclusion & Future Work

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• DECAN: a tool for automatic decremental performance
analysis.

• DECAN identifies delinquent memory operations

• DECAN gets an estimate of potential performance gain

• Test DECAN on more applications

• Improve user feedback: synthesis of DECAN results

• Extend DECAN to address branch instructions to detect miss-
prediction

43

ANNOUNCEMENT

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

Exatec-
Lab

• EXATEC LAB grand opening will take place on October
25th at UVSQ in Versailles

• You are all invited and welcome!!

• See http://www.uvsq.fr : front page

4444

Questions ?

Testing on Intel Core i7

All optimization on Intel Core 2
Duo

47

Introduction

A Decremental Analysis Tool for a Fine-Grained Bottleneck Detection

• Optimization process:
 Gathering data (ie. code characterization)
 Diagnosing the problem
 Prescribing a solution

• Tedious process
 Complex modern processors
 Limited existing methodologies

 Performance counters not up to the job

Exatec-
Lab

• Characterization process
 Code analysis to extract code characteristics
 Applying different types of code analysis

 Get different views of the code behavior

